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In this manuscript, we study the relativistic quantum mechanics of an electron in external fields in the spinning cosmic string
spacetime. We obtain the Dirac equation and write the first- and second-order equations from it, and then, we solve these
equations for bound states. We show that there are bound state solutions for the first-order equation Dirac. For the second-
order equation, we obtain the corresponding wave functions, which depend on the Kummer functions. Then, we determine the
energies of the particle. We examine the behavior of the energies as a function of the physical parameters of the model, such as
rotation, curvature, magnetic field, Aharonov-Bohm flux, and quantum numbers. We find that, depending on the values of
these parameters, there are energy nonpermissible levels.

1. Introduction

Symmetry is key ingredient in the description of natural phe-
nomena. The notion of symmetry is an essential feature in sev-
eral areas of physics. In this context, the well-knownNoether’s
theorem [1] establishes a connection between symmetry and
conservation laws of relevant physical quantities. In quantum
mechanics, we often use symmetry to obtain crucial results
concerning angular momenta operators [2]. Likewise, symme-
try is relevant in the topic of quantum information [3]. Also,
symmetry is essential in the framework of relativity [4], and
for this reason, it is indispensable in research areas such as par-
ticle physics [5] and cosmology [6].

A pertinent question in the research areas cited above
refers to think about the consequences of symmetry-
breaking in a given physical system. It can happen in several
contexts, like in phase transitions, for example [7–9].
Another example of symmetry-breaking occurs in solids:
we can create topological defects like disclinations and dislo-
cations [10, 11] from the Volterra process [12].

Topological defects can emerge in a large number of
physical systems covering themes such as liquid crystals

[13], graphene physics [14, 15], magnetism [16], and cos-
mology [17]. Recent studies also have reported the impor-
tance of topological defects in Life Sciences [18, 19]. In
cosmology, defects in the spacetime topology can be viewed
as a possible consequence of the evolution of the early uni-
verse, which has suffered phase transitions due to the tem-
perature decreasing and the process of expansion [20, 21].

In this contribution, we are involved in studying the
topological defect known as a cosmic string. A cosmic string
is a linear defect, similar to a flux tube in type-II supercon-
ductors [20]. The spacetime around such defect has a conical
symmetry, being identical to the case of a disclination [22].
The concept of a cosmic string was introduced in the litera-
ture by Kibble [23]. An intriguing facet in this subject refers
to the quantum mechanical description of a particle in a
region of the spacetime containing this defect. There are sev-
eral works dealing with this issue, both in the nonrelativistic
and relativistic scenarios. Reference [24], for instance, ana-
lyzes the hydrogen atom in a spacetime of a cosmic string.
Reference [25] considers the problem of a relativistic elec-
tron in the presence of both Coulomb and scalar potentials
in the cosmic string spacetime. Results about vacuum
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polarization in a cosmic string spacetime were reported in
Ref. [26]. Again, the cosmic string spacetime was considered
as a background to examine relativistic oscillators [27–30],
quantum phases [31], and fermionic currents [32].

A relevant issue in this context consists of taking into
consideration the influence of electromagnetic fields in the
quantum particle motion. Landau levels [33] and the
Aharonov-Bohm effect [34, 35], for instance, are essential
ingredients in the investigation of quantum systems even
in a flat spacetime. Landau levels are a quantum analog of
classical cyclotron motion, while the Aharonov-Bohm effect
reveals the significance of the vector potential in the quan-
tum world. Then, studying the contribution of these mag-
netic interactions to the quantum mechanical description
of a system in spacetime having a topological defect is a nat-
ural development. In Ref. [36], for example, it was consid-
ered the interaction of a point charge with a magnetic field
in a spacetime with a distortion. References [37–44] are
examples of studies dealing with Landau levels and the
Aharonov-Bohm effect in the presence of topological
defects. Reference [45] deals with a quantum ring in gra-
phene with a topological defect and a magnetic field. Refer-
ence [46] investigates an analog of the Aharonov-Bohm
effect for bound states in a spacetime containing a spacelike
dislocation. In particular, the inclusion of electromagnetic
interactions in the case of a cosmic string background also
has been considered. For instance, Ref. [47] analyzes the
quantum dynamics of a charged particle in the presence of
a magnetic field and scalar potential. Reference [48] exam-
ines different configurations of confined magnetic fields
and investigates the existence of induced vacuum fermionic
currents.

On the other hand, we can be interested in analyzing the
behavior of rotating systems. It is a pertinent question, since
large structures in the Universe, such as black holes and gal-
axies, have angular momentum due to rotation [49]. Also, it
is possible to conceive cosmologic models with rotation [50].
The study of quantum systems in spinning spacetimes also
has been reported in the literature [51–53]. Noninertial
effects in quantum systems can provide novel theoretical
predictions and feasible experimental developments. For
instance, quantum phases in rotating systems can emerge,
in analogy to the Aharonov-Bohm effect [54, 55]. It is also
possible to establish a relation between the Hall effect and
the inertial forces [56]. Besides, if a given system is rotating,
physical properties like spin transport [57, 58] and electronic
structure [59] are modified. A system can present magneti-
zation due to rotation, like in the Barnett effect [60]. While
a magnetic field produces a spin-field coupling, resulting in
the anomalous Zeeman effect [61], rotation produces an
analog effect, due to the spin-rotation coupling [62]. Thus,
rotation can contribute similarly to a magnetic field in the
dynamics of a quantum system. More, noninertial effects
are an interesting issue when the spacetime contains topo-
logical defects. In this case, we can include noninertial effects
and the topological defects in the quantum mechanical
description by employing the same tool. More specifically,
we can use a metric tensor to a spinning spacetime with a
topological defect [63]. The spacetime of a spinning cosmic

string has been considered as background for several prob-
lems involving quantum systems [64]. For instance, Ref.
[65] deals with the Schrödinger equation in that spacetime.
Reference [66] analyzed the bound states for neutral parti-
cles in a rotating frame of a cosmic string. Likewise, Ref.
[67] investigates rotating effects on a Landau-Aharonov-
Casher System in the spacetime of a cosmic string.

As we already have mentioned, rotation can present sim-
ilarities to the electromagnetic fields. This way, it is also an
attractive question examining how the electromagnetic
interactions affect the particle quantum motion of a rotating
system in the presence of a topological defect. Reference
[68], for instance, is a recent work dealing with both topo-
logical and noninertial effects in the presence of an
Aharonov-Bohm potential. Reference [69] addresses the
problem of a spinless relativistic particle subjected to a uni-
form magnetic field in the spinning cosmic string spacetime.
The Dirac oscillator in the spacetime of a cosmic string in
the presence of the Aharonov-Casher effect was analyzed
in Ref. [70]. The presence of noninertial effects also was con-
sidered in this context [71]. Reference [72] treats the prob-
lem of a charged half-spin particle depicted by the Dirac
equation in the presence of a uniform magnetic field in the
rotating cosmic string spacetime. A meaningful aspect in
this context consists of analyzing how different configura-
tions of magnetic fields affect the quantum particle motion.
In particular, in this contribution, we choose to deal with a
superposition of two different configurations, due to their
fundamental aspects: a uniform magnetic field, which is
related to the raising of Landau levels in quantum systems,
and an Aharonov-Bohm flux, since it provides a new signif-
icance to the role of the electromagnetic interactions in the
quantum theory, which can be manifested even for bound
states [73]. Besides, several analogs of the AB effect can
emerge in spacetimes with topological defects [74–76].

In this paper, we study the relativistic quantum mechan-
ics of an electron in the presence of both a uniform magnetic
field and Aharonov-Bohm potential in the spinning cosmic
string spacetime. In other words, we solve the Dirac equa-
tion in this scenario and investigate how the rotation, curva-
ture, and external magnetic fields affect the wave functions
and energies of the electron. Although the existence of a pre-
vious study deals with the Dirac equation in the presence of
noninertial effects and uniform magnetic field, in Section 3
of Ref. [72], here, we introduce some new ingredients, as well
as a different framework: more explicitly, we have the fol-
lowing contributions: (i) the tetrad basis we adopt leads to
a zero affine connection in the flat space, which does not
occur in the previous study; (ii) the presence of the
Aharonov-Bohm flux tube. We show explicitly that the pres-
ence of this effect modifies the energy levels of the particle;
(iii) we also study first-order solutions for the Dirac equation
and find particular bound state solutions for it; (iv) we
employ an ansatz for the solutions whose spinor is an eigen-
state of the momentum angular operator J

�TmqZgTqqhF�;
z

[47].
The manuscript is organized as follows. In Section 2, we

present some algebraic elements necessary to construct the
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field equations in curved spacetime and write the Dirac
equation describing the quantum motion of the electron in
the presence of external magnetic fields in the spinning cos-
mic string background. In Section 3, we deal with first-order
solutions and study the existence of isolated solutions for the
particular case of a particle at rest. In Section 4, we take our
attention to the case when the energy of the particle is differ-
ent from its rest energy. We map the Dirac equation prob-
lem in curved space with minimal coupling into a Sturm-
Liouville problem for the upper component of the Dirac
spinor, and using an appropriate ansatz, we derive the radial
equation. We solve the radial equation and find the wave
functions and energies of the particle. We make a detailed
discussion of the results and also comparisons with other
studies in the literature. In Section 5, we present our conclu-
sions. In our work, we use natural units, ℏ = c =G = 1.

2. Dirac Equation in the Spinning Cosmic
String Spacetime

In this section, we briefly present the tools needed to con-
struct the Dirac equation in the conical spacetime in the
presence of noninertial effects. The first step consists of tak-
ing a look at the metric tensor characterizing this geometry.
Next, we will choose an appropriate tetrad basis and imple-
ment the field configuration involved through the perform-
ing of a minimal substitution. The spacetime induced by a
rotating cosmic string is described by the metric [72, 77, 78].

ds2 = dt + adφð Þ2 − dr2 − α2r2dφ2 − dz2, ð1Þ

where −∞ < z <∞, r ≥ 0, and 0 ≤ φ ≤ 2π. The parameter α is
related to the linear mass density μ of the cosmic string
through the relation α = 1 − 4μ, and it runs in the interval
ð0, 1�. The quantity a = 4J is the rotation parameter, with J
representing the angular momentum of the spinning cosmic
string. A remarkable feature of the spinning cosmic string
spacetime is related to the appearance of closed timelike
curves (CTCs) [79–81]. Such structures can take place
depending on the relation between the radial coordinate,
the rotation parameter, and the curvature parameter. Writ-
ing the metric (1) in the form

ds2 = dt2 + 2adtdφ − α2r2 − a2
� �

dφ2 − dr2 − dz2, ð2Þ

such a structure appears if α2r2 − a2 < 0. CTCs are one of the
most controversial aspects of modern physics [82]. It is pos-
sible to find in the literature works dealing with the concepts
of causality [83], chronology protection [84], time travel
[85], and flow information [86] in the framework of closed
timelike curves. In our study, we consider the quantum
motion only in regions such that α2r2 − a2 > 0. More explic-
itly, we will consider the following restriction on the radial
coordinate:

r > a
α
: ð3Þ

This type of restriction on the radial coordinate also
occurs, for example, in the case of a spacetime containing a
time dislocation, as pointed in Ref. [51].

The relativistic quantum dynamics of a spin-1/2 particle
interacting with external magnetic fields in the rotating cos-
mic string spacetime is governed by the Dirac equation

iγμ xð Þ ∇μ + ieAμ xð Þ� �
−M

� �
Ψ xð Þ = 0, ð4Þ

where M is the mass of the particle and ∇μ is the covariant
derivative for fermion fields defined as

∇μ = ∂μ + Γμ xð Þ, ð5Þ

and γμðxÞ are the Dirac matrices in the rotating cosmic
string spacetime, which are defined in terms of the tetrad
fields eμa and Dirac matrices in the flat space γa in the follow-
ing way:

γμ xð Þ = eμa xð Þγa, ð6Þ

where

γa = γ0, γi
� �

, with γ0 =
1 0
0 −1

 !
, γi =

0 σi

−σi 0

 !
,

ð7Þ

are the standard Dirac matrices and σi = ðσx, σy, σzÞ are the
usual Pauli matrices. The matrices of (6) satisfy the following
relation:

γμ xð Þ, γν xð Þf g = 2gμν xð Þ: ð8Þ

Also, in Equation (5), ΓμðxÞ is the spin affine connection
given by

Γμ xð Þ = 1
4 γ

aγbeνa xð Þ ∂μebν xð Þ − Γσ
μνebσ xð Þ

h i
, ð9Þ

where Γσ
μν are the Christoffel symbols of the second kind and

eμaðxÞ is the tetrad field. The tetrad basis satisfies the relations

eaμ xð Þebν xð Þηab = gμν xð Þ, ð10Þ

eaμ xð Þeμb xð Þ = δab, ð11Þ

eμa xð Þeaν xð Þ = δμν: ð12Þ
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Here, the Greek letters are used for tensor indices while
the Latin letters are denoting Minkowski indices. We use
the tetrad basis and its inverse defined as [77]

eaμ xð Þ =

1 0 a 0
0 cos φ −r α sin φ 0
0 sin φ r α cos φ 0
0 0 0 1

0
BBBBB@

1
CCCCCA, ð13Þ

eμa xð Þ =

1 a sin φ

rα
−
a cos φ
rα

0

0 cos φ sin φ 0

0 −
sin φ

rα
cos φ
rα

0

0 0 0 1

0
BBBBBBB@

1
CCCCCCCA
: ð14Þ

For this choice, it can be shown that the nonvanishing
affine connection is given by

Γμ = 0, 0, Γφ, 0
� �

, withΓφ =
i
2 1 − αð Þ〠z , ð15Þ

where

〠z =
σz 0
0 σz

 !
, σz =

1 0
0 −1

 !
: ð16Þ

By using the tetrad basis (14), the matrices of (6) can be
written explicitly as

γt = γ0 − aγφ, γ0 =
1 0
0 −1

 !
, ð17Þ

γr =
0 σr

−σr 0

 !
, γφ =

0 σφ

−σφ 0

 !
, ð18Þ

with

σr =
0 e−iφ

e+iφ 0

 !
, σφ = 1

rα

0 −ie−iφ

ie+iφ 0

 !
, ð19Þ

being the Pauli matrices in the curved spacetime.
Since we are first interested in studying the solutions of

the Dirac equation in its present form (Equation (4)), we
need to write the corresponding system of first-order
coupled differential equations. Let us assume the time-
dependence of the wave functions together with the decom-
position of the fermion field in the form

Ψ r, φð Þ = e−iEt
ψ1 r, φð Þ
ψ2 r, φð Þ

 !
, ð20Þ

with

ψ1 r, φð Þ =
ψa r, φð Þ
ψb r, φð Þ

 !
=

eimφ f + rð Þ
iei m+1ð Þφ f − rð Þ

 !
, ð21Þ

ψ2 r, φð Þ =
ψc r, φð Þ
ψd r, φð Þ

 !
=

eimφg+ rð Þ
iei m+1ð Þφg− rð Þ

 !
: ð22Þ

The system we will analyze takes into account the parti-
cle is immersed in a region where there is a uniform mag-
netic field and also the potential due to a thin long
solenoid along the z-axis. Having this field configuration in
mind, we study the physical implications due to noninertial
effects and the Aharonov-Bohm potential on the relativistic
Landau quantization. We also take into account the transla-
tional invariance of the system along the z-direction, which
allows us to eliminate the third direction (pz = z = 0), and,
consequently, we can consider only the planar motion
[87–90]. Here, the four-potential of the electromagnetic field
in Equation (4) has only the spatial component, Aμ = ð0,AÞ,
and the potential vector in the Coulomb gauge is specified by

A = 0, Aφ, 0
� �

, ð23Þ

with

Aφ = − Aφ,1 + Aφ,2
� �

, ð24Þ

Aφ,1 =
1
2 αBr

2, Aφ,2 =
ϕ

e
1
αr

, ð25Þ

where B is the magnetic field magnitude, ϕ =Φ/Φ0, Φ is the
magnetic flux, and Φ0 = 2π/e is the quantum of magnetic
flux along the solenoid. This configuration provides an
superposition of magnetic fields in the z-direction

B = Bz,1 + Bz,2, ð26Þ

with

B1,z = B, Bz,2 =
ϕ

e
δ rð Þ
αr

, ð27Þ

Note that the particle only interacts with the magnetic
field due to the potential vector Aφ,1. Here, we are focused
on studying the electron motion only in the r ≠ 0 region,
so that we can neglect the point interaction Bz,2 and, conse-
quently, consider only regular wave functions.

Using the results above, the Dirac equation (4) can be
written as

E −Mð Þψ1 + σri∂rψ2 + σφ i∂φ − eAφ − aE −
1
2 1 − αð Þσz

� �
ψ2 = 0,

ð28Þ
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E +Mð Þψ2 + σri∂rψ1 + σφ i∂φ − eAφ − aE −
1
2 1 − αð Þσz

� �
ψ1 = 0:

ð29Þ

At this point, we are ready to solve Equations (28) and
(29) by considering two distinct circumstances:

(i) Take our attention to isolated solutions of the first-
order Dirac equation by imposing the condition E
= ±M

(ii) By imposing the condition E ≠ ±M, we search the
solutions of the second-order Dirac equation

We will show in the next two sections that there are
bound state solutions for both cases and discuss their main
physical properties. To distinguish each case in (i), in the
next section, we use the superscripts (±) to label the quanti-
ties corresponding to E = ±M.

3. Solution of the Equation of Motion to E = ±M

To study the existence of isolated solutions of the Dirac
equation (4), we must set E = ±M in Equations (28) and
(29). In literature, such solutions are known to be excluded
from the Sturm-Liouville problem. The search for isolated
solutions of the Dirac equation has been performed in differ-
ent physical contexts [91–95]. Since condition (3) establishes
a lower limit to the radial coordinate, given by rmin = a/α, the
bound state solution must satisfy the normalization condi-
tion

ð∞
rmin

�ΨγtΨrdr =
ð∞
rmin

Ψ†Ψrdr − a
ð∞
rmin

Ψ†γ0γφΨ rdr, ð30Þ

where �Ψ =Ψ†γ0, which using the ansatz (20) and the matri-
ces (18) and (17), takes the form

ð∞
rmin

f + rð Þj j2 + f − rð Þj j2 + g+ rð Þj j2 + g− rð Þj j2� �
rdr

−
a
α

ð∞
rmin

f †+ rð Þg− rð Þ + f †− rð Þg+ rð Þ
h

+ g†
+ rð Þf − rð Þ + g†− rð Þf + rð Þ�dr:

ð31Þ

Equations (30) and (31) must be finite to ensure the exis-
tence of bound state solutions. By making E = +M in Equa-
tions (28) and (29) and using Equations (21) and (22), we
get

eiφi∂rψc r, φð Þ + i
rα

eiφ i∂φ − eAφ − aM
� �

ψc r, φð Þ

−
i

2rα 1 − αð Þeiφψc r, φð Þ = 0,
ð32Þ

e−iφi∂rψd r, φð Þ − i
rα

e−iφ i∂φ − eAφ − aM
� �

ψd r, φð Þ

−
i

2rα 1 − αð Þe−iφψd r, φð Þ = 0,
ð33Þ

i∂re
iφψa r, φð Þ + i

rα
eiφ i∂φ − eAφ − aM
� �

ψa r, φð Þ

−
i

2αr 1 − αð Þeiφψa = −2Mψd r, φð Þ,
ð34Þ

i∂re
−iφψb r, φð Þ − i

rα
e−iφ i∂φ − eAφ − aM
� �

ψb r, φð Þ

−
i

2αr 1 − αð Þe−iφψb r, φð Þ = −2Mψc r, φð Þ,
ð35Þ

which using Equation (25) can be written as

dg +ð Þ
+ rð Þ
dr

−
L +ð Þ
m

rα
g +ð Þ
+ rð Þ + eBr

2 g +ð Þ
+ rð Þ = 0, ð36Þ

dg +ð Þ
− rð Þ
dr

+ L +ð Þ
m+1
rα

g +ð Þ
− rð Þ − eBr

2 g +ð Þ
− rð Þ = 0, ð37Þ

df +ð Þ
+ rð Þ
dr

−
L +ð Þ
m

rα
f +ð Þ
+ rð Þ + eBr

2 f +ð Þ
+ rð Þ = −2Mg +ð Þ

− rð Þ, ð38Þ

df +ð Þ
− rð Þ
dr

+ L +ð Þ
m+1
rα

f +ð Þ
− rð Þ − eBr

2 f +ð Þ
− rð Þ = 2Mg +ð Þ

+ rð Þ, ð39Þ

with

L +ð Þ
m =m − ϕ + aM + 1

2 1 − αð Þ, ð40Þ

L +ð Þ
m+1 =m + 1 − ϕ + aM −

1
2 1 − αð Þ: ð41Þ

The solution of the coupled linear differential equation
systems (36)–(39) is given by

f +ð Þ
+ rð Þ = e−eBr

2/4rL
+ð Þ
m /α a2 + a1M −

eB
2

� �Ωa

Γ +ð Þ
a

" #
, ð42Þ

f +ð Þ
− rð Þ = eeBr

2/4r−L
+ð Þ
m+1/α b2 − b1M

eB
2

� �−Ωb

Γ
+ð Þ
b

" #
, ð43Þ

g +ð Þ
+ rð Þ = b1e

−eBr2/4rL
+ð Þ
m /α, ð44Þ

g +ð Þ
− rð Þ = a1e

eBr2/4r−L
+ð Þ
m+1/α, ð45Þ

with

Ωa =
1
2α L +ð Þ

m + L +ð Þ
m+1 − α

� 	
,

Ωb =
1
2α L +ð Þ

m + L +ð Þ
m+1 + α

� 	
,

ð46Þ
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where

Γ +ð Þ
a = Γ −Ωa,−

1
2 eBr

2
� �

, ð47Þ

Γ
+ð Þ
b = Γ Ωb,

1
2 eBr

2
� �

, ð48Þ

are upper incomplete Gamma functions [96], and a1, a2, b1,
and b2 are constants. Analyzing the solutions (42) and (44),

we note that e−eBr
2/4 dominates over rL

ð+Þ
m /α for any value of

Lð+Þm /α ⩾ 0, in such way both solutions converge when r
⟶ rmin and r⟶∞. This will not occur for the function
eeBr

2/4 in the solutions (43) and (45). Moreover, since the

incomplete Gamma functions Γð+Þ
a and Γð+Þ

b always diverge,

then the function f ð+Þ+ ðrÞ will only converge when r⟶
rmin if a1 = 0 while the function f ð+Þ− ðrÞ will always diverge
when r⟶∞ and, therefore, will not be a square-
integrable function. Thus, the only allowed solution for the
equation systems (36)–(39) results

f +ð Þ
+ rð Þ = a2e

−eBr2/4rL
+ð Þ
m /α, with L +ð Þ

m

α
⩾ 0, r > a

α
, ð49Þ

with f ð+Þ− ðrÞ = gð+Þ+ ðrÞ = gð+Þ− ðrÞ = 0, and the requirement a1
= b1 = b2 = 0. Solution (49) satisfies Equation (31) and con-
stitutes a bound state solution for the case E =M, i.e., an iso-
lated solution to the Dirac equation (4) in the metric
spacetime (1). Note there is another particular solution for
this case when we reverse the signal of the magnetic field
or the charge, i.e., eB < 0. In this case, the only nonzero com-
ponent of the normalizable solutionΨ is (Equation (43) with
b1 = 0).

f +ð Þ
− rð Þ = b2 e

eBr2/4r−L
+ð Þ
m+1/α, with L

+ð Þ
m+1
α

⩽ 0, r > a
α
: ð50Þ

Proceeding in an analogous way, now we make E = −M
in Equations (28) and (29). We find the system of equations

df −ð Þ
+ rð Þ
dr

−
L −ð Þ
m

rα
f −ð Þ
+ rð Þ + eBr

2 f −ð Þ
+ rð Þ = 0, ð51Þ

df −ð Þ
− rð Þ
dr

+ L −ð Þ
m+1
rα

f −ð Þ
− rð Þ − eBr

2 f −ð Þ
− rð Þ = 0, ð52Þ

dg −ð Þ
+ rð Þ
dr

−
L −ð Þ
m

rα
g −ð Þ
+ rð Þ + eBr

2 g −ð Þ
+ rð Þ = 2Mf −ð Þ

− rð Þ, ð53Þ

dg −ð Þ
− rð Þ
dr

+ L −ð Þ
m+1
rα

g −ð Þ
− rð Þ − eBr

2 g −ð Þ
− rð Þ = −2Mf −ð Þ

+ rð Þ,
ð54Þ

with

L −ð Þ
m =m − ϕ − aM + 1

2 1 − αð Þ, ð55Þ

L −ð Þ
m+1 =m + 1 − ϕ − aM −

1
2 1 − αð Þ: ð56Þ

The solution of the coupled linear ordinary differential
equation systems (51)–(54) is given by

f −ð Þ
+ rð Þ = c1e

−eBr2/4rL
−ð Þ
m /α, ð57Þ

f −ð Þ
− rð Þ = d1e

eBr2/4r−L
−ð Þ
m+1/α, ð58Þ

g −ð Þ
+ rð Þ = e−eBr

2/4rL
−ð Þ
m /α −d1M −

eB
2

� �Λc

Γ −ð Þ
c + d2

" #
, ð59Þ

g −ð Þ
− rð Þ = eeBr

2/4r−L
−ð Þ
m+1/α c1M

eB
2

� �−Λd

Γ
−ð Þ
d + c2

" #
, ð60Þ

with

Λc =
1
2α L −ð Þ

m + L −ð Þ
m+1 − α

� 	
,

Λd =
1
2α L −ð Þ

m + L −ð Þ
m+1 + α

� 	
,

ð61Þ

where

Γ −ð Þ
c = Γ −Λc,−

1
2 eBr

2
� �

,

Γ
−ð Þ
d = Γ Λd ,

1
2 eBr

2
� �

:

ð62Þ

By making the same analysis of the solutions as we have
made for the case E =M, i.e., analyzing the behavior of the
functions for r⟶ ±∞, we find that the only solution that
admits bound states is the (59) one. Thus, the appropriate

n = 1

n = 2

n = 3
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–6

–4
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2

4

6

B

En
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Figure 1: Sketch of the energy levels Eð>Þ
n (Equation (70)) as a

function of the magnetic field B for different values of n. The
positive energies are represented by solid lines and the negative
by dashed lines.
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solution for the case E = −M satisfying the normalization
condition (31) is given by

g −ð Þ
+ rð Þ = d2e

−eBr2/4rL
−ð Þ
m /α, with L −ð Þ

m

α
⩾ 0, r > a

α
, ð63Þ

with f ð−Þ+ ðrÞ = f ð−Þ− ðrÞ = gð−Þ
− ðrÞ = 0 and c1 = c2 = d1 = 0. Note

that the solutions (49) and (63) are affected by rotation
through Equations (40) and (55), respectively. Similarly to
the previous case, if eB < 0, the only nonzero component of
the normalizable solution Ψ is (Equation (60) with c1 = 0)

g −ð Þ
− rð Þ = c2 e

eBr2/4r−L
−ð Þ
m+1/α, with L −ð Þ

m+1
α

⩽ 0, eB < 0, r > a
α
:

ð64Þ

Moreover, from the discussion of the solutions for each
case above, we immediately see that only the first line of

the normalization condition (31) is relevant in the current
study.

4. Solution of the Equation of Motion to E ≠ ±M

In this section, we solve the second-order equation to ψ that
we find from Equations (28) and (29). The solution of this
equation is different from that one calculated in the previous
section and allows us to obtain an expression for the particle
energies. By isolating ψ2 in Equation (29) and replacing in
Equation (28), we are able to write the second-order differ-
ential equation for ψ1 as

E2 −M2� �
ψ1 + ∂2rψ1 +

1
r ∂rψ1 −

1
αr

σze ∂rAφ

� �
ψ1

+ 1
α2r2

∂φ + ieAφ + i
1 − α

2 σz + iaE
� �2

ψ1 = 0:

ð65Þ
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Figure 2: Sketch of the energy (Equation (71)) as a function of ϕ for m = 1. In panel (a), for B = 1:0, a = 0:05 and α = 0:01. In panel (b),
B = 10:0, a = 1:0 and α = 0:9. In panel (c), B = 50:0, a = 1:0 and α = 0:9. In panel (d), B = 1:0, a = 0:5 and α = 0:99. For a particular choice
of parameters, ranges of ϕ where the energy of a state with a given n is forbidden appear.
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Using the decomposition of the fermion field (21)
together with Equations (23)–(25), we obtain the radial
equation for f +ðrÞ

d2

dr2
+ 1
r
d
dr

−
L2m
α2r2

−
e2B2r2

4 + k2m

 !
f + rð Þ = 0, ð66Þ

where

k2m = E2 −M2 + eB
α
Lm + eB, ð67Þ

Lm =m − ϕ + 1 − αð Þ
2 + aE: ð68Þ

Equation (66) is the confluent hypergeometric equation,
and its solution is well known. Thus, it can be shown that the
solution to ψa is

ψa r, φð Þ = anm
eB
2

� � 1+ Lmj j/αð Þ/2
eimφr Lmj j/αe−eBr

2/4

× 1F1
1
2 1 + Lmj j

α

� �
−

k2

2eB , 1 +
Lmj j
α

, 12 eBr
2

 !
,

ð69Þ

where 1F1ða, b, zÞ denotes the confluent hypergeometric
function of the first kind or Kummer’s function Mða, b, zÞ
and anm the normalization constant. It can be shown that
the hypergeometric function 1F1ða, b, zÞ has a divergent
behavior for large values of z. Because of this, bound state
solutions for Equation (69) are only possible if we impose
that this function becomes a polynomial of degree n. For this
to be accomplished, we require that 1/2 + jLmj/2α − k2/2Be
= −n, where n ∈ℤ∗, with ℤ∗ denoting the set of the nonneg-
ative integers. However, as we can see in Equation (68), the
absolute value of the effective angular moment L is defined
in terms of the energy E. In this way, to obtain the energy
eigenvalues from the above condition, we must consider
Lm > 0 and Lm < 0, respectively, and then solve them for E.
By making this, we get

E >ð Þ
n = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2neB +M2

p
, ð70Þ

E <ð Þ
n,m = −

aeB
α

± 1
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2e2B2 + αQn,m

q
, ð71Þ

with the following requirement:

a2e2B2 + αQn,m ⩾ 0, ð72Þ

where

Qn,m = αeB 2n − 2
α

m − ϕ + 1
2

� �
+ 1

� �
+ αM2: ð73Þ

In Equations (70) and (71), the superscripts (>, < ) refer
to the energies calculated for Lm > 0 and Lm < 0, respectively.

A similar equation for f −ðrÞ can be immediately obtained by
making m⟶m + 1 and ð1 + αÞ/2⟶ −ð1 + αÞ/2 in Equa-
tion (66). We find

d2

dr2
+ 1
r
d
dr

−
L2m+1
α2r2

−
e2B2r2

4 + k2m+1

 !
f − rð Þ = 0, ð74Þ

where

k2m+1 = E2 −M2 + eB
α
Lm+1 − eB,

Lm+1 =m + 1 − ϕ −
1 − αð Þ
2 + aE:

ð75Þ

The function ψbðr, φÞ is found by solving Equation (74).
The result is

ψb r, φð Þ = anm
eB
2

� � 1+ Lm+1j j/αð Þ/2
ei m+1ð Þφr Lm+1j j/αe−eBr

2/4

× 1F1
1
2 + Lm+1j j

2α + k2m+1
2Be , 1 +

Lm+1j j
α

, 12 eBr
2

 !
:

ð76Þ

The energies obtained from (74) are

E >ð Þ
n = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB n + 1ð Þ +M2

q
, ð77Þ

E <ð Þ
n,m+1 = −

aeB
α

± 1
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2e2B2 + αQn,m+1

q
, ð78Þ
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Figure 3: Sketch of the energy (Equation (71)) as a function of ϕ
for n = 1, m = 1, B = 2, a = 0:1, and different values of α. When α
approaches 1, the energy is permissible for all values of ϕ > 0. For
small values of α, the energy is permissible only from a threshold
value of ϕ. For α = 0:01 (blue line) and α = 0:03 (red line), these
threshold values are ϕ = 0:50 and α = 1:12, respectively.
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with the following requirement:

a2e2B2 + αQn,m+1 ⩾ 0, ð79Þ

where

Qn,m+1 = αeB 2n − 2
α

m + 1 − ϕ −
1
2

� �
+ 1

� �
+ αM2: ð80Þ

Note that two other radial equations can be derived from
the equation for ψ2 from Equations (28) and (29). However,
there is no need to solve them here because they have both
energy and wave functions similar to those obtained above.
Let us study the energies (70) and (71). First, we see that
the energy Eð>Þ

n depends only on the quantum number n
and the magnetic field B. If we make n = 0 in Equation

(70), we get Eð>Þ
0 = ±M. As mentioned above, since we are

solving the problem with the requirement that E ≠ ±M, then
these energies are excluded in the present case.

Now let us investigate the energy levels we find. In all the
energy profiles we address here, we use e = 1,M = 1. We also
use solid lines to represent the energy of the particle and
dashed lines for the energy of the antiparticle. In Figure 1,
we show the profile of Eð>Þ

n for this particular case, where
we see clearly that jEj increases when the magnetic field is
increased. The energies (70) and (71) denote the relativistic
Landau levels in the present context. These energies can be
directly compared with those obtained for the relativistic
oscillator (Dirac oscillator) addressed in Ref. [77]. Although
that scenario is different from the one we are exploring here,
there are similarities between the profiles of the energy levels
in both models. For example, the energy (47) of the Ref. [77]
depends only on the frequency of the oscillator and the

quantum number n. In our case, by defining the cyclotron
frequency ωc = eB/M, Equation (70) results

~E
>ð Þ
n = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nMωc +M2

q
, ð81Þ

which makes such a similarity clear. We can see that the
energies (71) and (78) are the only ones that depend on all
the physical parameters involved in the current problem.
However, it is possible to verify that such spectra are similar.
Because of this, we analyze in detail only the energy (71).
One of the objectives in our analysis is to show that the com-
bined effect of the external magnetic field, the Aharonov-
Bohm flux, the rotation, and the curvature modifies the
energy spectrum of the particle. As mentioned in Section 1,
one of the new ingredients in the present model is the inclu-
sion of the Aharonov-Bohm flux tube. Then, let us focus on
the physical implications of this. We can access varied forms
of energy profiles by attributing different values to the
parameters of the model. Figure 2 shows the profile of Eð<Þ

n,m
as a function of ϕ by considering four different parameter
choices. In these four configurations, we consider m = 1
and n = 0, 5, 10. For B = 1:0, a = 0:05 and α = 0:01, and the
energies are permissible only for values of flux larger than
1:37 (blue line), 1:33 (red line), and 1:30 (green line)
(Figure 2(a)). Each value of flux corresponds to the energies

Eð<Þ
0,1 , E

ð<Þ
5,1 , and Eð<Þ

10,1, respectively. The values of n are chosen
in such a way the separation between the energies becomes
more notable. When this configuration is changed to B =
10:0, a = 1:0 and α = 0:9 (Figure 2(b)), the energy levels are
more spaced out and a gap between the particle and antipar-
ticle energies emerges. By increasing the magnetic field to
B = 50:0 and maintaining the other parameters, we notice
that the antiparticle energy changes faster than the energy
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Figure 4: Sketch of the energy (Equation (71)) as a function of B for n = 1, m = 1, a = 0:1, and α = 0:5. In panel (a), we consider values of ϕ
smaller than 1 while in panel (b), we use larger values. The physical implications due to the variation of ϕ on the energy spectrum are more
evident for values of ϕ about 0:65. For values of ϕ larger than 1, the curves assume the same profile.
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of the particle and the spacing between the energy levels
decreases (Figure 2(c)). For increasing B values, these effects
tend to increase. In the fourth configuration, we use B = 1:0,
a = 0:5 and α = 0:99 (Figure 2(d)). When α approaches 1, we
can see the energy Eð<Þ

0,1 is only permissible for values of ϕ

larger than 0:38 while Eð<Þ
5,1 and Eð<Þ

10,1 are defined for any value
of ϕ. In the four settings displayed in Figure 2, we note that
∣Eð<Þ

n,m ∣ increases when n and ϕ are increased and the other
parameters are kept fixed.

Another interesting configuration is the behavior of Eð<Þ
n,m

as a function of ϕ for n = 1, m = 1, B = 2:0, a = 0:1, and some
values of α (Figure 3). This configuration shows that when α
is close to 1, the energy is defined to all the values of ϕ in the
considered range. However, for small values of α, a range of
ϕ where the energy is nonpermissible arises. In this process,
the most pronounced variations occur in the antiparticle
energy.

We can also observe interesting effects in the profile of
Eð<Þ
n,m as a function of B. For this case, we consider n = 1, m
= 1, a = 0:1, and α = 0:5 and investigate it for two sets of
values of ϕ as illustrated in Figure 4. By carefully studying
this configuration, we can observe several effects for values
of ϕ smaller than 0:99 (Figure 4(a)). For ϕ = 0:10 (blue line)
and ϕ = 0:60 (red line), the energy tends to decrease when B
is increased while for ϕ = 0:65 (green line), the energy
decreases when B is increased to 5:0. At this value, an over-
lap between particle and antiparticle energy occurs. The
energy increases for values of B higher than 5:0. For ϕ =
0:68 (brown line), the energy of the particle tends to
decrease when B is increased to 6:0 and then the behavior
remains approximately stable. When we look at the energy
of the antiparticle, we observe the opposite process. By
increasing B to ϕ = 4:0, the energy remains practically stable

and then tends to increase as B is increased. When ϕ is chan-
ged to 0:99 (orange line), both the particle and antiparticle
energies increase when B is increased. However, the varia-
tion on the antiparticle energy is larger. On the other hand,
when we consider different values of ϕ higher than 1:0, the
profiles are similar (Figure 4(b)). In this case, jEð<Þ

n,mj increases
when both ϕ and B are increased.

In Figure 5, we investigate the profile of Eð<Þ
n,m as a func-

tion of B for n = 1, m = 1, a = 0:1, and different values of α
by considering the cases where there is no Aharonov-
Bohm flux, and also, considering it is present. In
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Figure 5: Sketch of the energy (Equation (71)) as a function of B for n = 1,m = 1, a = 0:1, and different values of α. In panel (a), ϕ = 5, and in
panel (b), ϕ = 0. With the presence of Aharonov-Bohm flux, the energy of the state for a particular value of alpha is permissible for any value
of B. In the absence of Aharonov-Bohm flux, the energy of a state with a particular value of α is nonpermissible for some values of B (blue
and red lines on panel (b)). For ever decreasing α values, the antiparticle energy is more impacted. When α approaches 1 and the flux is zero,
the modification in the energy levels is small (see the inset in panel (b)).
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Figure 6: Sketch of the energy (Equation (71)) as a function of α
for m = 1, B = 0:1, a = 0:1, ϕ = 0:1, and different values of n. For
values of α smaller than 0:25, the energy level E0,1 (blue line) is
nonpermissible. The same occurs with the energy levels E3,1 (red
line) and E5,1 (green line), where they are permissible only for α
> 0:19 and α > 0:16, respectively.
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Figure 5(a), we consider ϕ = 5:0. We can see that the pres-
ence of Aharonov-Bohm flux reveals that the energies are
well defined for the considered α values. In the absence of
Aharonov-Bohm flux, there are intervals of B associated
with nonpermissible energies (Figure 5(b)). For values of α
close to 1:0, the changes in the energies are not too evident,
while for smaller values of α, the modifications in the energy
are more evident, being the antiparticle energy the most
affected. In both cases, the energy increases when B
increases, and α decreases.

It is also important to examine the energy as a function
of α, for some values of n. Figure 6 illustrates this situation.
For m = 1, B = 0:1, a = 0:1, and ϕ = 0:1, there are intervals of
α leading to forbidden energies. This effect becomes more
notable to larger values of n. Also, the energy increases when
n increases. It is also interesting to explore the energy pro-
files by performing energy sketches as a function of two
quantities of the model. For a given set of fixed parameters,
for example, a = 0:5, α = 0:5, B = 1:0, and ϕ = 1, we have the

profile of the energy levels as a function of n and m
(Figure 7). We can clearly see that ∣Eð<Þ

n,m ∣ increases with n
and m. The green solid bars denote the discrete energy
values for a given m and n. On the other hand, when we
investigate the behavior of (71) as a function of α and a for
specific values of the other parameters, we see that the neg-
ative spectrum changes more rapidly when compared with
the positive one (Figure 8). In the positive spectrum, both
rotation and curvature lead to a linear change, except in
the region with α < 0:3 and arbitrary a. In the negative spec-
trum, we see that the curvature effects are more predomi-
nant in the region where α has values smaller than 0:2. In
this region, any variation in the rotation parameter implies
in an abrupt change in the energy spectrum. Modifications
in the energies for small values of α are an expected manifes-
tation in our analysis. Its physical implication is inherent in
metric (1) and is an immediate consequence of the topolog-
ical cone, since the curvature becomes larger for smaller
values of α.

When we study the profile of Eð<Þ
n,m as a function of ϕ and

a, besides the characteristics displayed in Figures 2 and 3, we
also see modifications due to noninertial effects (Figure 9).
For this particular case, we see that for small values of ϕ

0
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Figure 7: Sketch of the energy (Equation (71)) as a function of n
and m for a = 0:5, α = 0:5, B = 1, and ϕ = 1.
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Figure 8: Sketch of the energy (Equation (71)) as a function of α
and a for B = 4, n = 1, ϕ = 2, and m = 1.
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Figure 9: Sketch of the energy (Equation (71)) as a function of ϕ
and a for n = 1 and m = 1. In panel (a), α = 0:1, and in panel (b),
α = 0:9.
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and a, some energy levels are forbidden. This characteristic
is observed for n = 1, m = 1, and α = 0:1 (Figure 9(a)). By
changing α to 0:9, this effect disappears, and the energies
are set to all values of ϕ and a in the considered range
(Figure 9(b)).

To complete our analysis, we investigate the profile of
the energy (71) as a function of magnetic field B and the
magnetic flux through the solenoid, ϕ (Figure 10). Similarly
to Figure 8, by fixing the other parameters, we see that the
energy of the antiparticle varies more rapidly when com-
pared to the energy of the particle (Figure 10). Clearly, we
observe that the energy of the particle varies very slowly
throughout the region of flux and magnetic field. As a final
commentary, we clarify that the cases discussed in
Figures 7, 8, and 10 can be investigated for other fixed
parameter values. In this way, it can be shown that there
are forbidden energies, depending on the values of the
parameters considered. In general, this occurs when both
the α parameter and the rotation parameter a are smaller
than 0:3 and the other parameters assuming higher values
than those we use here.

5. Conclusions

In the present manuscript, we have addressed the problem of
the relativistic quantum motion of an electron in the spin-
ning cosmic string background considering the presence of
a uniform magnetic field and the Aharonov-Bohm potential.
We have shown that this combination of potentials allows
bound state configurations in the scenario of first-order
solutions as well as in the case of second-order solutions of
the Dirac equation. It is worth noting the role played by
the two different terms in the vector potential. As already
known in the literature, we have shown that the uniform
field is responsible for a behavior analog to a harmonic oscil-
lator, which leads to the relativistic Landau quantization.
Also, we saw the Aharonov-Bohm flux contributes to the
angular momentum and energy spectrum of the particle.
In the case of first-order solutions, which were obtained by
solving Equations (49) and (63) for E = +M and E = −M,
respectively, the oscillator-like behavior provided by the uni-
form magnetic field guarantees the convergent first-order
solutions and, consequently, the existence of bound states.

The isolated solutions obtained (Equations (49) and (63))
are particular solutions of the Dirac equation (4).

We have also studied the more general problem by solv-
ing the second-order equation implied by Equations (28)
and (29) for the upper component of the Dirac spinor for
E ≠ ±M. Using appropriate solutions (Equation (20)), we
have derived the radial equation and shown that its solution
depends on the Kummer functions. From these functions,
we have extracted the expression for the energy levels of
the particle (Equations (70) and (71)). For the field configu-
ration considered, we have found that the effective angular
momentum of the electron depends on its energy and the
Aharonov-Bohm flux tube. Besides, the potential vector cor-
responding to the uniform field leads to a charged oscillator.
Thus, such field superposition provides distinct effects on
the motion of the particle. Additionally, in some cases, the
rotation produces a combined effect with both the uniform
magnetic field and the curvature (see Equation (71)). We
have shown that the energy levels of the particle and antipar-
ticle depend on the values of the physical parameters
involved. In the case of energy (71), its validity is condi-
tioned to Equation (72). Depending on the choice we make
for the parameters, we can obtain forbidden energies.
Sketches in Figures 7, 8, and 10 illustrate the profiles of the
particle and antiparticle energies and show that they belong
to the same spectrum. The effects of curvature and rotation
are more evident when α < 0:3, being the antiparticle energy
the most affected. Summarizing our results, we can state that
the rotation breaks the symmetry in the energies (71) and

(78) about Eð<Þ
n,m = 0 and Eð<Þ

n,m+1 = 0, respectively, while the
energies (70) and (77) are symmetrical. When a⟶ 0 or B
⟶ 0 in (71) and (78), this symmetry tends to be recovered.
In the case of a strong magnetic field, the separation between
the particle and antiparticle energies increases in compari-
son with the case of a weak field. When a is large and α
⟶ 0, the energies increase rapidly. We saw also that the
inclusion of the Aharonov-Bohm flux can produce notable
modifications in the energy profile. For instance, it can affect
even the behavior of the energy as a function of the uniform
magnetic field. As a final comment, we would like to empha-
size that the model studied in this article generalizes others
found in the literature, such as those of Refs. [68, 72] for
the case including a superposition of external magnetic fields
and the investigation of isolated solutions of the Dirac equa-
tion. Furthermore, we present a detailed discussion on the
energy levels of the particle which, in general, is not found
in the literature.
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