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ABSTRACT 
 

Literature has shown that harmonically excited nonlinear Duffing and pendulum oscillators can 
respond chaotically under the influence of some of their drive parameters combination. However, 
literature is scarce on the steady state responses of these oscillators when excited arbitrarily and 
periodically. Therefore, this research was designed to investigate the potential qualitative and 
quantitative variation in the steady Poincare solutions of nonlinear Duffing and pendulum oscillators 
under selected periodic excitations compared to their harmonically excited counterparts. The non-
dimensional second Order Differential Equation (ODE) corresponding respectively to governing 
equations for harmonically/periodically excited nonlinear Duffing and pendulum were solved using 
the constant step fourth order Runge-Kutta algorithms. The corresponding steady state Poincare 
solutions obtained were characterised by visual inspection and fractal dimension measure obtained 
using fractal disk counting method. Visual inspection of corresponding steady Poincare solutions 
show that they are qualitatively indistinguishable. However, the corresponding estimated fractal 
dimension varied significantly. The absolute variation in dimension was found to be between 1.37% 
and 4.92% for the Duffing oscillator and between 5.67% and 7.39% for the pendulum oscillator. 
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1. INTRODUCTION 
 
Nonlinearity is a term with broad applications in 
nature [1]. Systems in which the variation in the 
input does not give an equivalent change in the 
output are said to be nonlinear systems. Many 
natural systems behaviors do not follow a 
systematic pattern; thus, it requires an 
appropriate method to grasp the systems well. 
As a result of many systems being nonlinear in 
nature, nonlinear problems are encountered in 
many areas of science and engineering, such as 
fluid flow problem, chemical kinetics, structural 
dynamics and mechanical vibration [2]. The 
system is of interest to biologists, physicists, 
mathematicians, engineers, and many other 
scientists. The behavior of a nonlinear system in 
mathematics is expressed by a nonlinear system 
of equations. In recent times, new and abstract 
mathematical tools have emerged for solving 
nonlinear problems. Chaos in nonlinear 
oscillators of the Duffing type has attracted a lot 
of attention [3]. 
 
Nonlinear vibrations are a common occurrence in 
modern machinery because of the combination 
of higher operating speeds and lighter materials. 
Because many mechanical elements exhibit 
various sorts of nonlinearities, the scope of 
equations of motion expands dramatically; 
therefore, the mathematical model expressing 
the equation of motion can include several orders 
and an infinite number of possible coefficients. 
The most common models of nonlinear systems 
are a nonlinear pendulum, the Van der Pol and 
Duffing oscillators, self-excited vibrations, and 
friction [4,5]. Most of the parts that contribute to 
nonlinearities in mechanical systems, such as 
gears, bearings, and friction elements, are 
described by these models. Numerical 
approaches such as the Runge-Kutta method are 
used to find solutions [5]. 
 
The numerical approach [6] is crucial in solving 
nonlinear differential equations, according to a 
thorough examination of the literature. The most 
extensively used globally accepted numerical 
approaches are backward differential formulae, 
Runge-Kutta, and Adam-Bashforth-Moulton. The 
Runge-Kutta family of algorithms is still the most 
popular and widely used integration method [7]. 
The simplicity, stability, and self-starting 
character of Runge-Kutta procedures are their 
main features. The main disadvantages of 

Runge-Kutta procedures are that they take a lot 
more computer time than multi-step systems with 
comparable accuracy and that getting 
reasonable global estimates of the truncation 
error is challenging. However, for the simple 
dynamical systems discussed in this course, the 
relative simplicity and convenience of the use of 
Runge-Kutta methods far outweighs the 
drawback of their complexity. 
 
Nonlinear oscillations are inextricably linked to 
the Duffing equation [8], often known as the 
Duffing oscillator. The Duffing oscillator is also 
thought to be a prototype for nonlinear dynamics 
systems. Many investigations on chaotic systems 
defined by a time-forced, dissipative, second-
order nonlinear differential equation have used 
Duffing's equation as a model. Different words 
might be used, but the basic equation relates to a 
model for a long and narrow vibrating beam 
positioned between two permanent magnets and 
exposed to an external sinusoidal force [9]. 
 
Furthermore, from the first scientific investigation 
by Galileo in 1602, the regular motion of the 
pendulum was used for timekeeping, and it was 
the world's most accurate timekeeping 
technology until 1930. Galileo discovered the 
crucial property that makes the pendulum a 
crucial timekeeper called isochronisms; the 
pendulum's period is approximately independent 
of the amplitude or width of the swing. Through 
the seventeenth, eighteenth, nineteenth, and 
early twentieth centuries, the pendulum played 
an essential role in developing classical 
mechanics. Santori invented a device that 
measured a patient's pulse by the pendulum's 
length. By the mid-20th century, the invention of 
digital computers led to an exponential increase 
in studying the mechanics of the pendulum. 
Today its interest cuts across several fields, from 
science and engineering to education, military, 
civil, and industry, due to the broad range of 
applications [10].   
 
Since Galileo's first observations of the 
pendulum system, many researchers and 
authors have likewise studied the pendulum and 
applied its theory and principles to problems of 
repetitive or vibratory motion. The angular 
displacement and its derivatives are the solutions 
to the governing equation of the pendulum. 
These solutions or the response of the pendulum 
could be periodic or otherwise. For a periodic 



 
 
 
 

Adebayo et al.; CJAST, 41(25): 1-16, 2022; Article no.CJAST.87449 
 

 

 
3 
 

response of the nonlinear pendulum, the 
solutions repeat at regular periods. [11] 
described the periodic response in their work, 
they stated that the pendulum's response when 
plotted could be such that the displacement 
repeats in time at regular intervals. However, 
they stated that other forms of response are 
possible. Such other responses are described as 
aperiodic, non-periodic responses and could be 
chaotic, quasi-periodic, or almost periodic [12]. A 
quasi-periodic response will appear to have         
more than one type of behavior that it repeats. 
For example, it may have more than one 
maximum amplitude value of displacement that it 
repeats. 
 
The frequency response curve, backbone curve, 
and when using the numerical approach, time 
histories are the most common tools used in the 
analysis of nonlinear systems. However, more 
specialized techniques might be noted among 
the more complex tools: phase portraits, 
bifurcation diagrams, fractal dimension, basins of 
attraction and Poincaré maps, and Lyapunov 
exponent [13].  
 
Fractals are mathematical objects that have the 
same pattern at all scales. They are usually 
manifolds that are not differentiable in any way. 
To characterize fractals, the concept of 
dimension must be expanded to include non-
integer values. In contrast, fractal geometry 
accommodates all shapes present in the actual 
world, regardless of complexity, without 
attempting to force them to conform to any of the 
unnatural Euclidean shapes [14]. Trees, 
coastlines, cloud formations, leaf venations, fruit 
shapes, voice signals, and other real-world 
shapes are examples. In consequence, although 
Euclidean geometry has limitations in terms of 
analyzing complex and rough shapes, fractal 
geometry can handle any shape, regardless of 
complexity. A fractal is a rough or shattered 
geometric shape that may be broken into parts, 
each portion being a smaller version of the whole 
pattern. Self-similarity is a term used to              
describe this self-repeating phenomenon. A little 
fragment of a fractal item resembles a larger 
piece of the thing or the entire object when 
inspected. Because of their essential                  
quality, fractals are widely used in computer 
modeling of irregular patterns and structures in 
nature [15]. This is because fractals are 
geometric patterns that are repeated at lower 
and smaller scales to produce irregular shapes 
and surfaces that classical geometry cannot 
represent. 

The Poincare Map is a tool for investigating 
periodic or nearly periodic orbits' asymptotic 
stability. Poincare's map constitutes a procedure 
employed to eliminate a dimension of the system 
and, therefore, a continuous system is 
transformed into a discrete one. It can also be 
considered as a surface that transversely 
intersects a given orbit [16]. 
 
Therefore, the Poincare section simplifies the 
visualization of a complex shape without 
tampering with its underlying dynamics [17]. 
Also, the Poincare section is like using a                
plane to cut through the trajectory of the                 
fractal shape in phase space at regular intervals 
and make plot recordings of the points at               
which the fractal trajectory cuts the sectioning 
plan. 
 
This article seeks to characterize the obtained 
steady-state Poincare solutions of both the 
periodically excited nonlinear pendulum and 
Duffing oscillator by visual examination and 
fractal dimension measurement using the fractal 
disk counting method. 
 

2. METHODOLOGY 
 
2.1 Duffing Equation 
 
The present study adopted the already reduced 
duffing equation (1). It is expressed in 
dimensionless form to reduce the number of 
adjustable parameters [7].  
 

       
 

 
                                (1) 

 
In equation (1), x, ẋ, ẍ represent displacement, 
velocity and acceleration of the oscillator about a 
datum point. Where ‘γ’ controls the amount of 
damping, Po is the Amplitude strength of the 
harmonic excitation, ωD is the excitation 
frequency, and t is the time [18].  
 

2.2 Periodic Excitation of Duffing 
Oscillator using Fourier 
transformation 

 
The harmonic function              is converted 
to periodic, generalizing the terms, using fourier 
transformation. The Fourier series representing 
the function can be expressed as  
 

                            
 
     (2) 
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Where         
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In this research, two wave forms (periodic 
excitations) were considered. 
 
2.1.1 Excitation 1 
 
Considering the periodic excitation 1, using 
fourier series, the forcing term required, yields, 
 
        

        
       (for all even n) 

         
 

  
                         (for all 

odd n)                                     (6)  
 
Rescaling the terms to have the same strength 
as the forcing amplitude, 
 

   
  

  
     (where    is the Amplitude strength 

of the duffing oscillator) 
 

                                   
                                             (7) 
 

2.1.2 Excitation 2 
 

Considering the periodic excitation 2, using 
Fourier series, the forcing term required yields, 
 
        

        
       (for all even n) 

    
 

     
     

  

 
         (for all odd n)                 (8) 

 

Rescaling the terms to have the same strength 
as the forcing amplitude, 
 

   
  

  
     (where    is the Amplitude strength 

of the duffing oscillator). 
 

The forcing term then is;  
 

                                   
                                             (9) 
 

2.2 Pendulum Equation 
 

   

   
    

 

 

  

  
                  ω           (10) 

It should be noted here that equation 10, is like 
the non-dimensional form of the forced nonlinear 
pendulum found in reviewed literature [11], with a 
natural oscillation frequency of unity applied. The 
number of adjustable parameters has been 
reduced to just three, that is the non-dimensional 
forcing amplitude (g), the non-dimensional 
damping factor (q) and the drive frequency (ω).  

Where  ,
   

  
,
   

   
 are respectively, the angular 

displacement, undifferentiated), (angular velocity, 
first order differential) and (angular acceleration, 
second order differential). 
 

2.3 Periodic Excitation of Pendulum 
using Fourier Transformation 

 
The harmonic function g cos (ωt) is converted to 
periodic, generalizing the terms, using Fourier 
transformation. The Fourier series representing 
the function can be expressed as  
 

               ω        ω   
 
         (11) 

 

Where       
 

 
           

  

 
 

                    (12) 

 

   
 

 
        ω      

  

 
 

                       (13) 

 

   
 

 
        ω      

  

 
 

                       (14) 

 
In this research, two wave forms (periodic 
excitations) were considered. 
 
2.3.1 Excitation 3 
 
Considering the periodic excitation 3, using 
Fourier series, the forcing term required               
yields, 
 
      

        

      (for all even n) 

   
 

  
    

   

       (for all odd n)                   (15)  

  
Rescaling the terms to have the same strength 
as the forcing amplitude, 
 

   
  
  

   

 

     
 

 
                               

                                        (16) 
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Fig. 1.  Periodic Excitation 1 (square form) up to 7
th

 term harmonics 
 

 
 

Fig. 2.  Periodic Excitation 2 (triangular form) up to 7
th

 term harmonics 
 
2.3.2 Excitation 4 
 
Considering the periodic excitation 4, using 
fourier series, the forcing term required yields, 
 
     

     
       (for all even n) 

     
       

         (for all odd n)                     (17) 

Rescaling the terms to have the same strength 
as the forcing amplitude, 
 

   
  

  
             (18) 

 
The forcing term then is;  
 
                                   
                                          (19) 
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The present study utilised the popular constant 
operation time step fourth order Runge-Kutta 
schemes to simulate equation (1) in the first 
order rate of equations (2) and (3). The 
respective details of the scheme are                  
provided in equations (20) to (24) substituting            
y for (   ,   ), x for (t) and constant time                
step h. 
 

2.4 Fourth-Order Runge-Kutta Scheme 
 

        
 

 
                         (20) 

 
                     (21) 
 

        
 

 
    

   

 
                      (22) 

 

        
 

 
    

   

 
                     (23)  

 
                         (24) 

 

2.5 Study Parameters 
 
2.5.1 Duffing oscillator 
 
From literature research, this study focuses on 
the parameters defined by; the non-dimensional 
forcing amplitude (Po = 0.168), damping constant 
(γ = 0.21). Simulation of these parameters was 
carried out over the drive frequency       . 

The simulation time step is fixed at    
  

   
 for 

   
  

  
 and the initial condition for the studied 

cases is (0, 0). The simulation was executed for 
2000-excitation periods (i.e.             . 
 
2.5.2 Pendulum oscillator 
 
From literature research, this study focuses on 
the parameters defined by; damping qualities, (q) 
=4.0, drive amplitude         and frequency 

(ω      . The simulation time step is fixed at 

h= 
  

   
for    

  

ω 
 and the initial condition for 

studied cases is (0, 0). The simulation was 
executed for 2000-excitation periods (i.e. 
10          .  
 

3. RESULTS AND DISCUSSION 
 

3.1 Duffing Oscillator 
 
The Poincare patterns in Fig. 3 compare 
excellently well with those reported by [7], 
amplitude (Po = 0.168), damping constant (γ = 
0.21) fixed drive frequency of 2/3.  Figs. 4 and 5 
show the Poincare solutions (scatter plots), with 
attractor layout of periodically excited duffing 
oscillator using a fractal disk scale of 2. The 
scatter plots distribution per unit space area 
varies non-uniformly from one location to 
another. This shows that nonlinear duffing 
oscillators under periodic excitations are chaotic.  
 
Tables 1-3 show the variation of optimum 
counted disks with increasing observation scale 
number for the referenced harmonic excitation 
and the periodic excitation simulation periods.  

 

 
 

Fig. 3.  Periodic Excitation 3 (square form) up to 7
th

 term harmonics 
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Fig. 4.  Periodic Excitation (triangular form) up to 7
th

 term harmonics 
 

 
 

Fig. 5.  Poincare section of harmonically excited duffing oscillator showing the attractor layout 
for scale 2 disk 

 

Table 1. The generated report (10 trials) of disk laying of the Poincare (harmonic excitation) 
 

Scale Optimum 
disk count 

Trial 
1 

Trial 
2 

Trial 
3 

Trial 
4 

Trial 
5 

Trial 
6 

Trial 
7 

Trial 
8 

Trial 
9 

Trial 
10 

1 2 2 3 2 2 2 2 2 2 2 2 
2 4 6 5 4 5 5 4 4 5 4 5 
3 8 9 8 8 9 9 8 8 8 9 8 
4 12 12 12 14 12 12 13 15 12 12 12 
5 16 17 20 19 18 16 19 17 18 17 18 
6 21 23 24 23 21 22 22 23 21 22 23 
7 23 28 28 27 23 27 28 27 28 29 26 
8 29 32 31 32 33 33 30 33 34 34 29 
9 36 36 40 40 39 39 37 40 38 38 38 
10 40 41 45 40 44 46 41 41 45 43 44 
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Fig. 6. Poincare section of periodically excited duffing (excitation 1) showing the attractor 
layout for scale 2 disk 

 
Table 2. The generated report (10 trials) of disk laying of the Poincare (periodic excitation 1) 

 
Scale Optimum 

disk count 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial10 

1 2 2 2 2 2 2 2 2 2 2 2 

2 4 5 5 6 5 4 4 6 6 6 5 

3 8 9 10 8 9 9 9 9 9 9 9 

4 12 13 13 12 12 14 14 15 14 14 14 

5 17 18 20 18 19 17 21 20 18 18 18 

6 21 23 24 21 24 26 23 22 25 24 25 

7 28 31 29 32 29 31 30 33 32 28 32 

8 33 39 36 33 35 38 35 34 34 36 35 

9 41 43 44 41 43 47 42 45 43 43 44 

10 44 45 49 49 46 44 47 50 51 46 51 

 
Table 3. The generated report (10 trials) of disk laying of the Poincare (periodic excitation 2) 

 
Scale Optimum 

disk count 
Trial 
1 

Trial 2 Trial 3 Trial 4 Trial 5 Trial 
6 

Trial 7 Trial 8 Trial 9 Trial 10 

1 2 3 3 2 3 3 3 3 3 3 2 

2 4 5 5 5 6 5 5 5 5 4 4 

3 8 10 9 10 9 8 9 9 8 9 9 

4 13 15 14 14 14 14 14 13 13 14 13 

5 16 17 17 16 18 16 18 16 17 18 16 

6 20 21 21 20 23 22 22 22 21 21 21 

7 25 27 25 26 26 26 27 25 26 26 26 

8 29 31 31 30 30 31 30 29 29 31 31 

9 34 35 35 38 36 37 36 37 34 39 34 

10 37 44 37 43 38 40 40 40 42 42 44 
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Table 4. Disk count and Logarithm of disk count 
 

Observation 
Scales 

Disks Counted Natural Logarithms 

Harmonic 
Excitation 

Periodic 
Excitation 1 

Periodic 
Excitation 2 

Observation 
Scales 

Harmonic 
Excitation 

Periodic 
Excitation 1 

Periodic 
Excitation 2 

1 2 2 2 0.00 0.69 0.69 0.69 
2 4 4 4 0.69 1.39 1.39 1.39 
3 8 8 8 1.10 2.08 2.08 2.08 
4 12 12 13 1.39 2.48 2.48 2.56 
5 16 17 16 1.61 2.77 2.83 2.77 
6 21 21 20 1.79 3.04 3.04 3.00 
7 23 28 25 1.95 3.14 3.33 3.22 
8 29 33 29 2.08 3.37 3.50 3.37 
9 36 41 34 2.20 3.58 3.71 3.53 
10 40 44 37 2.30 3.69 3.78 3.61 
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Fig. 7. Poincare section of periodically excited duffing (excitation 2) showing the attractor 
layout for scale 2 disk 

 

 
 

Fig. 8. Log=Log plots of disks required for the overlay 
 
Table 4 shows a sample of optimum variation of 
disks counted for ten (10) different observations 
scale for the three (3) investigated cases. The 
slope of line of best fit in Fig. 8 is an expression 
of the fractal quantification of space filling ability 
of the Poincare given in Figs. 5, 6 and 7.  

Fig. 7 (triangular wave form excitation) with 
estimated fractal disk dimension values of 1.315, 
coefficient of fitness (R

2
=0.994) is quite similar 

quantitatively to that of the harmonic excitation 
(Fig. 5) which has an estimated dimension value 
of 1.333 and a coefficient of fitness (R

2
=0.995). It 
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can be argued that the Poincare produced by the 
square wave form periodic excitation fill space 
more than both the Poincare produced by the 
harmonic and the triangular wave form. Its 
estimated fractal disk dimension value is 1.2553 
with coefficient of fitness (R

2
=0.997). 

 

3.2 Pendulum Oscillator 
 

The Poincare patterns in Fig. 9 compare 
excellently well with those reported by [19] for 
damp quality 4, fixed excitation amplitude of 1.5 
and fixed drive frequency of 2/3.  Fig. 10 and 11 

show the Poincare solutions (scatter plots), with 
attractor layout of periodically excited pendulum 
using a fractal disk scale of 2. The scatter plots 
distribution per unit space area varies non-
uniformly from one location to another. This 
shows that nonlinear pendulums under periodic 
excitations are chaotic. 
  
Tables 5-7 show the variation of optimum 
counted disks with increasing observation scale 
number for the referenced harmonic excitation 
and the periodic excitation simulation periods.

 

 
 

Fig. 9. Poincare section of harmonically excited pendulum showing the attractor layout for 
scale 2 disk 

 
Table 5. The generated report (10 trials) of disk laying of the Poincare (harmonic excitation) 

 
Scale Optimum 

disk count 
Trial 
1 

Trial 
2 

Trial 
3 

Trial 
4 

Trial 
5 

Trial 
6 

Trial 
7 

Trial 
8 

Trial 
9 

Trial 
10 

1 2 2 2 3 2 3 3 2 2 2 3 
2 5 6 6 6 5 6 7 6 6 6 6 
3 9 9 9 10 10 9 9 9 9 9 9 
4 12 14 12 13 12 12 13 13 12 12 12 
5 15 16 17 16 16 17 16 16 15 15 17 
6 18 20 22 20 18 20 20 21 19 21 20 
7 23 24 24 23 26 23 25 24 23 26 23 
8 28 29 28 30 30 30 29 28 30 31 28 
9 33 37 34 36 33 35 35 37 34 36 36 
10 39 39 41 40 40 43 40 40 40 42 40 

 
 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

-4 -3 -2 -1 0 1 2 3 4 5 

A
ng

ul
ar

  v
el

oc
ity

 

Angular displacement 



 
 
 
 

Adebayo et al.; CJAST, 41(25): 1-16, 2022; Article no.CJAST.87449 
 

 

 
12 

 

 
 

Fig. 10. Poincare section of periodically excited pendulum (excitation 1) showing the attractor 
layout for scale 2 disk 

 
Table 6. The generated report (10 trials) of disk laying of the Poincare (periodic excitation 1) 

 
Scale Optimum 

disk count 
Trial 
1 

Trial 
2 

Trial 
3 

Trial 
4 

Trial 
5 

Trial 
6 

Trial 
7 

Trial 
8 

Trial 
9 

Trial 
10 

1 2 3 2 2 2 2 3 3 2 3 2 
2 6 6 7 6 6 6 6 6 6 7 6 
3 8 10 10 10 9 9 9 8 9 10 9 
4 12 14 13 14 13 14 13 15 14 12 13 
5 17 17 19 19 19 19 18 18 17 19 18 
6 20 20 25 24 26 24 23 26 26 23 23 
7 28 30 32 30 33 30 29 30 31 30 28 
8 35 36 35 38 39 36 36 38 37 36 40 
9 41 44 45 43 47 46 44 41 49 41 47 
10 49 52 52 55 51 50 50 51 49 51 54 

 
Table 7. The generated report (10 trials) of disk laying of the Poincare (periodic excitation 2) 
 
Scale Optimum 

disk count 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 

10 

1 2 2 2 3 2 2 2 3 3 2 2 
2 6 6 7 6 6 7 7 6 6 7 7 
3 8 9 11 8 8 9 8 9 9 9 10 
4 12 14 12 13 12 12 14 12 12 14 14 
5 17 18 18 19 18 18 18 17 20 18 19 
6 21 22 21 22 25 23 23 21 23 23 24 
7 26 29 27 29 29 26 28 27 28 27 30 
8 32 34 37 35 32 32 38 35 36 37 36 
9 39 42 39 41 41 42 41 39 43 46 45 
10 48 52 55 50 49 51 53 50 51 49 48 
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Fig. 11. Poincare section of periodically excited pendulum (excitation 2) showing the attractor 
layout for scale 2 disk 

 

 
 

Fig. 12. Log plots of disks required for the overlay 
 
Table 8 shows a sample of optimum variation of 
disks counted for ten (10) different observations 
scale for the three (3) investigated cases. The 
slope of line of best fit in Fig. 12 is an               
expression of the fractal quantification of space 
filling ability of the Poincare given in Figs. 9, 10 
and 11.  
 

Therefore, it can be argued that Figs. 10 and 11 
with estimated fractal disk dimension values of 
1.3554, coefficient of fitness (R

2
=0.9921) and 

1.3305, coefficient of fitness (R
2
=0.993) 

respectively, fill space more than Fig. 9 with 
estimated fractal disk dimension value of 1.2553 
with coefficient of fitness (R

2
=0.997). 
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Table 8. Disk count and Logarithm of disk count 
 

Observation 
Scales 

DISKS COUNTED NATURAL LOGARITHMS 

Harmonic 
Excitation 

Periodic 
Excitation 1 

Periodic 
Excitation 2 

Observation 
Scales 

Harmonic 
Excitation 

Periodic 
Excitation 1 

Periodic 
Excitation 2 

1 2 2 2 0.00 0.69 0.69 0.69 
2 5 6 6 0.69 1.61 1.79 1.79 
3 9 8 8 1.10 2.20 2.08 2.08 
4 12 12 12 1.39 2.48 2.48 2.48 
5 15 17 17 1.61 2.71 2.83 2.83 
6 18 20 21 1.79 2.89 3.00 3.04 
7 23 28 26 1.95 3.14 3.33 3.26 
8 28 35 32 2.08 3.33 3.56 3.47 
9 33 41 39 2.20 3.50 3.71 3.66 
10 39 49 48 2.30 3.66 3.89 3.87 
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4. CONCLUSIONS 
 
Qualitatively, the effect of periodic excitation on 
the duffing system is the same as that of the 
harmonic excitation on it. However, the number 
of disks required to cover the Poincare varied 
from harmonic to periodic excitations. This 
implies that the effects are quite different 
quantitatively. Under the harmonic excitation, the 
Poincare has a dimension of 1.333 and under the 
selected periodic excitations, the fractal 
dimensions are 1.402 and 1.315. This implies 
that the Poincare of the periodically excited 
duffing (square waveform) occupied more space 
on the 2D-euclidean space than that of the 
harmonically excited duffing. The absolute 
variation in dimension is between 4.92% and 
1.37%.  
 
Qualitatively, the effect of periodic excitation on 
the pendulum system is the same as that of the 
harmonic excitation on it. However, the number 
of disks required to cover the Poincare varied 
from harmonic to periodic excitations. This 
implies that the effects are quite different 
quantitatively. Under the harmonic excitation, the 
Poincare has a dimension of 1.2553 and under 
the selected periodic excitations, the fractal 
dimensions are 1.3554 and 1.3305. This implies 
that the Poincare of the periodically excited 
pendulum occupied more space on the 2D-
euclidean space than that of the harmonically 
excited pendulum. The variation in dimension is 
between 5.67% and 7.39%. Therefore, the effect 
of periodic excitations on dynamic systems 
should also be of interest as there is a relatively 
large difference. 
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