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In this article, we discuss the existence and uniqueness of solutions for a new class of coupled system of sequential fractional
differential equations involving ψ-Hilfer fractional derivatives, supplemented with multipoint boundary conditions. We make
use of Banach’s fixed point theorem to obtain the uniqueness result and the Leray-Schauder alternative to obtain the existence
result. Examples illustrating the main results are also constructed.

1. Introduction

Fractional calculus is an emerging field in applied mathemat-
ics that deals with derivatives and integrals of arbitrary
orders. One of the most important advantages of fractional
order models in comparison with integer order ones is that
fractional integrals and derivatives are a powerful tool for
the description of memory and hereditary properties of some
materials. For details and applications, we refer the reader to
the texts [1–6]. There are some different definitions of frac-
tional derivatives, from the most popular of Riemann-
Liouville and Caputo type fractional derivatives, to the other
ones such as Hadamard fractional derivative and the Erdeyl-
Kober fractional derivative. A generalization of both
Riemann-Liouville and Caputo derivatives was given by Hil-

fer in [7], which is known as the Hilfer fractional derivative
Dα,βxðtÞ of order α and a type β ∈ ½0, 1�: Some properties
and applications of the Hilfer derivative can be found in [8,
9] and references cited therein.

Initial value problems involving Hilfer fractional deriva-
tives were studied by several authors (see, for example, [10–
12]). Nonlocal boundary value problems for Hilfer fractional
differential equation have been discussed in [13, 14]. Coupled
systems for Hilfer fractional differential equations with non-
local integral boundary conditions were studied in [15].

The fractional derivative with another function, in the
Hilfer sense, called ψ-Hilfer fractional derivative, has been
introduced in [16], which unifies several different fractional
operators. For some recent results on existence and unique-
ness of initial value problems and results on Ulam-Hyers-
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Rassias stability, see [17–19] and references therein. Recently,
in [20], the authors extended the results in [13] to ψ-Hilfer
nonlocal implicit fractional boundary value problems. For
recent results in ψ-Hilfer fractional derivative, we refer to
[21–23] and references cited therein.

In [24], the authors initiated the study of existence and
uniqueness of solutions for a new class of boundary value
problems of sequential ψ-Hilfer-type fractional differential
equations with multipoint boundary conditions of the form

HDα,β;ψ + kHDα−1,β;ψ
� �

x tð Þ = f t, x tð Þð Þ, t ∈ a, b½ �,

x að Þ = 0, x bð Þ = 〠
m

i=1
λix θið Þ,

8>><
>>: ð1Þ

where HDα,β;ψ is the ψ-Hilfer fractional derivative of order α,
1 < α ≤ 2 and parameter β, 0 ≤ β ≤ 1, f : ½a, b� ×ℝ⟶ℝ is a
continuous function, 0 ≤ a < b,k, λi ∈ℝ, i = 1, 2,⋯,m and a
< θ1 < θ2 <⋯<θm < b: Existence and uniqueness results
were proved by using classical fixed point theorems. The
Banach’s fixed point theorem was used to obtain the unique-
ness result, while nonlinear alternative of Leray-Schauder
type and Krasnoselskii’s fixed point theorem are applied to
obtain the existence results for the problem (1).

In this paper, we investigate the existence and uniqueness
criteria for the solutions of the following nonlocal coupled
system of sequential ψ-Hilfer fractional derivative of the
form

HDα,β;ψ + kHDα−1,β;ψ
� �

x tð Þ = f t, x tð Þ, y tð Þð Þ, t ∈ a, b½ �,
HDp,q;ψ + vHDp−1,q;ψ� �

y tð Þ = g t, x tð Þ, y tð Þð Þ, t ∈ a, b½ �,

x að Þ = 0, x bð Þ = 〠
m−2

i=1
λiy θið Þ,

y að Þ = 0, y bð Þ = 〠
n−2

j=1
μ jx ζj
� �

,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ

where HDα,β;ψ, HDp,q;ψ are the ψ-Hilfer fractional derivatives
of orders α and p, 1 < α, p ≤ 2, and two parameters β, q, 0 ≤
β, q ≤ 1, given constants k, ν, λi, μj ∈ℝ, a ≥ 0, and the points
a < θ1 < θ2 <⋯<θm−2 < b,a < ζ1 < ζ2 <⋯<ζn−2 < b and f , g
: ½a, b� ×ℝ ×ℝ⟶ℝ are continuous functions.

In order to study the problem (2), we convert it into an
equivalent fixed point problem and then we use Banach’s
fixed point theorem to prove the uniqueness of its solutions,
while by applying the Leray-Schauder alternative [25], we
obtain the existence result.

The remaining part of the article is structured as follows:
Section 3 contains the main results for the problem (2).
Examples illustrating the existence and uniqueness results
are also included. We recall the related background material
in Section 2, in which also we establish a lemma regarding a
linear variant of the problem (2).

2. Preliminaries

Here, some notations and definitions of fractional calculus
are reminded [1].

Definition 1. The Riemann-Liouville fractional integral of
order ς > 0 for a continuous function is defined by

Iςu tð Þ = 1
Γ ςð Þ

ðt
a
t − sð Þς−1u sð Þds, ð3Þ

provided the right-hand side exists on ða,∞Þ.

Definition 2. The Riemann-Liouville fractional derivative of
order ς > 0 of a continuous function is defined by

RLDςu tð Þ =DnIn−ςu tð Þ
= 1
Γ n − ςð Þ

d
dt

� �nðt
a
t − sð Þn−ς−1u sð Þds, n − 1 < ς < n,

ð4Þ

where n = ½ς� + 1 denotes the integer part of real number ς
and D = d/dt, provided the right-hand side is point-wise
defined on ða,∞Þ.

Definition 3. The Caputo fractional derivative of order ς > 0
of a continuous function is defined by

CDςu tð Þ = In−ςDnu tð Þ
= 1
Γ n − ςð Þ

ðt
a
t − sð Þn−ς−1 d

ds

� �n

u sð Þds, n − 1 < ς < n,

ð5Þ

where the right-hand side is point-wise defined on ða,∞Þ.

Definition 4 (Hilfer fractional derivative [7, 8]). The Hilfer
fractional derivative of order α and parameter β of a function
(also known as the generalized Riemann-Liouville and
Caputo fractional derivatives) is defined by

HDα,βu tð Þ = Iβ n−αð ÞDnI 1−βð Þ n−αð Þu tð Þ, ð6Þ

where n − 1 < α < n, 0 ≤ β ≤ 1, and t > a.

Remark 5.When β = 0, the Hilfer fractional derivative corre-
sponds to the Riemann-Liouville fractional derivative

HDα,0u tð Þ =DnIn−αu tð Þ, ð7Þ

while when β = 1, the Hilfer fractional derivative corresponds
to the Caputo fractional derivative

HDα,1u tð Þ = In−αDnu tð Þ: ð8Þ

Let ψ ∈ C1ð½a, b�,ℝÞ be an increasing function with ψ′ðt
Þ ≠ 0 for all t ∈ ½a, b�:

2 Advances in Mathematical Physics



Definition 6 ([1]). Let α > 0 and g ∈ L1ð½a, b�,ℝÞ: The ψ
-Riemann-Liouville fractional integral of order α to a func-
tion g with respect to ψ is defined by

Iα;ψg tð Þ = 1
Γ αð Þ

ðt
a
ψ′ sð Þ ψ tð Þ − ψ sð Þð Þα−1g sð Þds: ð9Þ

Definition 7 ([16]). Let n − 1 < α < n, n ∈ℕ, and g, ψ ∈ Cnð½
a, b�,ℝÞ such that ψ is increasing with ψ′ðtÞ ≠ 0 for all t ∈ ½
a, b�: The ψ-Hilfer fractional derivative HDα,β;ψð·Þ of order
α to a function g and type 0 ≤ β ≤ 1 is defined by

HDα,β;ψg tð Þ = Iβ n−αð Þ;ψ 1
ψ′ tð Þ

d
dt

 !n

I 1−βð Þ n−αð Þ;ψg tð Þ: ð10Þ

Remark 8 ([1]). If β = 0, then we have ψ-Riemann-Liouville
fractional derivative as

HDα,0;ψg tð Þ: = RLDα;ψg tð Þ = 1
ψ′ tð Þ

d
dt

 !n

I n−αð Þ;ψg tð Þ, ð11Þ

and if β = 1, we obtain ψ-Caputo fractional derivative by

HDα,1;ψg tð Þ: = CDα;ψg tð Þ = I n−αð Þ;ψ 1
ψ′ tð Þ

d
dt

 !n

g tð Þ: ð12Þ

Lemma 9 ([16]). Let α, χ > 0 and δ > 0 be constants and ψ
∈ C1ð½a, b�,ℝÞ be an increasing function with ψ′ðtÞ ≠ 0 for
all t ∈ ½a, b�. Then, we have

Iα;ψIχ;ψh tð Þ = Iα+χ;ψh tð Þ,

Iα;ψ ψ tð Þ − ψ að Þð Þδ−1 = Γ δð Þ
Γ α + δð Þ ψ tð Þ − ψ að Þð Þα+δ−1:

ð13Þ

The following lemma contains the compositional prop-
erty of Riemann-Liouville fractional integral operator with
the ψ-Hilfer fractional derivative operator.

Lemma 10 ([16]). Let f ∈ Lða, bÞ, n − 1 < α ≤ n, n ∈ℕ,
0 ≤ β ≤ 1,γ∗ = α + nβ − αβ, and ðIðn−αÞð1−βÞ f Þ ∈ ACk½a, b�:
Then,

Iα;ψHDα,β;ψ f
� �

tð Þ = f tð Þ − 〠
n

k=1

ψ tð Þ − ψ að Þð Þγ∗−k
Γ γ∗ − k + 1ð Þ f n−k½ �

ψ I 1−βð Þ n−αð Þ;ψ f
� �

að Þ,

ð14Þ

where f ½n−k�ψ = ð1/ψ′ðtÞd/dtÞn−k:

The following lemma deals with a linear variant of the
system (2).

Lemma 11. Let γ = α + 2β − αβ, δ = p + 2q − pq, and h, z ∈
Cð½a, b�,ℝÞ be given functions. Then, the unique solution of

ψ-Hilfer the fractional differential linear system

HDα,β;ψ + kHDα−1,β;ψ
� �

x tð Þ = h tð Þ, t ∈ a, b½ �,
HDp,q;ψ + vHDp−1,q;ψ� �

y tð Þ = z tð Þ, t ∈ a, b½ �,

x að Þ = 0, x bð Þ = 〠
m−2

i=1
λiy θið Þ,

y að Þ = 0, y bð Þ = 〠
n−2

j=1
μjx ζj
� �

,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð15Þ

is given by

x tð Þ = Iα;ψh tð Þ − k I1;ψx tð Þ + ψ tð Þ − ψ að Þð Þγ−1
ΛΓ γð Þ

� Δ −ν 〠
m−2

i=1
λiI

1;ψy θið Þ + 〠
m−2

i=1
λiI

p;ψz θið Þ + kI1;ψx bð Þ − Iα;ψh bð Þ
" #(

+ B −k〠
n−2

j=1
μjI

1;ψx ζj
� �

+ 〠
n−2

j=1
μjI

α;ψh ζj
� �

+ νI1;ψy bð Þ − Ip;ψz bð Þ
" #)

,

ð16Þ

y tð Þ = Ip;ψz tð Þ − ν I1;ψy tð Þ + ψ tð Þ − ψ að Þð Þδ−1
ΛΓ γð Þ

� A −k〠
n−2

j=1
μjI

1;ψx ζj
� �

+ 〠
n−2

j=1
μjI

α;ψh ζj
� �

+ νI1;ψy bð Þ − Ip;ψz bð Þ
" #(

+Ω −ν 〠
m−2

i=1
λiI

1;ψy θið Þ + 〠
m−2

i=1
λiI

p;ψz θið Þ + kI1;ψx bð Þ − Iα;ψh bð Þ
" #)

,

ð17Þ

where

A = ψ bð Þ − ψ að Þð Þγ−1
Γ γð Þ ,

B = 〠
m−2

i=1
λi

ψ θið Þ − ψ að Þð Þδ−1
Γ δð Þ ,

Ω = 〠
n−2

j=1
μ j

ψ ζj
� �

− ψ að Þ� �γ−1
Γ γð Þ ,

Δ = ψ bð Þ − ψ að Þð Þδ−1
Γ δð Þ ,

ð18Þ

and it is assumed that

Λ≔ AΔ − BΩ ≠ 0: ð19Þ

Proof. Assume that x is a solution of the nonlocal boundary
value problem (15) on ½a, b�. Operating fractional integral
Iα;ψ on both sides of the first equation in (15) and using
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Lemma 10, we obtain for t ∈ ½a, b�,

x tð Þ − 〠
2

k=1

ψ tð Þ − ψ að Þð Þγ−k
Γ γ − k + 1ð Þ f 2−k½ �

ψ I 1−βð Þ 2−αð Þ;ψx
� �

að Þ + kI1;ψx tð Þ = Iα;ψh tð Þ:

ð20Þ

Hence, using the fact that ð1 − βÞð2 − αÞ = 2 − γ, we have

x tð Þ = ψ tð Þ − ψ að Þð Þγ−1
Γ γð Þ

1
ψ′ tð Þ

d
dt

I2−γ;ψx

 !
að Þ

+ ψ tð Þ − ψ að Þð Þγ−2
Γ γ − 1ð Þ I2−γ;ψx að Þ − kI1;ψx tð Þ + Iα;ψh tð Þ

= ψ tð Þ − ψ að Þð Þγ−1
Γ γð Þ

H

Dγ−1,β;ψx að Þ + ψ tð Þ − ψ að Þð Þγ−2
Γ γ − 1ð Þ I2−γ;ψx að Þ

− kI1;ψx tð Þ + Iα;ψh tð Þ = c1
ψ tð Þ − ψ að Þð Þγ−1

Γ γð Þ

+ c2
ψ tð Þ − ψ að Þð Þγ−2

Γ γ − 1ð Þ − kI1;ψx tð Þ + Iα;ψh tð Þ,

ð21Þ

where c1= HDγ−1,β;ψxðtÞjt=a and c2 = I2−γ;ψxðtÞjt=a:
From the first boundary condition xðaÞ = 0, we can

obtain c2 = 0, since limt⟶aðt − aÞγ−2 =∞: Then, we get

x tð Þ = c1
ψ tð Þ − ψ að Þð Þγ−1

Γ γð Þ − kI1;ψx tð Þ + Iα;ψh tð Þ, t ∈ a, b½ �:

ð22Þ

By a similar way, we obtain

y tð Þ = d1
ψ tð Þ − ψ að Þð Þδ−1

Γ δð Þ − νI1;ψy tð Þ + Ip;ψz tð Þ, t ∈ a, b½ �,

ð23Þ

where d1 is an arbitrary constant.
From the second boundary conditions xðbÞ =∑m−2

i=1 λiyð
θiÞ and yðbÞ =∑n−2

j=1 μjxðζjÞ, we get the system

Ac1 − Bd1 = P,
−Ωc1 + Δd1 =Q,

ð24Þ

where

P = −ν 〠
m−2

i=1
λiI

1;ψy θið Þ + 〠
m−2

i=1
λiI

p;ψz θið Þ + kI1;ψx bð Þ − Iα;ψh bð Þ,

Q = −k〠
n−2

j=1
μjI

1;ψx ζj
� �

+ 〠
n−2

j=1
μjI

α;ψh ζj
� �

+ νI1;ψy bð Þ − Ip;ψz bð Þ:

ð25Þ

Solving the system (24), we find that

c1 =
1
Λ

ΔP + BQð Þ, d1 =
1
Λ

AQ +ΩPð Þ: ð26Þ

Substituting the value of c1, d1 in (22) and (23) yields the
solution (16) and (17). The converse follows by direct com-
putation. This completes the proof.

3. Main Results

Let us introduce the space W = fxðtÞ ∣ xðtÞ ∈ Cð½a, b�,ℝÞg
endowed with the norm ∥x∥ = sup f∣xðtÞ∣,t ∈ ½a, b�g: Obvi-
ously, ðW , k·kÞ is a Banach space. Then, the product space
ðW ×W ,∥ðx, yÞ∥Þ is also a Banach space equipped with norm
∥ðx, yÞ∥ = ∥x∥+∥y∥:

In view of Lemma 11, we define an operator S : W ×
W ⟶W ×W by

S x, yð Þ tð Þ =
S1 x, yð Þ tð Þ
S2 x, yð Þ tð Þ

 !
, ð27Þ

where

S1 x, yð Þ tð Þ = Iα;ψ f xy tð Þ − k I1;ψx tð Þ + ψ tð Þ − ψ að Þð Þγ−1
ΛΓ γð Þ

� Δ −ν 〠
m−2

i=1
λiI

1;ψy θið Þ + 〠
m−2

i=1
λiI

p;ψgxy θið Þ + kI1;ψx bð Þ − Iα;ψ f xy bð Þ
" #(

+ B −k〠
n−2

j=1
μ j I

1;ψx ζ j
� �

+ 〠
n−2

j=1
μjI

α;ψ f xy ζj
� �

+ ν I1;ψy bð Þ − Ip;ψgxy bð Þ
" #)

,

S2 x, yð Þ tð Þ = Ip;ψgxy tð Þ − ν I1;ψy tð Þ + ψ tð Þ − ψ að Þð Þδ−1
ΛΓ γð Þ

� A −k〠
n−2

j=1
μj I

1;ψx ζj
� �

+ 〠
n−2

j=1
μj I

α;ψ f xy ζ j
� �

+ ν I1;ψy bð Þ − Ip;ψgxy bð Þ
" #(

+Ω −ν 〠
m−2

i=1
λiI

1;ψy θið Þ + 〠
m−2

i=1
λiI

p;ψgxy θið Þ + kI1;ψx bð Þ − Iα;ψ f xy bð Þ
" #)

,

ð28Þ

where

f xy tð Þ = f t, x tð Þ, y tð Þð Þ,
gxy tð Þ = g t, x tð Þ, y tð Þð Þ, t ∈ a, b½ �:

ð29Þ

For the sake of computational convenience, we put

X1 = ∣k∣ b − að Þ + ∣A ∣
∣Λ ∣

Δj j kj j b − að Þ + ∣A ∣
∣Λ ∣

Bj j kj j〠
n−2

j=1
∣μj∣ ζj − a
� �

,

ð30Þ

Y1 =
∣A ∣
∣Λ ∣

Δj j vj j 〠
m−2

i=1
∣λi∣ θi − að Þ + ∣A ∣

∣Λ ∣
Bj j vj j b − að Þ, ð31Þ

F1 =
ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ 1 + ∣A ∣

∣Λ ∣
Δj j

� �
+ ∣A ∣
∣Λ ∣

Bj j〠
n−2

j=1
∣μj∣

ψ ζj
� �

− ψ að Þ� �α
Γ α + 1ð Þ ,

ð32Þ
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G1 =
∣A ∣
∣Λ ∣

Δj j 〠
m−2

i=1
λij j ψ θið Þ − ψ að Þð Þp

Γ p + 1ð Þ + ∣A ∣
∣Λ ∣

Bj j ψ bð Þ − ψ að Þð Þp
Γ p + 1ð Þ ,

ð33Þ

X2 =
∣Δ ∣
∣Λ ∣

Aj j kj j〠
n−2

j=1
∣μj∣ ζj − a
� �

+ ∣Δ ∣
∣Λ ∣

Ωj j kj j b − að Þ, ð34Þ

Y2 = vj j b − að Þ + ∣Δ ∣
∣Λ ∣

Aj j vj j b − að Þ + ∣Δ ∣
∣Λ ∣

Ωj j vj j 〠
m−2

i=1
∣λi∣ θi − að Þ,

ð35Þ

F2 =
∣Δ ∣
∣Λ ∣

∣A∣〠
n−2

j=1
∣μj∣

ψ ζj
� �

− ψ að Þ� �α
Γ α + 1ð Þ + ∣Δ ∣

∣Λ ∣
∣Ω∣

ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ ,

ð36Þ

G2 =
ψ bð Þ − ψ að Þð Þp
Γ p + 1ð Þ 1 + ∣Δ ∣

∣Λ ∣
∣ A ∣

� �
+ ∣Δ ∣
∣Λ ∣

∣Ω∣ 〠
m−2

i=1
∣λi∣

ψ θið Þ − ψ að Þð Þp
Γ p + 1ð Þ :

ð37Þ
Our first result is based on Leray-Schauder alternative

([25] p. 4.).

Lemma 12 (Leray-Schauder alternative). Let F : E⟶ E be a
completely continuous operator (i.e., a map that restricted to
any bounded set in E is compact). Let

E Fð Þ = x ∈ E : x = λF xð Þ for some 0 < λ < 1f g: ð38Þ

Then, either the set EðFÞ is unbounded, or F has at least
one fixed point.

Theorem 13. Assume that f , g : ½a, b� ×ℝ ×ℝ⟶ℝ are
continuous functions, and there exist real constants pi, qi ≥ 0
, ði = 1, 2Þ and p0, q0 > 0 such that ∀xi, yi ∈ℝ, ði = 1, 2Þ,

∣f t, x1, y1ð Þ∣ ≤ p0 + p1∣x1∣ + p2 y1j j, ∣g t, x2, y2ð Þ∣ ≤ q0 + q1∣x2∣ + q2 y2j j:
ð39Þ

If

M1 = F1 + F2½ �p1 + G1 +G2½ �q1 + X1 + X2½ � < 1,
M2 = F1 + F2½ �p2 + G1 +G2½ �q2 + Y1 + Y2½ � < 1,

ð40Þ

where Xi, Yi, Fi,Gi, i = 1, 2 are given by (30)-(37); then, the
system (2) has at least one solution on ½a, b�:

Proof. The operator S is continuous, by the continuity of
functions f and g: We will show that the operator S : W ×
W ⟶W ×W is completely continuous. Let Zr = fðx, yÞ
∈W ×W : ∥ðx, yÞ∥≤rg be bounded set. Then, there exist
positive constants L i, i = 1, 2 such that ∣f ðt, xðtÞ, yðtÞÞ ∣ ≤
L1, ∣gðt, xðtÞ, yðtÞÞ∣ ≤L2,∀ðx, yÞ ∈Zr: Then, for any ðx, yÞ

∈Zr , we have

∣S1 x, yð Þ tð Þ∣ ≤ Iα;ψ∣f xy tð Þ∣ + ∣k∣I1;ψ∣x tð Þ∣ + ψ tð Þ − ψ að Þð Þγ−1
∣Λ ∣ Γ γð Þ

� ∣Δ ∣ ∣ν ∣ 〠
m−2

i=1
∣ λi ∣ I

1;ψy θið Þ
"(

+ 〠
m−2

i=1
∣ λi ∣ I

p;ψ ∣ gxy θið Þ∣+∣k ∣ I1;ψ ∣ x bð Þ∣+Iα;ψ ∣ f xy bð Þ ∣
#

+∣B ∣ ∣k ∣ 〠
n−2

j=1
∣ μj ∣ I

1;ψx ζ j
� �"

+ 〠
n−2

j=1
∣ μ j ∣ I

α;ψ ∣ f xy ζið Þ∣+∣ν ∣ I1;ψ ∣ y bð Þ∣+Ip;ψ ∣ gxy bð Þ ∣
#)

≤
ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ L1 + ∣k∣ b − að Þ∥x∥+ ∣A ∣

∣Λ ∣

� ∣Δ ∣ ∣ν ∣ 〠
m−2

i=1
∣ λi ∣ θi − að Þ∥y∥+ 〠

m−2

i=1
∣ λi ∣

ψ θið Þ − ψ að Þð Þp
Γ p + 1ð Þ L2

"(

+∣k ∣ b − að Þ∥x∥+ ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ L1

�
+∣B ∣ ∣k ∣ 〠

n−2

j=1
∣ μj ∣ ζj − a

� �
∥x∥

"

+〠
n−2

j=1
∣ μj ∣

ψ ζj
� �

− ψ að Þ� �α
Γ α + 1ð Þ L1+∣ν ∣ b − að Þ∥y∥+ ψ bð Þ − ψ að Þð Þp

Γ p + 1ð Þ L2

#)

≤ F1L1 +G1L2 + X1∥x∥+Y1∥y∥,

ð41Þ

which implies that

∥S1 x, yð Þ∥ ≤ F1L1 +G1L2 + X1∥x∥+Y1∥y∥: ð42Þ

Similarly, it can be shown that

∥S2 x, yð Þ∥ ≤ F2L1 +G2L2 + X2∥x∥+Y2∥y∥: ð43Þ

From the above inequalities, it follows that the operator S
is uniformly bounded, since

S x, yð Þk k ≤ F1 + F2½ �L1 + F1 +G2½ �L2 + X1 + X2½ �r + Y1 + Y2½ �r:
ð44Þ

Next, we show that S is equicontinuous. Let t1, t2 ∈ ½a, b�
with t1 < t2: Then, we have

∣S1 x t2ð Þ, y t2ð Þð Þ − S1 x t1ð Þ, y t1ð Þð Þ∣

≤
1

Γ αð Þ ∣
ðt1
a
ψ′ sð Þ ψ t2ð Þ − ψ sð Þð Þα−1 − ψ t1ð Þ − ψ sð Þð Þα−1	 


f

� s, x sð Þ, y sð Þð Þds +
ðt2
t1

ψ′ sð Þ ψ t2ð Þ − ψ sð Þð Þα−1 f

� s, x sð Þ, y sð Þð Þds∣ + ∣k∣
ðt2
t1

∣x sð Þ∣ds

+ ∣ ψ t2ð Þ − ψ að Þð Þγ−1 − ψ t1ð Þ − ψ að Þð Þγ−1 ∣
∣Λ ∣ Γ γð Þ ∣ΔP + BQ∣

≤L1
2 ψ t2ð Þ − ψ t1ð Þð Þα+∣ψ t2ð Þα − ψ t1ð Þα ∣

Γ α + 1ð Þ + ∣k∣r∣t2 − t1∣

+ ∣ ψ t2ð Þ − ψ að Þð Þγ−1 − ψ t1ð Þ − ψ að Þð Þγ−1 ∣
∣Λ ∣ Γ γð Þ ΔP + BQj j:

ð45Þ
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Analogously, we can obtain

∣S2 x t2ð Þ, y t2ð Þð Þ − S2 x t1ð Þ, y t1ð Þð Þ∣

≤L2
2 ψ t2ð Þ − ψ t1ð Þð Þp+∣ψ t2ð Þp − ψ t1ð Þp ∣

Γ p + 1ð Þ + ∣ν∣r∣t2 − t1∣

+ ∣ ψ t2ð Þ − ψ að Þð Þδ−1 − ψ t1ð Þ − ψ að Þð Þδ−1 ∣
∣Λ ∣ Γ δð Þ AQ + ΓPj j:

ð46Þ

Therefore, the operator Sðx, yÞ is equicontinuous, and
thus, the operator Sðx, yÞ is completely continuous.

Finally, it will be verified that the set E = fðx, yÞ ∈W ×
W ∣ ðx, yÞ = λSðx, yÞ, 0 ≤ λ ≤ 1g is bounded. Let ðx, yÞ ∈E
with ðx, yÞ = λSðx, yÞ: For any t ∈ ½a, b�, we have

x tð Þ = λS1 x, yð Þ tð Þ, y tð Þ = λS2 x, yð Þ tð Þ: ð47Þ

Then,

∣x tð Þ∣ ≤ ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ p0 + p1 ∣ x∣+p2 ∣ y ∣ð Þ + ∣k∣ b − að Þ∥x∥+ ∣A ∣

∣Λ ∣

� ∣Δ ∣ ∣ν ∣ 〠
m−2

i=1
∣ λi ∣ θi − að Þ∥y∥+ 〠

m−2

i=1
∣ λi ∣

ψ θið Þ − ψ að Þð Þp
Γ p + 1ð Þ

"(

� q0 + q1 ∣ x∣+q2 ∣ y ∣ð Þ+∣k ∣ b − að Þ∥x∥+ ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ

� p0 + p1 ∣ x∣+p2 ∣ y ∣ð Þ�+∣B ∣

� ∣k ∣ 〠
n−2

j=1
∣ μ j ∣ ζj − a

� �
∥x∥+〠

n−2

j=1
∣ μ j ∣

ψ ζj
� �

− ψ að Þ� �α
Γ α + 1ð Þ

"

� p0 + p1 ∣ x∣+p2 ∣ y ∣ð Þ+∣ν ∣ b − að Þ∥y∥+ ψ bð Þ − ψ að Þð Þp
Γ p + 1ð Þ

� q0 + q1 ∣ x∣+q2 ∣ y ∣ð Þ
#)

≤ F1 p0 + p1 ∣ x∣+p2 ∣ y ∣ð Þ + G1 q0 + q1 ∣ x∣+q2 ∣ y ∣ð Þ + X1∥x∥+Y1∥y∥
= F1p0 + G1q0ð Þ + p1F1 + q1G1 + X1ð Þ∥x∥+ p2F1 + q2G1 + Y1ð Þ∥y∥,

∣y tð Þ∣ ≤ F2 p0 + p1 ∣ x∣+p2 ∣ y ∣ð Þ + G2 q0 + q1 ∣ x∣+q2 ∣ y ∣ð Þ + X2∥x∥+Y2∥y∥
= F2p0 +G2q0ð Þ + p1F2 + q1G2 + X2ð Þ∥x∥+ p2F2 + q2G2 + Y2ð Þ∥y∥:

ð48Þ

Hence, we have

∥x∥ ≤ F1p0 +G1q0ð Þ + p1F1 + q1G1 + X1ð Þ∥x∥+ p2F1 + q2G1 + Y1ð Þ∥y∥,
∥y∥ ≤ F2p0 + G2q0ð Þ + p1F2 + q1G2 + X2ð Þ∥x∥+ p2F2 + q2G2 + Y2ð Þ∥y∥,

ð49Þ

which imply that

∥x∥+∥y∥ ≤ F1 + F2½ �p0 + G1 + G2½ �q0 + F1 + F2½ �p1 + G1 + G2½ �q1f
+ X1 + X2½ �g∥x∥+ F1 + F2½ �p2 + G1 +G2½ �q2 + Y1 + Y2½ �f g∥y∥:

ð50Þ

Consequently,

∥ x, yð Þ∥ ≤ F1 + F2½ �p0 + G1 +G2½ �q0
min 1 −M1, 1 −M2f g , ð51Þ

which proves that E is bounded. Thus, the operator S , by
Lemma 12, has at least one fixed point. Hence, the boundary
value problem (2) has at least one solution. The proof is
complete.

The uniqueness of solutions of the system (2) is proved in
the next theorem, via Banach’s contraction mapping
principle.

Theorem 14. Assume that f , g : ½a, b� ×ℝ ×ℝ⟶ℝ are
continuous functions, and there exist positive constants P ,Q
such that for all t ∈ ½a, b� and ui, vi ∈ℝ, i = 1, 2, we have

∣f t, u1, u2ð Þ − f t, v1, v2ð Þ∣ ≤P ∣u1 − v1∣+∣u2 − v2 ∣ð Þ,
∣g t, u1, u2ð Þ − g t, v1, v2ð Þ∣ ≤Q ∣u1 − v1∣+∣u2 − v2 ∣ð Þ:

ð52Þ

Then, the system (2) has a unique solution on ½a, b�, pro-
vided that

F1 + F2½ �P + G1 +G2½ �Q + X1 + X2½ � + Y1 + Y2½ � < 1, ð53Þ

where Xi, Yi, Fi,Gi, i = 1, 2 are given by (30)-(37).

Proof. Define supt∈½a,b� f ðt, 0, 0Þ =N 1 <∞,
supt∈½a,b�gðt, 0, 0Þ =N 2 <∞ and r > 0 such that

r > F1 + F2½ �N 1 + G1 + G2½ �N 2
1 − F1 + F2½ �P + G1 +G2½ �Q + X1 + X2½ � + Y1 + Y2½ �f g :

ð54Þ

In the first step, we show that SBr ⊂ Br , where Br = fðx,
yÞ ∈W ×W : ∥ðx, yÞ∥ ≤ rg: By the assumption ðH2Þ, for ðx,
yÞ ∈ Br , t ∈ ½a, b�, we have

∣f t, x tð Þ, y tð Þð Þ∣ ≤ ∣f t, x tð Þ, y tð Þð Þ − f t, 0, 0ð Þ∣ + ∣f t, 0, 0ð Þ∣
≤P ∣x tð Þ∣+∣y tð Þ ∣ð Þ +N 1,

≤P ∥x∥+∥y∥ð Þ +N 1 ≤P r +N 1,

∣g t, x tð Þ, y tð Þð Þ∣ ≤Qr +N 2: ð55Þ
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Using the above estimates, we obtain

∣S1 x, yð Þ tð Þ∣ ≤ Iα;ψ∣f xy tð Þ∣ + ∣k∣I1;ψ∣x tð Þ∣ + ψ tð Þ − ψ að Þð Þγ−1
∣Λ ∣ Γ γð Þ

� ∣Δ ∣ ∣ν ∣ 〠
m−2

i=1
∣ λi ∣ I

1;ψy θið Þ + 〠
m−2

i=1
∣ λi ∣ I

p;ψ ∣ gxy θið Þ∣
"(

+∣k ∣ I1;ψ ∣ x bð Þ∣+Iα;ψ ∣ f xy bð Þ ∣
#
+∣B ∣

� ∣k ∣ 〠
n−2

j=1
∣ μj ∣ I

1;ψx ζj
� �

+ 〠
n−2

j=1
∣ μj ∣ I

α;ψ ∣ f xy ζj
� �

∣

"

+∣ν ∣ I1;ψ ∣ y bð Þ∣+Ip;ψ ∣ g b, x bð Þ, y bð Þð Þ ∣
#)

≤
ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ P r +N 1ð Þ + ∣k∣ b − að Þ∥x∥+ ∣A ∣

∣Λ ∣

� ∣Δ ∣ ∣ν ∣ 〠
m−2

i=1
∣ λi ∣ θi − að Þ∥y∥

"(

+ 〠
m−2

i=1
∣ λi ∣

ψ θið Þ − ψ að Þð Þp
Γ p + 1ð Þ Qr +N 2ð Þ+∣k ∣ b − að Þ∥x∥

+ ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ P r +N 1ð Þ

�
+∣B ∣

� ∣k ∣ 〠
n−2

j=1
∣ μj ∣ ζj − a

� �
∥x∥+〠

n−2

j=1
∣ μj ∣

ψ ζj
� �

− ψ að Þ� �α
Γ α + 1ð Þ

"

� P r +N 1ð Þ+∣ν ∣ b − að Þ∥y∥+ ψ bð Þ − ψ að Þð Þp
Γ p + 1ð Þ Qr +N 2ð Þ

�)

≤ F1P +G1Q + X1 + Y1½ �r + F1N 1 +G1N 2:

ð56Þ

Hence,

∥S1 x, yð Þ∥ ≤ F1P +G1Q + X1 + Y1½ �r + F1N 1 +G1N 2:

ð57Þ

In the same way, we can obtain that

∥S2 x, yð Þ∥ ≤ F2P +G2Q + X2 + Y2½ �r + F2N 1 +G2N 2:

ð58Þ

In consequence, it follows that

∥S x, yð Þ∥ ≤ F1 + F2½ �P + G1 +G2½ �Q + X1 + X2½ � + Y1 + Y2½ �f gr
+ F1 + F2½ �N 1 + G1 +G2½ �N 2 ≤ r,

ð59Þ

which shows that SBr ⊂ Br .

We prove that the operator S is a contraction. For ðx2,
y2Þ, ðx1, y1Þ ∈W ×W and for any t ∈ ½a, b�, we get

∣S1 x2, y2ð Þ tð Þ − S1 x1, y1ð Þ tð Þ∣

≤
ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ P ∥x2 − x1∥+∥y2 − y1∥ð Þ + ∣k∣ b − að Þ∥x2

− x1∥+
∣A ∣
∣Λ ∣

∣Δ ∣ ∣ν ∣ 〠
m−2

i=1
∣ λi ∣ θi − að Þ∥y2 − y1∥

"(

+ 〠
m−2

i=1
∣ λi ∣

ψ θið Þ − ψ að Þð Þp
Γ p + 1ð Þ Q ∥x2 − x1∥+∥y2 − y1∥ð Þ

+∣k ∣ b − að Þ∥x2 − x1∥+
ψ bð Þ − ψ að Þð Þα
Γ α + 1ð Þ P ∥x2 − x1∥+∥y2 − y1∥ð Þ

�

+∣B ∣ ∣k ∣ 〠
n−2

j=1
∣ μj ∣ ζj − a

� �
∥x∥

"

+〠
n−2

j=1
∣ μj ∣

ψ ζj
� �

− ψ að Þ� �α
Γ α + 1ð Þ P ∥x2 − x1∥+∥y2 − y1∥ð Þ

+∣ν ∣ b − að Þ∥y2 − y1∥+
ψ bð Þ − ψ að Þð Þp
Γ p + 1ð Þ Q ∥x2 − x1∥+∥y2 − y1∥ð Þ

�)

≤ F1P +G1Q + X1 + Y1½ � ∥x2 − x1∥+∥y2 − y1∥ð Þ,
ð60Þ

and consequently, we obtain

∥S1 x2, y2ð Þ − S1 x1, y1ð Þ∥ ≤ F1P +G1Q + X1 + Y1½ � ∥x2 − x1∥+∥y2 − y1∥ð Þ:
ð61Þ

Similarly, we have

∥S2 x2, y2ð Þ tð Þ − S2 x1, y1ð Þ
≤ F2P + G2Q + X2 + Y2½ � ∥x2 − x1∥+∥y2 − y1∥ð Þ: ð62Þ

It follows from above two equations (61) and (62) that

∥S x2, y2ð Þ − S x1, y1ð Þ∥ ≤ F1 + F2½ �P + G1 +G2½ �Q + X1 + X2½ � + Y1 + Y2½ �f g
� ∥x2 − x1∥+∥y2 − y1∥ð Þ,

ð63Þ

which implies that the operator S is a contraction, by
assumption (53). Consequently, the operator S has a unique
fixed point, by Banach’s fixed point theorem, which is the
unique solution of problem (2). This completes the proof.

Example 15. Consider the following system

HD
3
2,13; t2+1ð Þ + 1

55
H

D
1
2,13; t2+1ð Þ

� �
x tð Þ = f t, x tð Þ, y tð Þð Þ, t ∈ 1

4 ,
5
2

� �
,

HD
4
3,12; t2+1ð Þ + 1

58
H

D
1
3,12; t2+1ð Þ

� �
y tð Þ = g t, x tð Þ, y tð Þð Þ, t ∈ 1

4 ,
5
2

� �
,

x
1
4

� �
= 0, x 5

2

� �
= 1
3 y

3
4

� �
+ 1
6 y

3
2

� �
+ 1
9 y 2ð Þ,

1
4

� �
= 0, y 5

2

� �
= 1
5 x

1
2

� �
+ 2
7 x

5
4

� �
+ 3
8 x

7
4

� �
+ 4
11 x

9
4

� �
,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð64Þ

Here, ψðtÞ = t2 + 1,α = 3/2,β = 1/3,p = 4/3,q = 1/2,

7Advances in Mathematical Physics



k = 1/55, ν = 1/58,γ = 5/3,δ = 5/3,λ1 = 1/3,λ2 = 1/6,λ3 = 1/9,
μ1 = 1/5,μ2 = 2/7,μ3 = 3/8,μ4 = 4/11,θ1 = 3/4,θ2 = 3/2,θ3 = 2,
ζ1 = 1/2,ζ2 = 5/4,ζ3 = 7/4,ζ4 = 9/4, a = 1/4, b = 5/2,m = 5, and
n = 6.

From the given data, we can calculate A ≈ 3:733460626,
B ≈ 0:8506267338, Ω ≈ 2:529197097, Δ ≈ 3:733460626, Λ ≈
11:78732558, X1 ≈ 0:09724746240, X2 ≈ 0:06772019882, Y1
≈ 0:02206174386, Y2 ≈ 0:09253172371, F1 ≈ 26:59796061,
F2 ≈ 15:10628827, G1 ≈ 3:858014303, and G2 ≈ 21:69467361.

(i) Let the nonlinear functions f and g be defined on ½1
/4, 5/2� by

f t, x, yð Þ = 1
2 e

−∣xy∣ + 4
339 + 4t

x2
1+∣x ∣

� �
+ 1
320t y sin

6x,

ð65Þ

g t, x, yð Þ = 2
3 cos2∣xy∣ + 4

299 + 4t xe
−y + 1

360t
y5

1 + y4

� �
:

ð66Þ

It is obvious to check that the above functions satisfy

f t, x, yð Þj j ≤ 1
2 + 1

85 xj j + 1
80 yj j,

g t, x, yð Þj j ≤ 2
3 + 1

75 xj j + 1
90 yj j,

ð67Þ

which can be set p0 = 1/2, p1 = 1/85, p2 = 1/80, q0 = 2/3, q1
= 1/75, and q2 = 1/90 as in the hypothesis ðH1Þ of Theorem
13. Then, we can find that

M1 ≈ 0:9963083888 < 1,
M2 ≈ 0:9198153332 < 1:

ð68Þ

Thus, all assumptions of Theorem 13 satisfy. The conclu-
sion of Theorem 13 implies that problem (64) with (65) and
(66) has at least one solution on ½1/4, 5/2�:

(ii) Consider now the functions f and g given by

f t, x, yð Þ = 1
2 + e−3t + 4

767 + 4t
x2 + 2 ∣ x ∣
1+∣x ∣

� �
+ 1
392t sin yj j,

ð69Þ

g t, x, yð Þ = 1
3 + π log tð Þ2 + 1

364t tan−1x + 4
719 + 4t

y2 + 2 ∣ y ∣
1+∣y ∣

� �
:

ð70Þ

Checking the Lipschitz condition for f and g, we obtain

∣f t, x1, y1ð Þ − f t, x2, y2ð Þ∣ ≤ 1
96 ∣x1 − x2∣ +

1
98 y1 − y2j j,

∣g t, x1, y1ð Þ − g t, x2, y2ð Þ∣ ≤ 1
91 ∣x1 − x2∣ +

1
90 y1 − y2j j:

ð71Þ

Then, by setting P = 1/96 and Q = 1/90, the condition ð
H2Þ of Theorem 14 is fulfilled. In addition, we find that

F1 + F2½ �P + G1 +G2½ �Q + X1 + X2½ � + Y1 + Y2½ � ≈ 0:9978991426 < 1:
ð72Þ

Therefore, the system (64) with (69) and (70) has a
unique solution on ½1/4, 5/2�, by the benefit of Theorem 14.

4. Conclusion

We investigated the existence and uniqueness of solutions for
a coupled system of nonlinear fractional differential equa-
tions involving Hilfer fractional derivative with coupled non-
local multipoint boundary conditions by applying the
framework of fixed point theorems. The existence of a unique
solution is obtained via Banach’s fixed point theorem, while
the existence result is proved by using Leray-Schauder alter-
native. The results obtained in the present paper are new and
significantly contribute to the existing literature on the topic.
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