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Squeezing and entanglement of a two-mode cascade laser, produced by a three-level atom which is initially prepared by a coherent
superposition of the top and bottom levels then injected into a cavity coupled to a two-mode squeezed vacuum reservoir is
discussed. I obtain stochastic differential equations associated with the normal ordering using the pertinent master equation.
Making use of the solutions of the resulting differential equations, we determined the mean photon number for the cavity mode
and their correlation, EPR variables, smallest eigenvalue of the symplectic matrix, intensity difference fluctuation, and photon
number correlation. It is found that the squeezed vacuum reservoir increases the degree of the statistical and nonclassical
features of light produced by the system. Furthermore, using the criteria developed by logarithm negativity and Hillery-Zubairy
criteria, the quantum entanglement of the cavity mode is quantified. It is found that the degree of the entanglement for the
system under consideration increases with the squeezing parameter of the squeezed vacuum reservoir.

1. Introduction

The ladder-type three-level laser has received a considerable
interest over the years in light of its potential application
as a source of radiation with various quantum properties
[1–8]. The quantum properties of the light, in this device,
is attributed to atomic coherence that can be induced
either by preparing the atoms initially in a coherent super-
position of the top and bottom levels [7, 8] or coupling
these levels by an external radiation [9–11] or using these
mechanisms together [12].

A three-level laser with a coherent superposition of the
top and bottom levels of the injected atoms has been studied
by different authors [13–39]. This study shows that a quan-
tum optical system can generate light in squeezed state under
certain conditions. Tesfa [40] has studied the entanglement
amplification and squeezing properties of the cavity mode
produced by nondegenerate three-level laser applying the
solution of the stochastic differential equation when the
atomic coherence is introduced initially preparing a three-
level atom by a coherent superposition of the top and bottom
levels via the intermediate. He showed that the two-mode

cavity radiation exhibits squeezing properties under certain
conditions pertaining to the initial preparation of the super-
position, where the degree of the squeezing increases with the
linear gain coefficient. In particular, the squeezing properties
exist if the atoms are initially prepared in such a way that
there are more atoms in the bottom level than in the upper
level. A relatively better squeezing is found when a suffi-
ciently large number of atoms are injected into the cavity
and when the atoms are initially prepared with nearly 48%
probability to be in the top level and with a significant
entanglement between the states of light generated in the
cavity of the nondegenerate three-level cascade laser, due to
the strong correlation between the radiation emitted when
the atom decays from the top level to the bottom level via
the intermediate level.

Villas-Bôas and Moussa [41] showed that a single driven
nondegenerate three-level atom in cascade configuration
which is initially prepared in the coherent superposition of
the top and bottom levels and placed in the cavity can be used
to generate the superposition of a highly squeezed two-mode
radiation in the weak driving, and they also found that
squeezing is relatively better in the strong driving limit.
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Furthermore, Abebe and Feyisa [42] studied the dynamics of
a nondegenerate three-level laser with a parametric amplifier
and coupled to a two-mode squeezed vacuum reservoir, and
they showed that a large amplitude of the classical driving
radiation induces a strong correlation between the top and
bottom states of three-level atoms to produce a high degree
of squeezing and entanglement. Moreover, the presence of a
parametric amplifier and squeezed parameter is found to
enhance the degree of squeezing and entanglement of the
cavity light.

In this paper, we analyze the dynamics of a nondegen-
erate three-level laser coupled to a two-mode squeezed vac-
uum reservoir via a single port mirror in the absence of the
parametric amplifier. In the presence of the parametric
amplifier, the dynamics of a nondegenerate three-level laser
coupled to the squeezed vacuum reservoir was studied by
[42], the significance of the squeezing parameter and para-
metric amplifier on the degree of squeezing and entangle-
ment was discussed, and the squeezing parameter exhibits
the same behavior which agrees with my study in enhanc-
ing the degree of squeezing and entanglement in my study.
The photon statistics and nonclassical properties of the
generated cavity radiation is studied; in order to carry out
our analyses, we first derive the master equation in the
good cavity limit, under the consideration of linear and
adiabatic approximations, then employing the master equa-
tion, we determined the stochastic differential equations,
solutions for c-number cavity mode variables, and correla-
tion property of the noise forces associated with the normal
ordering. Using the resulting solutions, the mean photon
number, intensity difference fluctuation, and photon num-
ber correlation of the cavity radiations are obtained; also,
the effects of the squeezing parameter on the nonclassical
and statistical property of light are discussed. Moreover,
employing the criteria developed for continuous variables
such as logarithmic negativity and Hillery-Zubairy criteria,
the nonclassical property of light (entanglement) produced
by the system is quantified.

2. The Model and Hamiltonian

Here, we want to drive the master equation for a nondegen-
erate three-level laser with the cavity modes driven by a
two-mode coherent light and coupled to a two-mode
squeezed vacuum reservoir.

We represent the top, intermediate, and bottom levels
of a three-level atom in a cascade configuration by jai,
jbi, and jci, respectively, as shown in Figure 1. In addi-
tion, we assume the two modes a and b to be at reso-
nance with the two transitions jai→ jci and jbi→ jci,
respectively, and the direct transition between level jai
and level jci to be dipole forbidden, and also, we con-
sider the case in which three-level atoms in the cascade
configuration and initially prepared in a coherent super-
position of the top and bottom levels are injected into a
cavity at a constant rate ra (rate of atomic injection in
to the cavity) and removed after some time τ, which is
long enough for the atoms to decay spontaneously to
levels other than the middle level or the lower level.

The spontaneous decay rate γ is assumed to be the same
for the top and intermediate levels. Three-level atoms res-
onantly interact with the cavity modes and classical
pumping radiation in the laser cavity. In the good cavity
limit, κ < <γ, where κ is the cavity damping rate; the
cavity-mode variables change slowly compared with the
atomic variables. Hence, the atomic variables will reach
steady state in a relatively short time. The time derivative
of such variables can then be set to zero, while keeping
the remaining terms at time t. This procedure is referred
to as the adiabatic approximation scheme. Since the cou-
pling constant is supposed to be small, a linear analysis
that amounts to dropping the higher order terms in g
is employed. It is good to note that the linear approxima-
tion preserves the quantum properties we seek to study
as these properties are attributed to the classical driving
radiation that couples the top and bottom states. When
an atom makes a transition between the top and bottom
levels via the intermediate level, two correlated photon of
nondegenerate frequencies, ωa and ωb, are generated. We
assume that these transition frequencies are at resonance
with the two nondegenerate cavity modes. Moreover, the
cavity mode interacts with the squeezed vacuum reservoir.
This system is plotted in Figure 1.

The quantum optical system outlined in Figure 1 can be
described in the interaction picture by the Hamiltonian

Ĥ = ĤI + ĤSR, ð1Þ

where

ĤI = ig a∧† ∣ b
��

a∣+b∧† ∣ c
D E

b∣−∣âh i b ∣ â−∣bh i c ∣ b̂
iD
, ð2Þ

is the Hamiltonian describing the interactions of the three-
level atom with the cavity mode, g is the atom-cavity mode
coupling constant assumed to be the same for both transi-
tions, and â and b̂ are annihilation operators for the two
cavity modes.
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Figure 1: Schematic representation of a nondegenerate three-level
laser coupled to squeezed vacuum reservoir.
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Similarly, the Hamiltonian describing the interaction
of the cavity mode and squeezed vacuum reservoir is
given as

ĤSR tð Þ = i〠
m

λm a∧†Ĉme
i ωa−ωmð Þt − âĈ

†
me

−i ωa−ωmð Þt
� �

+ i〠
n

λn b∧†D̂ne
i ωb−ωnð Þt − b̂D̂

†
ne

−i ωb−ωnð Þt
� �

,
ð3Þ

where â and b̂ are the annihilation operator for the cavity
modes with the frequencies ωa and ωb and Cm and Dn are
the annihilation operator for the reservoir modes having
the frequencies ωm and ωn. λm and λn are the coupling con-
stants between the cavity modes and the reservoir modes.
Here, we take the initial state of a single three-level atom
considered to be

ψ 0ð Þij = Ca 0ð Þ aij + Cc 0ð Þ cij , ð4Þ

the corresponding initial density operator is given as

 ρ 0ð Þ = ρ 0ð Þ
aa aij a∣+ρ 0ð Þ

ac ∣ a
D E

c∣+ρ 0ð Þ
ca ∣ c

D E
a∣+ρ 0ð Þ

cc ∣ c
D E

cjh ,

ð5Þ

where ρð0Þaa = jCað0Þj2 and ρð0Þcc = jCcð0Þj2 are the probability
for the atom to be in the upper and lower levels at the initial
time and

ρ 0ð Þ
ac = Ca 0ð ÞC∗

c 0ð Þ, ρ 0ð Þ
ca = Cc 0ð ÞC∗

a 0ð Þ, ð6Þ

represents the atomic coherence at the initial time. The
master equation corresponding to Equation (2) is

d
dt

bρ tð Þ = 1
2Aρ

0ð Þ
aa 2a∧†bρ â − âa∧†bρ − bρ âa∧†� �

+ 1
2Aρ

0ð Þ
cc 2b̂bρb∧† − b∧†b̂bρ − bρb∧†b̂
h i

+ κ

2 2âbρa∧† − a∧†âbρ − bρa∧†â
� �

+ κ

2 2b̂bρb∧† − b∧†b̂bρ − bρb∧†b̂
� �

−
1
2Aρ

0ð Þ
ac 2b̂bρ â − bρ âb̂ − âb̂bρ� �

−
1
2Aρ

0ð Þ
ca 2a∧†bρb∧† − bρa∧†b∧† − a∧†b∧†bρ� �

,

ð7Þ

where A = 2g2ra/γ2 is the linear gain coefficient.

The master equation resulted from the interaction of the
cavity mode and a two-mode squeezed vacuum reservoir is

d
dt

bρ tð Þ = −i ĤSR tð Þ, bρ tð Þ� �
+ κ

2 2a∧†bρâ − âa∧†bρ − bρâa∧†� �
+ κ

2 2b∧†bρ b̂ − b̂b∧†bρ − bρ b̂b∧†
� �

+ κ

2 N + 1ð Þ 2âbρa∧† − a∧†âbρ − bρa∧†â
� �

+ κ

2 N + 1ð Þ 2b̂bρb∧† − b∧†b̂bρ − bρb∧†b̂
� �

+ κM bρâb̂ + âb̂bρ − b̂bρ â − âbρ b̂� �
+ κM bρa∧†b∧† + a∧†b∧†bρ − b∧†bρa∧† − a∧†bρb∧†

� �
:

ð8Þ

Finally, substituting Equation (3) into Equation (8), we
obtain the master equation of a nondegenerate three-level
laser coupled to a two-mode squeezed vacuum reservoir as

dbρ tð Þ
dt

= κ

2 N + 1ð Þ 2âbρa∧† − a∧†âbρ − bρa∧†â
� �

+ 1
2 Aρ 0ð Þ

cc + κ N + 1ð Þ
h i

2b̂bρb∧† − b∧†b̂bρ − bρb∧†b̂
� �

+ 1
2 Aρ 0ð Þ

aa + κN
� �

2a∧†bρ â − âa∧†bρ − bρ âa∧†� �
+ 1
2 κN 2b∧†bρ b̂ − b̂b∧†bρ − bρ b̂b∧†

� �
+ 1
2 Aρ 0ð Þ

ac + κM
� � bρâb̂ + âb̂bρ − 2b̂bρâ� �

+ κM
2 bρ âb̂ + âb̂bρ − 2âbρ b̂� �

+ 1
2 Aρ 0ð Þ

ac + κM
� � bρa∧†b∧† + a∧†b∧†bρ − 2a∧†bρb∧†

� �
+ κM

2 bρa∧†b∧† + a∧†b∧†bρ − 2b∧†bρa∧†
� �

:

ð9Þ

Equation (9) indicates the stochastic master equation which
contains all necessary information regarding the dynamics
of the system involving the effect of the huge external envi-
ronment. Moreover, A = 2rag/γ2 represents the rate of
injecting atoms which are initially prepared at the bottom
level. The constants N and M, which describe the effect of
the external environment, are related to each other through
the squeeze parameter r as M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN + 1Þp

in which N =
sin hr. Hence, the squeeze parameter quantifies the mean
photon number of the two-mode squeezed vacuum reservoir
and intermodal correlations among the reservoir submodes.

Employing the master equation, the time development of
the c-number cavity mode variables, αðtÞ and βðtÞ, associated
with the normal ordering, can be put in the form

d
dt

αh i = −
μα
2 αh i − ρ

0ð Þ
ac

2 β∗h i + f α, ð10Þ
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d
dt

βh i = −
μb
2 βh i + ρ

0ð Þ
ac

2 α∗h i + f β, ð11Þ

where

μa = κ − Aρ 0ð Þ
aa , ð12Þ

μb = κ + Aρ 0ð Þ
cc , ð13Þ

for f α and f β are the pertinent noise forces associated with
the fluctuation of the external environment. Making use of
Equations (10) and (11), the correlation properties of the
noise forces can be readily put as

f α t ′
� �

f α tð Þ
D E

= 0,

f β t ′
� �

f β tð Þ
D E

= f ∗β t ′
� �

f ∗β tð Þ
D E

= 0,

f ∗α tð Þf α t ′
� �D E

= f ∗α t ′
� �

f α tð Þ
D E

= Aρ 0ð Þ
aa + κN

� �
δ t − t ′
� �

,

f ∗β tð Þf β t ′
� �D E

= f ∗β t ′
� �

f β tð Þ
D E

= κNδ t − t ′
� �

,

f α tð Þf β t ′
� �D E

= f α t ′
� �

f β tð Þ
D E

= 1
2Aρ

0ð Þ
ac + κM


 �
δ t − t ′
� �

,

f α tð Þf ∗β t ′
� �D E

= f α t ′
� �

f ∗β tð Þ
D E

= 0,

f ∗β t ′
� �

f α tð Þ
D E

= f ∗β f α t ′
� �

tð Þ
D E

= 0,

f α tð Þf ∗α t ′
� �D E

= f α t ′
� �

f ∗α tð Þ
D E

= κ N + 1ð Þδ t − t ′
� �

:

ð14Þ

The solution of Equations (10) and (11) is obtained as
follows:

α tð Þ = α 0ð Þe−μat/2 −
ðt
0
e−μa t−t ′ð Þ/2 1

2Aρ
0ð Þ
ac α

∗ t ′
� �

+ f α t ′
� �
 �

dt ′,

β tð Þ = β 0ð Þe−μbt/2 +
ðt
0
e−μb t−t ′ð Þ/2 1

2Aρ
0ð Þ
ac β

∗ t ′
� �

+ f β t ′
� �
 �

dt ′,

ð15Þ

where the value of μa and μb are stated by Equations (12) and
(13), respectively.

3. Quadrature Variance

In this section, we seek to study the quadrature squeezing of
the light produced by a nondegenerate three-level laser
coupled to a two-mode squeezed vacuum reservoir via a
single-port mirror. In general, the squeezing properties of a
two-mode cavity radiation can be described by two quadra-
ture operators of the cavity mode operator.

ĉ+ = c∧† + ĉ
� �

, ð16Þ

ĉ− = i c∧† − ĉ
� �

, ð17Þ

in which ĉ = ðâ1 + â2Þ/
ffiffiffi
2

p
with â1 and â2 represent the

separate modes of cavity light emitted from the three-level
atoms. Employing the commutation relation ½̂c, c∧†� = 1, the
Hermitian and noncommuting quadrature operators, ĉ+
and ĉ−, satisfy the relation

ĉ+, ĉ−½ � = 2i: ð18Þ

On the basis of these definitions, a two-mode light is said
to be in a squeezed state if either Δc2+ < 1 and Δc2− > 1 or
Δc2+ > 1 and Δc2− < 1, such that Δc+Δc− ≥ 1. The variances
of the quadrature operators can be expressed as

Δc2± = ĉ2±
� �

− c∧±h i2: ð19Þ

It is then obvious that for the combined system, the
squeezing occurs in the minus quadrature. In order to clearly
see the effect of the two-squeezed vacuum reservoir on the
degree of squeezing of the two-mode light generated by the
laser system, we plot, in Figure 2, Equation (25) versus η
for different values of the squeeze parameter r. This figure
indicates that the two-mode squeezed vacuum reservoir con-
siderably increases the amount of two-mode squeezing in the
cavity for relatively small values of η. For instance, in the
absence of the squeezed vacuum reservoir and for A = 100
and κ = 0:8, the amount of squeezing is found to be 65.33%
below the vacuum level. However, in the presence of the
squeezed vacuum reservoir with r = 0:5 and for the same
parameters used above, the amount of squeezing is calculated
to be 85.3%. Hence, with this choice of squeeze parameter,
the degree of squeezing of the two-mode light is enhanced
by over 19.97%. When the squeeze parameter r increases,
the value of g at which the maximum squeezing occurs
approaches to zero. In addition, as r increases, the squeezing
decreases for values of η close to one and even disappears for
values of η very close to one. Furthermore, in Figure 3, we
plot the variance of the minus quadrature of the two-mode
light versus A and squeeze parameter r. It is easy to see from
this plot that the system is in the squeezed state for all values
of considered variables and squeezing increases with r and
linear gain coefficient in general. It is possible to express the
variance of the quadrature operators (16) and (17), in terms
of the c-number variables associated with the normal order-
ing taking the cavity modes to be initially in a two-mode
squeezed vacuum state, as

Δc2± = 1 + α∗ tð Þα tð Þh i + β∗ tð Þβ tð Þh i ± 2 α tð Þβ tð Þh i: ð20Þ

To this effect, assuming the initial states of the cavity
modes to be in a vacuum state, and taking into account the
fact that the noise force at some time t does not affect the
cavity mode variables at earlier times, it can be verified that

α2
� �

= β2� �
= α∗βh i = 0, ð21Þ
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α∗ tð Þα tð Þh i = κA 1 − ηð Þ 4κ + 3Aη + Að Þ
4κ κ + Aηð Þ 2κ + Aηð Þ

+ 2κ 2κ + 2Aη + Að ÞA2 1 + ηð Þ� �
2κN

4κ κ + Aηð Þ 2κ + Aηð Þ

−
A

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
2κ + Aη + Að Þ

h i
2κM

4κ κ + Aηð Þ 2κ + Aηð Þ :

ð22Þ

Similarly, we get

β∗ tð Þβ tð Þh i =
κA2 1 − η2

� �
+ A

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p� �
2κ + Aη − Að Þ

h i
2κM

4κ κ + Aηð Þ 2κ + Aηð Þ

+ 2κ 2κ + 2Aη − Að Þ + A2 1 − ηð Þ� �
2κN

4κ κ + Aηð Þ 2κ + Aηð Þ ,

ð23Þ

α tð Þβ tð Þh i =
Aκ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
2κ + Aη + Að Þ + 2κ + Aηð Þ2 − A2

h i
2κM

4κ κ + Aηð Þ 2κ + Aηð Þ

+
A2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
ph i

2κN
4κ κ + Aηð Þ 2κ + Aηð Þ :

ð24Þ

By inserting Equations (21)–(24) into Equation (20),
we get

Δc2− = 1 + κA 1 − ηð Þ 2κ + 2Aη + Að Þ − 2κA2η2N
2 κ κ + Aηð Þ 2κ + Aηð Þ½ �

+ κA
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
2κ + Aη + Að Þ

2 κ κ + Aηð Þ 2κ + Aηð Þ½ �

+
κ 2κ + Aη 2κ + Aηð Þ N +Mð Þ + A2 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p� �
N −Mð Þ

h i
κ κ + Aηð Þ 2κ + Aηð Þ½ � :

ð25Þ

The result obtained in Equation (25) represents the
steady state solution of Δc2− quantum optical system.

4. Photon Statistics

4.1. Mean Photon Number. In order to learn about the bright-
ness of the generated light and its relation with entanglement,
it is worthwhile to study the mean number of photon of the
two-mode cavity radiation. In terms of the annihilation
operator of the cavity radiation, the mean photon number
of the cavity light can be defined as

�n = c∧† tð Þĉ tð Þ� �
, ð26Þ
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Figure 2: Plots of minus quadrature variances (Equation (25)) versus η for A = 100 and κ = 0:8 and for different values of squeeze parameter.
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Figure 3: Plots of minus quadrature variances (Equation (25)) versus r and A, for κ = 0:8 and η = 0:1.
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The operators in Equation (26) are already in the normal
order; it is possible to put this expression in terms of
c-number variables associated with the normal ordering in
the form

�n = 1
2 α∗ tð Þα tð Þh i + β∗ tð Þβ tð Þh i + α∗ tð Þβ tð Þh i + β∗ tð Þα tð Þh ið Þ:

ð27Þ

In Figure 4, we plot the mean photon number of the two-
mode light versus η for different values of the squeezed vac-
uum reservoir; it is very easy to see from the figure that the
squeezed vacuum increases the mean photon number in the
region where there is strong squeezing and entanglement.
Hence, this system generates a bright and highly squeezed
as well as entangled light. We also notice that the mean num-
ber of photons is larger for small values of η at which the
squeezing is found to be relatively higher; we obtain �n =
7:022 for A = 100, κ = 0:8, r = 0:75, and η = 0:01 at which
the squeezing is found to be maximum.

In view of Equation (21), the above Equation (26) is
reduced to

�n = 1
2 α∗ tð Þα tð Þh i + β∗ tð Þβ tð Þh i: ð28Þ

Equation (28) represents the mean photon number pair
of the system.

One can see from Figure 5 that the mean number of the
photon decreases with the squeeze parameter for certain
values of the squeeze parameter and η. We also found that
a similar situation exists except for very small values of the
linear gain coefficient, where the mean number of the photon
increases with r for all values of η. The mean number of the
photon is found to be �n = 9:38 for r = 0:5, η = 0:1, and A =
100 where the degree of squeezing is maximum.

4.2. Intensity Difference Fluctuation. The variance of the
intensity difference can be defined as

ΔÎD = Î
2
D

D E
− I∧Dh i2, ð29Þ

where the intensity difference is given as

ÎD = a∧† tð Þâ tð Þ − b∧† tð Þb̂ tð Þ: ð30Þ

Substituting Equation (45) into (44) and rewriting in a
more convenient way, we obtain

Î
2
D = α∗ tð Þα tð Þh i 1 + α∗ tð Þα tð Þh i½ � + β∗ tð Þβ tð Þh i

× 1 + β∗ tð Þβ tð Þh i½ � − 2 α tð Þβ tð Þh i2:
ð31Þ

We can understand that Figure 6 represents the plot of
the intensity difference versus η for different values of the
squeezing parameter, and it indicates that the squeezing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

𝜂

n̄

r = 0.25
r = 0.75

Figure 4: Plots of the mean photon number (Equation (27)) versus η for A = 100 and κ = 0:8 and for different values of squeeze parameter.
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Figure 5: Plots of the mean photon number (Equation (28)) versus r and A for η = 0:1 and κ = 0:8.

6 Advances in Mathematical Physics



parameter increases as the intensity difference increases and
the atomic coherence increases as the intensity decreases
for η > 0:19; the ID = 0 for other values of η also from
Figure 7 describes the effect of the squeezing parameter on
intensity difference fluctuation; furthermore, we obtain the
maximum intensity difference for small values of atomic
coherence at which our squeezing degree is maximum.

The variance of the intensity difference per the mean
photon number of the two-mode light can be written as

Î
2
D = 1 + α∗ tð Þα tð Þh i2 + α∗ tð Þβ tð Þh i2 − 2 α∗ tð Þβ∗ tð Þh i α tð Þβ tð Þh i

α∗ tð Þα tð Þh i + β∗ tð Þβ tð Þh i :

ð32Þ
The more simplified intensity difference fluctuation

can be obtained by substituting Equations (21)–(24) into
Equation (32).

It is not difficult to see from Figure 7 that the variance of
the intensity difference increases as the squeeze parameter
increases. In particular, as the variance of the intensity differ-
ence is found to be zero when η approaches 1 for all values of
the squeeze parameter, since there is no possibility for emis-
sion of the photon of both modes when the atoms are initially
populated in the lower level. In the same way, the variance of
the intensity difference turns out to be zero when r = 0 for all
values of η, since there is no radiation in the cavity. In rela-
tion, one can infer that the variance of the intensity difference
would be relatively larger in a region where the squeezing and
entanglement are significant.

4.3. Photon Number Correlation. The photon number corre-
lation for two modes of a radiation can be defined as

g n̂a ,n̂bð Þ =
n̂an̂bh i
n̂ah i n̂bh i , ð33Þ

in which

n̂an̂bh i = a∧†âb∧†b̂
D E

,

n̂ah i = a∧†â
� �

,

n̂bh i = b∧†b̂
D E

,

ð34Þ

and the operators are in the normal order. Therefore,
Equation (33) can be expressed in terms of the c-number
variables associated with the normal ordering as

g n̂a ,n̂bð Þ = 1 + α tð Þβ tð Þh i2
α∗ tð Þα tð Þh i β∗ tð Þβ tð Þh i : ð35Þ

Equation (35) describes the photon number correlation
gðna ,nbÞ of a coherently driven three-level laser with a para-
metric amplifier coupled to a squeezed vacuum reservoir.
From Figure 8, we can see that the photon number correla-
tion falls below 2 for η = 1 which indicates that the squeezing
and entanglement vanish in the absence of the atomic coher-
ence. Furthermore the photon number correlation increases
with A for η = 0:7 and decreases for others; one can compare
the effect of the linear gain coefficient with the photon num-
ber correlation, which reveals that the photon number corre-
lation grows rapidly as the injected atomic coherence is
smaller and the linear gain coefficient is large. Moreover,
from Figure 9, we can understand that the photon number
correlation increases with the squeezing parameter and linear
gain coefficient so that the photon number correlation gets to
be minimum in the region where the squeezing is maximum.

5. Entanglement of a Two-Mode Radiation

In this section, we study the entanglement of the two-mode
radiation in the cavity laser in view of different inseparability
criteria. A pair of particles is entangled if their state cannot be
expressed as the product of the state of their separate constit-
uents. The preparation and manipulation of these entangled
state lead to a better understanding of basic quantum princi-
ples [21, 27]. Nowadays, a lot of criteria have been developed
to measure, detect, and manipulate the entanglement gener-
ated by various quantum optical devices. Here, I consider
the logarithm negativity and Hillery-Zubairy criteria to
quantify the degree of entanglement generated by the optical
system.

5.1. Logarithmic Negativity. This quantification method is the
logarithmic negativity which depicts the presence of entan-
glement for a two-mode continuous variable based on the
negativity of the partial transposition [13]; the negative
partial transpose must be parallel with respect to the entan-
glement monotone in order to obtain the degree of entangle-
ment. The logarithmic negativity for a two-mode state is
defined as

EN =max 0,− log2V½ �: ð36Þ

The logarithmic negativity is combined with a negative
partial transpose in another case where V represents the
smallest eigenvalue of the symplectic matrix [13].

V =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 4 det Ω
� �q

2

vuut
: ð37Þ
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Figure 6: Plots of intensity difference fluctuation (Equation (32))
versus η for A = 100 and κ = 0:8 and for different values of squeeze
parameter.
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The entanglement is achieved when EN is positive within
the region of the lowest eigenvalue of covariance matrix
V < 1 [13, 34].

Figure 10 clearly shows that for a smaller rate of atomic
injection, the maximum degree of entanglement prefers a
larger number of atoms initially prepared in the lower energy
state. However, for a large rate of atomic injection, entangled
light is produced when atoms are initially prepared nearly
closer to the maximum atomic coherence. For instance,
according to this criteria, the maximum degree of entangle-
ment occurs at A = 100, and η = 0:05 is 90.7%.

The entanglement is achieved when EN is positive within
the region of the lowest eigenvalue of covariance matrix
V < 1, where the invariant and covariance matrices are,
respectively, denoted as

ζ = det ζ1 + det ζ2 − 2ζ12, ð38Þ

Ω =
ζ1 ζ12

ζT12 ζ2

0
BB@

1
CCA, ð39Þ
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Figure 7: Plots of intensity difference fluctuation (Equation (32)) versus η and r for A = 100 and κ = 0:8.
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Figure 8: A plot of the photon number correlation versus η (Equation (35)) of the two-mode cavity radiation for κ = 0:8 and r = 0:5 and
different values of A.
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Figure 9: A plot of the photon number correlation of Equation (35) versus r and A of the two-mode cavity radiation for κ = 0:8 and η = 0:1.
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in which ζ1 and ζ2 are the covariance matrices describ-
ing each mode separately while ζ12 is the intermodal
correlations.

The elements of the matrix in Equation (33) can be
obtained from the relation [13]

Ωij =
1
2 X̂iX̂ j + X̂ jX̂i

� �
− X̂i

� �
X̂ j

� �
, ð40Þ

in which i, j = 1, 2, 3, 4 and the quadrature operators are
defined as X̂1 = â + a∧†, X̂2 = iða∧† − âÞ, X̂3 = b̂ + b∧†, and
X̂4 = iðb∧† − b̂Þ, with this introduction of the extended
covariance matrix, which can be expressed in terms of c-
number variables associated with the normal ordering and
noting that m3 =m∗

3 .
We can easily understand from Figure 11 that V < 1 for

all values of η under consideration showing that the radiation
cavity is entangled for all parameters, so it satisfies the
condition predicted in the logarithm negativity, in which
the logarithmic negativity for a two-mode state is defined as
EN =max ½0,− log2V �; the entanglement is achieved when
EN is positive within the region of the lowest eigenvalue of
covariance matrix V < 1.

ζ =

2m1 + 1 0 2m2 0
0 2m1 + 1 0 −2m3

2m3 0 2m2 + 1 0
0 −2m3 0 2m2 + 1

0
BBBBBBBB@

1
CCCCCCCCA
, ð41Þ

where m1 = hα∗αi, m2 = hβ∗βi, and m3 = hαβi, and its sim-
plified form is given by Equations (22)–(24), respectively.
Next, on account of Equation (39) along with the definitions
of Equation (41), one can readily show that

det ζ1 = 2 m1h i + 1ð Þ2, ð42Þ

det ζ2 = 2 m2h i + 1ð Þ2, ð43Þ

det ζ12 = det ζT12 = −4 m3h ið Þ2: ð44Þ

It is also possible to establish that

det Ω = 4 m1m2 −m2
3

� �
+ 2 m1 +m2 + 1ð Þ� �2

: ð45Þ

The result presented in Equation (37) along with
Equations (43)–(45) represents the steady-state expression
of the smallest eigenvalue of the covariance matrix V for
the quantum optical system.

5.2. Hillery-Zubairy (HZ) Criterion. According to the crite-
rion introduced by Hillery-Zubairy, for two modes of the
electromagnetic field with â and b̂ annihilation operators,
the composite state is said to be entangled if condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nah i nbh i

p
< âbh i, ð46Þ

is satisfied [16], where n̂a and n̂b are the photon number
operators corresponding to the involved cavity mode,
whereas hâb̂i is the correlation of the cavity modes.
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Figure 10: Plots of smallest eigenvalue V (Equation (37)) versus η for r = 0:5 and κ = 0:8 and for different values of linear gain coefficient.
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Figure 11: Plots of the smallest eigenvalue V (Equation (37)) versus η and r for A = 100 and κ = 0:8.
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The criteria can be rewritten as

F = nah i nbh i − a∧bh i2, ð47Þ

in which the negativity of the parameter F is a clear indica-
tion of the existence of entanglement [35]. In terms of the
c-number and zero mean Gaussian variables, we see that

F = α∗αh i β∗βh i − a∧bh i2: ð48Þ

As can be seen in Figure 12, the parameter F is less than
zero and becomes more negative by increasing A. In partic-
ular, F is significantly increased for η < 0:3 by decreasing A
from 100 to 10. This indicates that the role of the linear gain
coefficient is more pronounced at the maximum injected
atomic coherence. However, we observe in Figure 13 that
F closes to zero as the parameter r is increased indicating
that the entanglement depletes with r. This is contrary to
the other criterion and the result reported in [36] in which
the driven atomic coherence is used.

6. Conclusion

In this paper, we have studied the entanglement, squeezing
properties, and photon statistics of the two-mode light gener-
ated by a nondegenerate three-level laser coupled to a
squeezed vacuum reservoir. First, we determined the master

equation in the good-cavity limit, linear, and adiabatic
approximation schemes. Applying the resulting master equa-
tion, we have derived equations of evolution of the cavity
mode variables. With the aid of these equations, the quadra-
ture variance, EPR variables, the mean number of photon,
intensity difference fluctuation, and photon number correla-
tion are obtained. We have also analyzed the squeezing and
entanglement of the two-mode cavity light, and it is found
that the squeezing parameter of the squeezed vacuum reser-
voir enhanced the degree of squeezing and entanglement.
We have also seen that the degree of squeezing increases with
the linear gain coefficient for small values of η, almost perfect
squeezing can be obtained for large values of the linear gain
coefficient, the mean photon number increases considerably
due to the squeezed vacuum reservoir, and the squeezing
parameter could enhance or suppress the mean number of
photons based on the values of other parameters we choose.
Although the degree of mean number of photons increases
with squeezing parameter under various conditions, it turns
out that the degree of the mean number of photons decreases
with squeezing parameter when η is close to 0. Since the effect
of the squeezed vacuum reservoir on the three-level laser
enhanced the degree of the mean photon number, a bright
and highly squeezed light was produced by the quantum
optical system. Furthermore, the intermodal correlation of
the infinitely many reservoir submodes leads to stronger
squeezed and entangled light specially when atoms are
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Figure 12: Plots of Equation (40) versus η for r = 0:5 and κ = 0:8 and for different values of linear gain coefficient.
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Figure 13: Plots of Equation (40) versus η and r, for A = 100 and κ = 0:8.
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initially prepared equally at the top and bottom levels. The
maximum achievable degree of entanglement of each case
increases with minimum atomic coherence. As a result, fur-
ther increment of the squeezing parameter leads to the max-
imum degree of entanglement and squeezing to be at the
maximum atomic coherence when the rate of atomic injec-
tion into the laser cavity is relatively large. Although the
degree of entanglement and squeezing at the maximum
atomic coherence is enhanced, the observed situation imme-
diately reverses at the minimum atomic coherence. In other
words, the intermodal correlation between submodes of the
squeezed vacuum reservoir comes into play mostly when a
large number of photons are available in the laser cavity.
Contrary to this, the squeezing and entanglement properties
of the cavity radiation decay fast at the minimum atomic
coherence even if the system is coupled with the squeezed
vacuum. Moreover, I showed that the entanglement quantifi-
cation criteria studied by the logarithm negativity resulted in
a maximum degree of entanglement of 90.3% in the presence
of the squeezed vacuum reservoir; similarly, the Hillery-
Zubairy criteria demonstrated the entanglement property of
the cavity radiation like the logarithm negativity. However,
in Hillery-Zubairy criteria, there is no lower limit on the
value of the parameter F; as a result, we could not exactly
know the degree of entanglement generated in this criteria,
but we can clearly identify the weaker and stronger entangled
light; that means, according to this criteria, the strong
entangled light occurred at a more negative value of the
parameter F. In general, we conclude after detailed calcula-
tions and analysis that the proposed quantum system can
be utilized as a source of squeezing, entanglement, and other
nonclassical and statistical features which have potential
applications in different fields including modern physics,
especially in quantum technologies and applications. The
idea presented here is also good and may be useful for most
users in various research fields, especially in quantum
optics, cavity-QED, and quantum information. Moreover,
the amount of entanglement and squeezing exhibited is
quite robust against decoherence and hence can be used
in quantum processing tasks. The introduced parameters
have enhanced the squeezing, entanglement, and intensity
of the cavity light.
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