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Abstract: The temperature reduces the viability and seed vigor; however, the effect of temperature
on imbibition and fatty acid profile has not been studied. Chia (Salvia hispanica L.) seeds have a
substantial quantity of oil, making them a potential study model for fatty acid metabolism. Therefore,
we explore the effect of temperature (10, 20, and 30 ◦C) on chia seed imbibition, germination, and
fatty acid profile by GC-MS. Imbibition FI occurs within the first hour in all the treatments; while FII
and FIIend elapse with an hour of difference at 20 ◦C and 30 ◦C. The highest viability and germination
rate were observed at 30 ◦C; while the highest concentrations of all fatty acids, except oleic acid, were
observed at 20 ◦C. Maximum fatty acid concentrations were detected at FI and FIIend; while at 30 ◦C,
different patterns for saturated and unsaturated fatty acids and three linolenic acid isomers were
observed. A shorter FII is associated with earlier germination; the increase in concentration in fatty
acids after 3 h and a negative correlation between linoleic and linolenic acid observed at 20 ◦C were
related to a higher germination efficiency. At 30 ◦C, isomer formation is related to homeoviscous cell
membrane adaptation.

Keywords: fatty acid isomerization; germination phases; homeoviscous adaptation; linolenic acid;
lipid metabolism; polyunsaturated fatty acids; Salvia hispanica; seed imbibition

1. Introduction

Chia (Salvia hispanica L.) or “oily” for Aztec and Maya cultures is a summer biannual
herbaceous and oleaginous plant, included within the family of mints (Lamiaceae). Chia is
a Cem Anahuac oilseed crop that has been cultivated for 5500 years in territories covering
midwestern Mexico to northern Guatemala [1–7]. Currently, chia is cultivated in Australia,
Bolivia, Colombia, Guatemala, Mexico, Peru, and Argentina [5].

Some of the benefits of this oilseed in nutrition and health are related to its substantial
quantity of oil (around 25–40% total weight of the seed), 50–57% as linolenic and 17–26%
linoleic (ω-3 andω-6 fatty acids, respectively), essential fatty acids for health, antioxidant
and antimicrobial activity [8–16]. Seeds are also composed of 15–25% protein, 30–33%
fat, 26–41% carbohydrates, 18–30% fiber, 4–5% ashes, and minerals, vitamins, and dry
matter [14,17], fundamental components of the human diet.

Chia seeds are appreciated and requested in Europe, the United States of America,
Canada, China, Malaysia, Singapore, and the Philippines, due to the nutraceutical proper-
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ties that characterize them [8,14,18–20]. In 2018 chia seeds worldwide market was valued
at USD 66.5 million and by 2024 is projected to reach a value of USD 88.1 million [21].
Therefore, it is important to investigate the molecular, biochemical, physiological, and
agronomical aspects of chia seeds. So far, early seed germination events that are directly
related to the subsequent success of the seedling establishment, have been little studied.

During the life cycle of plants, germination is often considered a critical stage due to
its high sensitivity to environmental factors such as water, temperature, light, and gaseous
environment [22–25]; when water availability is not a limitation, the temperature is the
main factor controlling germination [23,24]. The influence of temperature on germination
is related to water absorption by seeds; latency level and seed deterioration rate are also
affected by temperature [26,27]. Additionally, the length of time at which germination
occurs could be affected by temperature [23,28].

As soon as the dry seeds begin their imbibition, a precise temporal dynamic of events
leads to metabolism resumption [23,29]. Membrane organization is an initial event that
precedes subsequent physiological events; the proper membrane reorganization during
imbibition is affected by temperature, modifying permeability and fluidity properties,
contributing, or limiting the leakage of cellular components. Underlaying structural and
domain membrane reorganization, lipid metabolism, and lipid biochemical properties
carry out essential roles, for example, it has been observed that the increase in chain length,
unsaturation number, and isomerization in a certain cohort of lipids supports membrane
reorganization [30,31].

Although seed lipid changes have been investigated under scenarios of chilling im-
bibitional damage, cellular response to heat stress and seed aging [32–38], the precise
nature of climatic influence on lipid and fatty acid composition is still unknown. For
instance, during a global lipidomic study of chilling-imbibitional damage in maize seeds,
it has been observed that germination ability under cold stress is related to phospholipid
remodeling [39]; while at warmer temperatures, the key component of cellular tolerance to
heat stress depends on membrane thermal stability combined with an efficient antioxidant
response [40]. Global rise in temperature impacts negatively crop productivity, triggering
a heat stress-mediated decay in germination rates [41]. Under this scenario, due to their
susceptibility to oxidation, polyunsaturated fatty acids (PUFAs) are particularly related
to reactive oxygen species and membrane damage [35,42], being directly linked with the
decrease in seed quality. PUFAs isomerization is another event that has been implicated
as seed stress-mediated mechanism, being trans fatty acid’s structure more stable than cis
fatty acids against thermodynamics [30,43]. Fatty acid isomer formation not only can be
studied as a free radical-mediated chemical conversion but also as an important structural
change associated with cellular stress or cellular signaling events.

Oilseeds arise as an alternative for the study of lipid metabolism during the early
stages of germination and within these, chia is distinguished by the characteristics of its
oil. Hence, in the present work, we explore fatty acid changes during chia seed imbibition
at 10, 20, and 30 ◦C, to establish a correlation between fatty acids behavior, temperature,
and germination. Those temperatures were chosen because they represent the minimum
and maximum temperatures for chia growth, i.e., 11 and 36 ◦C, respectively; showing
an optimum range between 16–26 ◦C [44]; however, cardinal temperatures for chia seed
germination remains to be determined.

2. Materials and Methods
2.1. Seed Acquisition and Store

Medicinal variety of S. hispanica seeds were obtained without previous treatment, with
90% of germination and 99% of purity accordingly with the supplier (Okko super foods©;
Jalisco, México; Lot/Batch: 130320/19). Seeds were stored in their shipping bag inside
a cold and dry seed store chamber at 10 ± 5 ◦C and 20 ± 5% of relative humidity until
imbibition assays were performed. No previous disinfection treatment was applied in any
of the experiments due to chia seeds’ response at mucilage secretion level [45,46].
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2.2. Imbibition Tests

Seed water uptake was evaluated in samples of 300 seeds placed inside mesh woven
cotton bags (6.5 × 8 cm), 3 bags were placed inside Petri dishes (9 × 1.5 cm). Dishes were
filled with distilled water (15 bags per treatment, 3 bags per Petri dish, 5 Petri dishes) and
placed inside germination chambers same as Sampayo-Maldonado et al. [47], with 12 h
photoperiod, using halogen lamps at a light intensity of 28.05 µmol m−2 s−1 (Quantum
Meter Apogee Mod. QMSW-SS), programmed at 10 ± 2, 20 ± 2 and 30 ± 2 ◦C. The
former lighting conditions were chosen because higher seedling growth and dry matter
accumulation were observed in the presence of luminosity [48].

According to with literature, the first half-hour of imbibition is related to the complete
mucilage secretion/hydration [44,45]; therefore, our weight measurements start after this
time. Afterward, the bags were weighed every 30 min for the first 2 h and finally every
hour for the next 3 h. Each time the wet seed bags were taken from Petri dishes, shaken for
5 s, weighted, and placed back under treatment. Changes in seed weight during imbibition
time were calculated by subtracting the dry seed weight registered at the beginning of the
experiments and the average weight of the hydrated empty bags from the total weight.

For the fatty acid analysis, additional seed bags were imbibed under the same condi-
tions, bags (n = 3) were taken every hour, shaken, and weighed. The bagless seeds were
stored individually at −70 ◦C until use in GC-MS fatty acid analysis.

2.3. Germination Tests

Five replicates of 25 seeds were sown randomly on agar medium (10 g L−1) in
Petri dishes (5.5 × 1.5 cm). Seeds were incubated at constant temperatures in germi-
nation chambers at 10 ± 2, 20 ± 2 and 30 ± 2 ◦C and with a 12 h photoperiod same as
Sampayo-Maldonado et al. [47]. Seeds were considered germinated when radicle emerged
≥2 mm [49], after that, seedlings were removed from the Petri dish. Germination was
recorded daily for 14 days, a time at which no more germination was observed.

2.4. Variables Evaluated
2.4.1. Total Germination

The daily number of germinated seeds in each Petri dish was recorded. G(%) was
reported as the average cumulative percentage of germinated seeds in each treatment,
calculated according to:

G(%) =
n
N

× 100 (1)

where n is the number of seeds germinated and N the total number of seeds.

2.4.2. Median Germination Time (t50)

The total number of days between imbibition time and when 50% of the total germina-
tion was recorded. According to Ordoñez-Salanueva et al. [50], a sigmoid curve was fitted
to the accumulated germination, allowing the median germination time to be determined
by interpolation.

2.4.3. Germination Rate (GR)

Germination rate or the number of germinated seeds by day was obtained with the
equation proposed by Maguire [51]:

GR =
G1

N1
+

G2

N2
+ . . . +

Gi
Ni

+
Gn

Nn
=

n

∑
i=1

Gi
Ni

(2)

where Gi is the number of germinated seeds and Ni es the number of days after the
beginning of the experiment.
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2.5. Lipid Extraction and Fatty Acid Analysis by GC-MS

Total lipids were extracted from individual samples of additional frozen seeds stored
every hour during the imbibition tests at 10, 20, and 30 ◦C. Seed samples in a range from
200 to 300 mg (n = 3) were grounded with nitrogen in presence of CHCl3:CH3OH (2:1).
Extraction was performed by organic phase separation with the same solvent mixture and
adding NaCl 0.9%, according to Priestley et al., [52]. Fatty acid transesterification was
done through evaporation of 100 µL of the chloroformic phase and reaction with 500 µL
of BF3-CH3OH 12% w/w. After that, C6H14:H2O (2:1) was added to recover the methyl
esters of fatty acids from the organic phase. Heptadecanoic acid was used as the internal
standard for fatty acid quantification.

For the analysis of the methyl esters of fatty acids a gas chromatograph (Agilent
Technologies 6850, Santa Clara, CA, USA) coupled with a mass spectrometer (Agilent
Technologies 5975C VL MSD, Santa Clara, CA, USA) was used. A DB-1 (dimethylpolysilox-
ane) capillary column (30 m length × 0.32 mm i.d., 5.00 µm film thickness, part number:
123-1035E, Agilent Technologies 6850, Santa Clara, CA, USA) was used for the GC system.
The oven temperature was programmed as follows: from 100 ◦C; ramp 1: To 250 ◦C with
5 ◦C/min. The injector temperature was 200 ◦C in split mode. Helium was used as carrier
gas at a linear flow velocity of 35 cm s−1 o 1.4 mL min−1. Mass detector conditions were:
transfer line at 250 ◦C, range from 20 to 400 m/z, positive polarity, the ionization energy of
70 eV, and temperature of 200 ◦C, with an injection volume of 2 µL. The mass spectra were
compared with the NIST/EPA/NIH Mass Spectral Library 2020 version [53]. Fatty acid
analyses were performed by triplicate. Non imbibed (NI) seeds were the control for any of
the treatments.

2.6. Statistical Analysis

Germination data did not fulfill the assumption of normality, therefore significant
differences in final germination, median germination time (t50), and germination rate (GR)
were determined by Kruskal-Wallis and Dunn’s test (p < 0.001). Differences in weight
during imbibition at 10, 20, and 30 ◦C were determined by two-way ANOVAs and Tukey
tests (p < 0.001), while differences in fatty acid concentrations were determined by two-way
ANOVAs and Dunnett test (p < 0.001). Statistical analyses were carried out using the
GraphPad Prism® software, version 8.4.0 for macOS, GraphPad Software, San Diego, CA,
USA, www.graphpad.com (accessed on 10 January 2021).

3. Results
3.1. Imbibition

The weight gain of mature seeds during imbibition includes three different phases;
the first comprises an initial and significant water uptake (FI), afterward a plateau phase
without significant changes in seed fresh weight (FII), which represents the final stage for
dead and dormant seeds, and finally, a newly significant water uptake corresponding to
the germination stage (FIII), this final restart of water uptake is experienced only by germi-
nating seeds [24,54] and is related to solutes formation, cell wall-loosening, and radicle tip
weaken within embryonic tissues that leads to cell extension and visible germination [54].
Based on this criteria, S. hispanica seed weight changes were registered during imbibition
at 10, 20, and 30 ◦C to relate the seed weight changes with the three imbibitional stages
(Figure 1). During our imbibition assays, the last weight gain, related to water uptake,
was observed after 3–4 h after that we observed a subsequent loss of weight-related to the
mucilage loss that occurred at the beginning of FIII, this weight loss masks the onset of FIII.
Due to that FIII was not clearly distinguished by mucilage loss, the lapse between the last
increase in weight and the end of loss of weight was considered as the extension of FII and
called FIIend.

www.graphpad.com
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Figure 1. Imbibition curves of S. hispanica seeds at 10, 20 and 30 ◦C. Values are expressed as
mean ± SD of five independent replicates. In the top is indicated the temporality of the imbibition
phases FI, FII and FIIend in each of the temperature treatments. Statistical analysis was performed
using two-way ANOVA followed by a Tukey multiple comparison test. Asterisks correspond to data
with statistical differences in time intervals and between temperature treatments (*** p < 0.001).

FI was characterized by a rapid and significant (F7, 96 = 271.5; p < 0.001) increase in
weight; this change occurs within the first hour of imbibition. At FII, no significant differ-
ences were observed, after 2–3 h imbibition weight increased at all temperatures (beginning
of FIIend), but only at 30 ◦C, seed water uptake was faster and resulted in significantly
different (F2, 96 = 7.286; p = 0.001) in weight concerning the other two temperatures. After
that, there was no significant difference in weight between all three temperatures (final of
FIIend). Radicle protrusion was not distinguished during the observation period (5 h).

3.2. Germination

No significant differences were observed in final germination percentage between
all treatments (F2, 12 = 5.673; p < 0.05), final germination reached >80% (Figure 2). The
lowest germination percentage was observed at 10 ◦C (80.8 ± 5.93%). The time required to
reach 50% germination (t50) was significantly different between treatments (F2, 12 = 12.5;
p < 0.001). t50 at 30 ◦C was 9.7-fold and 4.4-fold faster than 10 and 20 ◦C, respectively
(Table 1).

Table 1. Final germination percent and median germination time (t50) of seeds during imbibition
at 10, 20, and 30 ◦C. Final germination is the percentage of seeds in which the germination process
reaches the end; while median germination time (t50) is the time to reach 50% of final germination.

Temperature Final Germination (%) Median Germination Time t50 (Days)

10 ◦C 80.8 ± 5.93 5.64 ± 0.20 ***
20 ◦C 89.6 ± 4.56 1.27 ± 0.01 ***
30 ◦C 88.8 ± 5.21 0.58 ± 0.09 ***

Values are expressed as mean ± SD of five independent replicates. Statistical analysis was performed using
Kruskal-Wallis (p < 0.001) followed by a Dunn’s test multiple comparison test. Asterisks indicate significant
differences between treatments (*** p < 0.001).
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Figure 2. Cumulative germination of S. hispanica at 10, 20 and 30 ◦C. Values are expressed as
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followed by a Dunn’s multiple comparison test.

GR was significantly different between treatments (F2, 12 = 12.50; p < 0.001). It was
highest at 30 ◦C, 18.5 seeds d−1, and the lowest was at 10 ◦C, 4 seeds d−1 (Figure 3).
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3.3. Fatty Acid Analysis

Fatty acid concentrations in frozen seeds stored every hour during the imbibition
tests at 10, 20, and 30 ◦C were quantified by CG-MS (Figure 4). The highest concentrations
of palmitic (P), stearic (S), linoleic (L), and linolenic (Ln) acids were observed at 20 ◦C.
Oleic acid (O) was not detected in non-imbibed seeds (NI) nor in imbibed seeds at 10 ◦C.
At 20 ◦C, O was not detected in all replicates and the concentrations were close to the
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concentration in NI. At 30 ◦C, O was detected in all replicates and the concentrations were
the highest of the three treatments.

At 10 ◦C, maximum concentrations of P, S, L, and Ln were observed at 0 h and after
4 h of imbibition. At 20 ◦C maximum concentrations of P, S and Ln were observed after 1 h
and 4 h of imbibition. After 4 h, at 30 ◦C maximum concentration was observed for P and
after 3 h for S, O, L, and Ln. In all fatty acid maximum concentration occurred at FI and
later occurred from the middle to the end of FIIend. At 10 ◦C maximum P concentration
was 3-fold higher; S 3-fold higher; L 2.1-fold higher and Ln 2.7-fold higher than in NI. At
20 ◦C maximum P concentration was 3.2-fold higher; S 5.9-fold higher; O 0.5-fold higher;
L 2.8-fold higher and Ln 4.7-fold higher than in NI seeds. Finally, at 30 ◦C maximum P
concentration was 3.2-fold higher; S 2.9-fold higher; O 0.6-fold higher; L 1.1-fold higher
and Ln 1-fold higher than in NI.

Different behavior patterns can be observed in fatty acids at 30 ◦C: the saturated fatty
acids P and S showed a constant increase in concentration reaching a plateau between 4
and 3 h of imbibition, respectively; while the unsaturated acid Ln showed a maximum
concentration after 3 h of imbibition, followed by a decrease the next hour, even lower
compared with NI. Concentration dynamics of O and L were very similar to Ln; however,
it is not possible to clearly distinguish the decrease in concentration at 4 h of imbibition.
The maximum concentration observed in Ln at 30 ◦C occurs one hour before maximum
concentrations were reached in treatments at 10 and 20 ◦C.

During the first 3 h of imbibition, P and S concentration at 10 ◦C was significantly
lower (F2, 42 = 12.11; p < 0.001) than concentrations at 20 and 30 ◦C. At 4 h of imbibition,
S concentration at 10 and 20 ◦C experiences an increase, separating it from treatment at
30 ◦C. On the other hand, at 4 h, only the increase in the concentration of P was observed
at 10 ◦C, while concentration at 20 ◦C was not significantly different between 3 h and 4 h of
imbibition.
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For O, it was observed that at 10 ◦C, the concentration remains undetectable during
all imbibition time, while at 20 ◦C experienced an increase in the concentration of 0.5-fold
after 2 h of imbibition. The highest concentrations of O were observed at 30 ◦C, remaining
between 0.4–0.6 mg g−1 from 0–5 h of imbibition. L and Ln concentrations at 10 & 30 ◦C
were close during the first 3 h of imbibition regarding with treatment at 20 ◦C; however,
during the fourth hour of imbibition at the same temperature, only Ln reached a second
maximum concentration, while L concentration remained close to NI (Figure 4).

Three Ln isomers were identified by their double bond position and configuration [53]:
6Z, 9Z, 12Z (γ-linolenic acid); 9Z, 12E, 15Z, and 6Z, 9Z, 11E (Figure 5). Trans-fatty acid
isomers were detected at 20 and 30 ◦C; however, only at 30 ◦C isomers were detected
in all replicates. Maximum isomer concentration was observed after 3–4 h of imbibition,
i.e., FIIend, time at which a decrease in Ln was observed (Figure 6). Together, the total
concentration of Ln and its trans-isomers at 4 h of imbibition (≥6.8 mg g−1) represents
∼77% of the concentration of Ln observed in NI (8.8 mg g−1).
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indicated throughout the imbibition trend at 30 ◦C. Concentrations were calculated relative to the
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concentration of Ln; while the right y-axis corresponds to the isomers’ concentration.
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4. Discussion
4.1. Imbibition

We observed that treatments at 10 and 20 ◦C reach at constant weight at 4 h of
imbibition; while treatment at 30 ◦C reaches constant weight at 3 h, we associated this
change with a shorter FII of germination and consequently, earlier germination at 30 ◦C. It
is known that temperature affects water uptake by seeds [23]; in this context, it has been
suggesting that, at suboptimal temperatures, there are changes in membranes configuration,
affecting the retention of solutes, including sugars, organic acids, ions, amino acids, and
proteins, affecting the efficiency of germination [26,27]; also, the rates of metabolic reactions
underlying germination are affected by temperature [29].

In another imbibition assays with complete chia seeds [44,45,55,56], it has been re-
ported that seeds reach up a constant weight between 2–4 h at temperatures ranging
from 20–28 ◦C, similar behavior has been observed in some members of the Plantago
genus [57,58].

The course of chia seed imbibition also has been explored by Muñoz et al. [45] as
part of mucilage release characterization at 18–20 ◦C. The maximum weights reported
by Muñoz et al. [45] were about 3 g for 100 mg of isolated mucilage and 1 g for 100 mg
of demucilaged seeds (combined weight of 4 g) at 2.5 h of imbibition. We observed a
maximum weight value of 5.3 g reached at 4 h of imbibition for seeds at 20 ◦C, while
treatments at 10 and 30 ◦C reach a weight of 5.7 g at the same hour for 400 mg of seeds
with intact mucilage. A similar effect has been observed in Dillenia indica (Dilleniaceae)
another myxospermic angiosperm with copious mucilage, where intact seeds have higher
water uptake than seeds without mucilage or seeds with excised embryos [59].

4.2. Germination

It has been observed that Salvia hispanica L. is tolerant to freezing in all development
stages [60,61] and grows at a minimum temperature of 11 ◦C and a maximum of 36 ◦C, with
an optimum range of 16–26 ◦C [44]. According to this evidence, we observed germination
at 10, 20, and 30 ◦C, with final germination above 80%. Maximum total germination
has been observed at 20–30 ◦C, accordingly with their natural environmental conditions,
i.e., tropical, and subtropical environments, elevations of 400 to 2500 m. a. s. l. and
mild temperatures [62]. The same was observed by Paiva et al. [48,63], where the highest
germination was observed at constant 25 ◦C and alternating temperatures of 25–30 ◦C, in
their assays the first count of germination was observed on the second day of sowing. In
another research, chia seed germination has been tested during assays at 20–35 ◦C, they
observed a germination time of 2 days at 22 and 32 ◦C [64]; in contrast, we count seeds
with radicle protrusion from the first day of imbibition in all treatments.

Germination rate (GR) can change with temperature of imbibition and with the
features acquired by cultivars throughout its domestication process [23]; specifically, during
chia germination assays driven at 20, 25, and 30 ◦C, was observed a higher GR at 25 ◦C
(13.1 ± 0.1 seeds day−1) compared with treatments at 20 and 30 ◦C (12.6 ± 0.1 and 9.7 ± 0.1
seeds day−1, respectively) [65]. In contrast, we observed a GR 2-fold faster at 30 ◦C
(18.5 ± 1.4 seeds day−1) than the observed by Nadtochii et al. [65] (9.7 ± 0.1 seeds day−1);
while at 20 ◦C, a similar GR was observed in both studies. Likewise, final germination
was quite similar between their results and ours. Other studies also support the influence
of temperature as the main indicator associated with chia seed germination [48,64–68].
In comparative experiments, it was shown that the germination of chia seeds at low
temperature (below 20 ◦C) and high temperature (above 30 ◦C) limits plant growth.

We observed a delay in germination at 10 ◦C, i.e., t50 of 5.64 ± 0.20 days; in this sense,
Bita & Gerats [69] suggest that at low temperatures metabolic rates are reduced and the
growth process is affected from germination to seedling stage. Another explanation arises
from evidence with the myxospermous seed-mucilage Lavandula subnuda (Lamiaceae) and
Plantago ciliate (Plantaginaceae), where mucilage presence increased moisture uptake and
inhibited germination at lower temperatures (night/day temperatures of 15/25 ◦C). It has
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been suggested that mucilage inhibits germination under excessive moist conditions by
preventing the diffusion of oxygen to the embryo [70]. Upon germination, the progressive
depletion of oxygen generates conditions that almost achieve anaerobiosis, and fermenta-
tion is triggered as the main source of cellular ATP, supporting the reduction of electron
transferring compounds, e.g., NAD and NADP, and inevitably leading to ROS (reactive
oxygen species) accumulation [71]. The fact that chia germinates satisfactorily under all
our conditions, reflects their potential resilience to adverse environmental conditions.

4.3. Fatty Acids Analysis

Chia seed oil has been extensively studied related to their quality and PUFAs high
levels, in this issue it has been observed that differences in fatty acid concentrations depend
on the extraction method, chia variety, and storage conditions [13,18,72–75].

Although hydrated chia seeds are the most common way it is consumed, few reports
have been conducted on imbibed seeds. Zare et al., [76] observed that concentrations
of oleic, linoleic, and linolenic acids of seeds soaked in water at 23 ◦C and after 24 h of
imbibition was about ≥7, ≥10 and ≥32 mg/g of seeds, respectively; we observed similar
concentrations for linoleic and linolenic acids. Although the concentrations observed are
similar and agree with the 50–67% reported in the literature for ω-3 fatty acids [18,72],
the concentrations that we observed are approximately 20 h earlier than those observed
by Zare et al., [76]. Although fatty acid concentrations in control treatments between
both works are similar, the differences in fatty acid concentrations of soaked seeds can
be attributed to the experimental conditions and extraction method. Notably, it has been
observed that water improves the extractability of fatty acids due to cell wall weakening,
and therefore accessibility of oil bodies to the extraction solvent [76]. During our assays,
it was observed that at 30 ◦C treatment, the maximum weight due to water absorption
by seeds was reached after 3 h, and accordingly with the evidence, we found an increase
in concentration in all fatty acids. At 10 ◦C maximum weight and P, S, L, and Ln were
reached at 4 h of imbibition, while at 20 ◦C the maximum weight was also reached after
4 h of imbibition, at this time only S and Ln reached maximum concentration, at the same
temperature, maximum concentrations of P, O and L were reached after 1–2 h of imbibition.

At 20 ◦C, we observed a decrease in the concentration of all fatty acids after 3 h of
imbibition, after that, at 4 h, only S and Ln experience an increase in their concentration,
part of the increase in S and Ln concentration could be explained by their use as energy
reserves and nutrient mobilization in metabolically active seeds during FII, while the
subsequent increase in S and Ln during the FIIend is due to the synthesis of new nutrients
and solutes that underlies this germination phase. A negative correlation between α-
linolenic acid contents and the 18-C more saturated fatty acids, oleic and linoleic it has
been observed in almond [77], chestnuts [78], soybeans [79], flaxseed [80], and chia [81].
The inverse association is supported by the biosynthesis of α-linolenic fatty acid through
the process of desaturation of stearic [82,83] and oleic fatty acid [83,84], via linoleic fatty
acid by the specific activity of desaturase enzymes, part of the increase observed in Ln
concentration could be explained by this metabolic process.

At 30 ◦C, the temperature at which we observed a higher GR and a lower t50, the
increase in the concentration of P, S, and O from 0–3 h of imbibition and a constant
concentration in L and Ln along the 5 h of imbibition, could be related with a higher
germination efficiency [26,85] and with the optimum temperature range for chia seed
germination (16–26 ◦C) reported by Ayerza & Coates [44].

During FI cellular process as genetic material damage reparation, mRNA degrada-
tion and synthesis, mitochondrial reparation, and the increase of cellular respiration are
favored [23,28]. At 20 ◦C, the observed increase at the end of FI in concentrations of all fatty
acids, except O, are supported by the evidence that fatty acid synthesis occurs during early
germination in Pisum sativum seeds, where after a short lag phase, the incorporation of
marked lipids proceeded linearly, being palmitic and stearic acid the first to be synthesized
followed by long-chain saturated fatty acid the synthesis [86]. This evidence suggests that
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enzymes for fatty acid synthesis are already present in dry seeds and participate in the
synthesis of fatty acids once a critical water content of the seeds is achieved. Therefore, at
20 ◦C, the humidity threshold is reached during the first hour of imbibition. While at the
same temperature, during FIIend, the increase in concentrations of all fatty acids, except for
O, is supported by the fact that seeds with higher proportions of saturated and unsaturated
oils would be favored because they would have more energy available and an enhanced
membrane fluidity without delaying or slowing germination [87]. Fatty acid synthesis at
FI also would be favored by their conversion to sucrose [88,89] and their utilization for
energy via the TCA cycle during the subsequent FII, our results agree with this evidence.

Lipids are the main reserve energy compounds for the embryo in oil crops, lipid
fluidity mainly depends on the fatty acid unsaturation profile, since saturated fatty acids
are solid at low temperatures (P, S, and O) than unsaturated ones (L and Ln) and increasing
the number of unsaturations increases the fluidity [90]. Cell membrane fluidity is essential
for organisms to maintain the function of important metabolic systems such as the electron
transport chain [91,92], the set of mechanisms developed to change their cell membrane
composition to maintain cell membrane fluidity and functionality in response to shifting
environmental conditions, is known as homeoviscous adaptation [93]. Although fatty acid
synthesis during germination is associated to cell membranes functionality and ultimately
the seed germination, the possible effects of the fatty acid composition of the reserve
lipids on seed germination at different temperatures remain almost completely unexplored.
The possible mechanisms involved in these responses include variations in membrane
functionality and reserve lipids’ breakdown during germination [90].

The increase in the concentration of saturated P, S, and O is related to more energy for
growth, also saturated fatty acids in membrane lipids increase the lipid melting temperature
and prevent a heat-induced increase in the membrane fluidity, modulating their metabolism
in response to increasing temperatures [94]. Therefore, to maintain membrane fluidity,
plants increase the content of saturated and monounsaturated fatty acids. On the other
hand, the constant concentration of unsaturated L and Ln during all the five hours of
imbibition, suggests a balance between its breakdown and synthesis, this balance could be
related to its continuous use for the maintenance of the permeability and the activity of
membrane-associated enzymes [87,95].

The increase of trans-isomers of fatty acids observed at 30 ◦C is mainly associated
with cell defense against oxidative stress [30,31]. Higher plants exposed to excess heat, at
least 5 ◦C above their optimal growing conditions exhibit a characteristic set of cellular
and metabolic responses required for the plants to survive under the high-temperature
conditions [96], including membrane functions [97]. The detrimental effects of warmer
temperatures on chlorophyll and the photosynthetic apparatus are also associated with the
production of injurious reactive oxygen species (ROS) and lipid peroxidation [98,99], related
evidence has been observed in the legume Medicago truncatula [35]. However, the seeds
used in our study seem to have an optimal germination range close to 30 ◦C; thus, isomers
formation that occurs at temperatures favorable for germination, are mainly associated
with changes in physicochemical properties of membranes, affecting configuration and
fluidity. In this context, it is known that trans geometric isomer of fatty acids has a much
higher melting point and remains solid at room temperature. Our results also suggest that
this response is delayed as a function of temperature. Another explanation is the role of
these isomers during signal events [96], however, this hypothesis needs to be explored
extensively.

On the other hand, it has been observed that many tropical plants suffer frost damage
when they are exposed to temperatures slightly below 0 ◦C and cold damage has been
sometimes been reported at temperatures close to 5 ◦C [32], this evidence can be related to
the observed increase in the concentration of all fatty acids, except O, after 4 h of imbibition
at 10 ◦C, which are associated with the response for imbibitional damage caused by low
temperature and humidity [23]. At low temperatures, a high proportion of polyunsaturated
fatty acids helps maintain membrane fluidity. Another evidence supports the notion that
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increasing the level of polyunsaturated fatty acid can improve seed performance at low
temperatures [100].

5. Conclusions

In this work, we explore the effect of temperature on seed imbibition, germination,
and early events of fatty acid seed metabolism in the oilseed crop S. hispanica. The main
conclusions are the following:

1. In S. hispanica a shorter FII imbibition phase is associated with earlier germination.
2. The increase in concentration in fatty acids after 3 h and a negative correlation between

linoleic and linolenic acid observed at 20 ◦C were related to a higher germination
efficiency.

3. At 30 ◦C, it was observed the formation of three trans linolenic acid isomers.

The results presented in this paper have the potential to establish the basis of future
research in seed lipid and fatty acids metabolism of a species of agronomic importance and
the potential to establish itself, as an experimental model for the study of fatty acid during
seed germination.
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