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ABSTRACT 
 

Perpetual advances in the diagnostic tools, local plus systemic cancer treatments, and ensued 
lengthened survival times led to striking increments in the incidence rates of brain metastases 
(BMs), with a collective incidence range of 20-40% for all solid cancers. Stereotactic radiosurgery 
(SRS) and innovative molecularly targeted therapies are continuously gaining growing significance 
in the triumphant management of BMs, as the brain represents a sanctuary site for the vast 
majority of the conventional cytotoxic chemotherapies. In this scenario, the molecularly targeted 
agents appear to be an attractive alternative to traditional chemotherapeutics as they can modulate 
cancer metabolism and progression and exert synergism with radiation therapy. Therefore, the 
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present paper intends to sum up the accessible proof on the consolidated utilization of SRS and 
molecularly targeted agents in the precise management of BMs from certain solid cancers, 
specifically the non-small-cell lung, breast, and renal-cell carcinomas, and malignant melanomas. 
 

 
Keywords: Brain metastases; stereotactic radiosurgery; targeted therapy; tumor control; toxicity. 
 

1. INTRODUCTION 
 

Marked advancements in diagnostic tools, as 
well as the local and systemic cancer treatments, 
did not only lengthened survival times, but 
regrettably, they also led to notable increments in 
the incidence rates of grimly prognostic brain 
metastases (BMs), with an overall incidence 
range of 20-40% for all solid cancers considered 
collectively [1]. The current treatment instructions 
for patients presenting with BMs typically 
consolidate various blends of surgery, whole-
brain radiation therapy (WBRT), and stereotactic 
radiosurgery (SRS) depending on the number, 
size, and localization of the BMs, patients’ 
performance, comorbid conditions, and primary 
disease status [2-3]. Although it is plausible to 
achieve local control rates up to 94% with SRS, 
yet, largely due to the uncontrolled extracranial 
metastases, the prognosis of such patients is 
usually bleak with the estimated median and 2-
year survival rates of less than 1-year and nearly 
8%, respectively [4,5]. 
 
Molecularly targeted agents have become an 
attractive alternative to traditional 
chemotherapeutics as they can modulate cancer 
metabolism and progression, and exert 
synergism with radiation therapy [6,7]. Because 
the addition of targeted agents increased the 
locoregional and systemic tumor control rates 
and ensuant survival outcomes, it suited 
conceivable to integrate these agents to WBRT 
and/or SRS of BMs from various tumor primaries. 
Because such endeavors may substantially 
enhance the BM control rates and reduce the 
associated deaths, we planned to review the 
current status of targeted agents combined with 
SRS for patients presenting with BMs of 
particular cancers. 
 

2. DATA COLLECTION METHODOLOGY 
 

We attempted to identify all convenient studies 
on the subject from January 2000 to December 
2020, as this was a comprehensive literature 
review on the applications and outcomes of 
concurrent or sequential usage of the targeted 
agents and SRS. For this purpose, we searched 
PubMed for ‘targeted agents’, ‘targeted 

therapies’, ‘brain metastases’, ‘radiosurgery’, 
‘stereotactic radiosurgery’, or 'SRS' terms, and 
deliberately surveyed the selected literature to 
fulfill an objective discussion on the issue. 
 

3. NON-SMALL CELL LUNG CANCER 
 

Sixteen to 34% of all patients with non-small cell 
lung cancer (NSCLC) experience BMs during the 
disease course, which may increase up to 54% 
for patients presenting with adenocarcinoma 
histology [8,9]. Moreover, about 40-50% of all 
BMs originate from lung cancers when all 
pathologies are considered collectively [9]. Of 
these, almost half of all BMs present at 
diagnosis, with up to 60% of them being the sole 
site of distant metastatic disease site [10]. 
Notwithstanding the disturbing reality that the 
NSCLC-related BMs are regularly multiple, 
practically 30% to 35% manifest as solitary 
lesions [11]. 
 
NSCLCs should not be noticed as an indivisible 
disease entity even in the same histologies, as it 
is conceivable to distinguish many oncogenic 
mutations with differential effects on the results. 
A comprehensive study by Kris et al. [12] 
illustrated the availability of actionable oncologic 
driver mutations in 64% of the study cohort 
presenting with BMs of lung adenocarcinomas. In 
light of such pertinent proof, the National 
Comprehensive Cancer Network 2019 guidelines 
recommended the extensive testing of NSCLC 
tissues for EGFR, KRAS, HER2, ALK, ROS1, 
MET, BRAF, RET, and NTRK mutations [13]. 
 
The first and the most frequently studied 
mutation is the EGFR, which is overexpressed in 
15% to 50% of NSCLCs [14]. EGFR mutation 
status is of specific significance regarding the 
effectiveness of tyrosine kinase inhibitors (TKIs). 
Radiotherapy may potentially disrupt the blood-
brain barrier (BBB) and increase the ability of 
EGFR-TKIs to penetrate through the BBB, which 
may augment the radiosensitivity of tumor cells, 
with EGFR-mutant cells being more 
radiosensitive than their wild-type counterparts. 
Hypothetically, the mutual use of RT and TKIs 
might be exceptionally productive because of 
these synergistic effects. In support, TKIs were 
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shown to be more effective in EGFR mutant 
NSCLC patients who underwent WBRT and 
erlotinib for BMs [9]. The phase III RTOG 0320 
trial has reported significantly increased grade 3 
to 5 toxicity after the addition of erlotinib to 
WBRT and SRS, without any survival advantage 
[15]. Nevertheless, Magnuson et al. [16] reported 
that the patients with NSCLC BMs with EGFR 
mutations who received SRS followed by EGFR-
TKI had the best overall survival times contrasted 
with those receiving WBRT followed by EGFR-
TKI or EGFR-TKI followed by SRS/WBRT. 
 
Another vital target for NSCLCs is the anaplastic 
lymphoma kinase (ALK) gene rearrangement 
that is detectable in nearly 2-7% of the NSCLC 
patients [17]. Because the ALK inhibitors prolong 
the survival times, it has been indicated that the 
cumulative BM rate in ALK-positive NSCLC 
patients (58.4% at 3 years) was higher than the 
ALK-negative cases [18]. ALK inhibitors can 
efficiently treat BMs as they are, in general, small 
molecular drugs that can competently pass the 
BBB. Johung et al. [19] indicated that the 
combined utilization of ALK-targeted therapy and 
radiotherapy was able to lengthen the median 
overall survival durations up to 49.5 months in 
ALK-positive NSCLC patients with BM. The first 
generation ALK-TKI crizotinib is an inhibitor of 
ALK, Met, and Ros1 that is recommended as the 
first-line treatment for ALK-rearranged or Ros1 
mutated metastatic NSCLCs. Nonetheless, on 
the grounds that the efficacy of crizotinib in 
intracranial lesions was weaker than in 
extracranial lesions [20], the second (ceritinib, 
alectinib, and brigatinib) and the third generation 
ALK-TKI (lorlatinib) have been studied for ALK-
rearranged or Ros1 mutated NSCLC BMs, with 
overall intracranial response rates of 35% to 73% 
[21,22]. Costa et al. [20] found that compared 
with crizotinib alone, the combination of 
radiotherapy and crizotinib significantly increased 
the overall response rate (18 versus 33%) and 
prolonged the median time-to-tumor progression 
of BMs (7 versus 13.2 months). Furthermore, 
other studies showed that the progression-free 
survival was improved from 3-4 months with 
crizotinib alone to 7-27 months with ALK-TKI and 
RT combinations [22,23]. Despite prospective 
randomized proof is still lacking, yet, available 
evidence advises the combination of ALK-TKIs 
and SRS as a safe treatment option with durable 
brain control rates [19,21,24,25]. However, to 
conclude more wisely, the results of large-scale 
studies addressing the efficacy and toxicity of 
various TKIs and SRS combinations should be 
waited to uncover the genuine worth of such 

treatment strategies for BMs of NSCLCs with 
oncogenic driver mutations. 
 
Latterly, Yomo et al. researched the influence of 
post-SRS EGFR-TKI use on the efficacy and 
toxicity of SRS for BMs from lung 
adenocarcinomas through using the Japanese 
Leksell Gamma Knife (JLGK) 0901 study dataset 
[26]. The authors employed the propensity score 
matching (PSM) analysis to discover the 
influence of concurrent or post-SRS EGFR-TKI 
use on intracranial disease recurrence, OS, 
neurological death, and SRS-related 
complications. A total of 608 lung 
adenocarcinoma patients were eligible, of whom 
238 (39%) had received EGFR-TKI concurrently 
or after the SRS. There were 200 patient pairs 
with/without post-SRS EGFR-TKI use in the PSM 
analysis. The median BM volume was larger (0.8 
versus 0.6 mm

3
; P < 0.001) in the TKI group, 

while both groups received a median dose of 18 
Gy SRS prescribed to the 50% isodose line. 
Although the distant intracranial recurrences 
were more likely in the EGFR-TKI cohort (HR: 
1.45; P = 0.005), the authors concluded that 
EGFR-TKI usage exhibited significantly superior 
median OS (25.5 versus 11.0 months; HR: 0.60; 
P < 0.001), with comparable SRS-related 
complication rates between the two groups. 
Similar results were additionally confirmed by 
Cho and colleagues’ recent analysis in a cohort 
of 496 patients who received TKIs or 
immunotherapies. The authors reported 
significantly longer OS times with Gamma Knife 
SRS and one of TKIs or immunotherapies than 
the Gamma Knife SRS alone [27]. 
 

Osimertinib is a third‐generation EGFR-TKI that 
targets activating EGFR mutations as well as the 
T790M resistance mutations. Osimertinib has 
exhibited more vigorous systemic activity than 
the first and second-generation TKIs and better 
BBB penetration, which is of basic 
imperativeness for the treatment of NSCLC-
related BMs. Osimertinib was approved as 
first‐line therapy for EGFR‐mutant NSCLCs in 
April 2018 after the announcement of the results 
of the phase III FLAURA trial [28]. Although the 
FLAURA trial’s results demonstrated significantly 
superior median progression‐free survival times 
with osimertinib (18.9 versus 10.2 months; P < 
0.05) than with the first-generation drugs gefitinib 
or erlotinib, yet, this trial included only the 
patients with stable or treated BMs at the time of 
randomization. Recently Xie et al. [29] compared 
the clinical outcomes of patients experiencing 
progressive BMs treated with osimertinib alone 



 
 
 
 

Pehlivan et al.; JAMMR, 33(2): 56-68, 2021; Article no.JAMMR.65483 
 
 

 
59 

 

with those treated with cranial radiotherapy plus 
osimertinib. Receiving radiotherapy before the 
commencement of osimertinib for patients with 
progressive BMs did not prolong either of the 
time-to-failure-, progression-free survival and OS 
endpoints in this study. However, contrasting with 
these results, Park et al. [30] prospectively 
evaluated the efficacy of osimertinib 160 mg in 
T790M-positive NSCLC patients and showed 
significantly improved overall response and 
overall survival rates for patients with progressed 
BMs on past EGFR TKI treatment, particularly 
those previously managed with cranial 
radiotherapy (p= 0.04). The ongoing phase II 
OCEAN trial will include 65 patients (T790M 
cohort, 40 patients; first-line cohort, 25 patients) 
with radiotherapy-naïve EGFR mutant NSCLC 
BMs [31]. The primary and secondary endpoints 
are determined as the response rate of BMs and 
progression-free survival and the response rate 
of the brain, respectively. If the eagerly awaited 
results of the OCEAN study are positive, then 
avoidance of radiotherapy may be recommended 
to patients harboring EGFR mutant NSCLC BMs. 
 

4. BREAST CANCER 
 
Breast cancers (BCs) represent the second most 
prevailing cause of cancer-related BMs following 
the lung cancers [32]. The very recent report 
from the Epidemiological Strategy and Medical 
Economics (ESME) research program in a 
gathering of 16,703 metastatic BCs revealed that 
the 4,118 (24.6%) patients presented with (7.2%) 
or developed (17.4%) BMs with a median BM-
free survival of only 10.8 months [33]. Results of 
this examination uncovered that the incidence, 
kinetics, and prognosis of BM in such patients 
were firmly influenced by the tumor molecular 
subtypes. The cumulated 24 months BM 
incidence rates were 14.4%, 29.2%, 49.0%, and 
44.8% for patients with HER2-/HR+, 
HER2+/HR+, HER2+/HR−, and triple-negative 
tumors, with continued incidence increment for 
all four tumor subtypes without any time-
dependent incidence flattening. The multivariate 
analysis results indicated an independent 
connection between the BC molecular subtype 
and BM-free survival, where HER2+/HR- and 
triple-negative tumors badly had 2.01- and 1.57-
times higher risk of BM-related deaths contrasted 
with their HER2-/HR+ counterparts. 
 
Trastuzumab, the first anti-HER2 antibody, was 
proved to enhance the extracranial disease 
control and survival rates in HER2+ metastatic 
BCs [34]. Albeit roughly 55% of all HER2+ BC 

patients will incur BM with an overall 4-fold 
higher BM risk compared to HER2- patients 
[35,36], yet, BBB penetration capacity of 
trastuzumab is extremely limited due to its large 
molecular weight (~148kDa), such that the 
cerebrospinal fluid level was shown to be 300-
fold lower than its serum levels [37]. 
Nevertheless, preclinical data propose 
augmented penetrability for trastuzumab after 
fractionated and high-dose single-fraction 
radiotherapies, with changes persisting for days 
to months. In support, Stemmler et al. reported 
that the cerebrospinal fluid levels of trastuzumab 
were raised from 420:1 to 76:1 after either WBRT 
or SRS [38]. 
 
Trastuzumab emtansine (T-DM1) is an FDA 
approved targeted therapy for metastatic HER2+ 
BC patients who previously underwent taxanes 
and trastuzumab, which promoted the objective 
response and median survival rates by 12.8% 
and 5 months, individually [39]. T-DM1 is an 
antibody-drug conjugate that uses the 
trastuzumab antibody to deliver the mysantine 
(DM1) to antigen-expressing tumors, which 
provokes mitotic catastrophe and apoptosis in a 
25- to 4,000-fold more potent manner than 
presently accessible chemotherapeutics [40-44]. 
However, regrettably, accessible proof proposes 
that the utilization of T-DM1 with SRS increases 
the symptomatic radiation necrosis rates from 
6%-11% [41,42] to 39.1%-50%, which appears to 
be more prominent with concurrent SRS and T-
DM1 usage than their sequential administration 
(50% vs. 28.6%) [45]. Likewise, T-DM1 may lead 
to severely symptomatic brain edema when 
combined to the SRS either concurrently or 
sequentially [46,47]. Subsequently, in light of the 
fact that the correlation between the severe brain 
edema/necrosis and the utilization of SRS plus T-
DM1 is quite salient, excessive care ought to be 
consumed for their usage in patients presenting 
with BC BMs. 
 
Better BBB penetrating HER2-targeted TKIs 
have been additionally researched in clinical 
trials, like lapatinib, afatinib, epertinib, neratinib, 
tucatinib, and pyrotinib. Among those, lapatinib is 
an orally administered small-molecule dual 
tyrosine kinase inhibitor that targets EGFR-1 and 
HER2 pathways simultaneously. Even though the 
overall response rate of lapatinib is only 6% in 
BC BMs [48], yet, this rate was shown to 
increase to 38% when combined with 
capecitabine [49]. The LANDSCAPE trial was a 
phase II study that examined the efficacy of 
lapatinib plus capecitabine in HER2+ patients 
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presenting with previously untreated BMs [50]. 
The results of this trial suggested up-front 
lapatinib plus capecitabine combination as a 
feasible first-line treatment option alternative to 
cranial radiotherapy for HER2+ BC BMs. 
Essentially dependent on these outcomes, 
Parsai et al. analyzed the results for patients 
undergoing SRS for HER2+ BMs who also 
received lapatinib, and reported that the addition 
of concurrent lapatinib to SRS was associated 
with significantly increased BM control rates in 
BMs ≥ 1.10 cm3, but not those < 1.10 cm3 [51]. 
Any use of lapatinib was not only associated with 
significantly extended survival times (27.3 versus 
19.5 months for SRS-alone; P = 0.03), but 
additionally, the 12-month risk of radiation 
necrosis was likewise consistently more 
favorable in the lapatinib group (1.3% versus 
6.3% for SRS-alone; P < 0.01). In general, the 
results of accessible studies on the efficacy of 
other BBB penetrating HER2-targeted TKIs are 
favorable. Yet, the results of large-scale 
prospective studies are required to reveal their 
actual value on the BMs of HER2+ BCs before 
reaching remark conclusively. 
 

5. MALIGNANT MELANOMA 
 
About 50% of all advanced malignant melanoma 
(MM) patients inevitably develop BMs, where the 
its prevalence soars to 75% in autopsy series 
[52,53]. BMs from MMs usually present as 
multiple manifest lesions accompanied by many 
more microscopic foci, and such patients have a 
grim prognosis with an estimated survival of 
fewer than six months [54]. Because the MM 
cells are relatively resistant to regular doses of 
WBRT, SRS has become the universally 
appreciated treatment choice, even for multiple 
BMs, if worthwhile [55,56]. 
 
The gene transcription and mRNA translation 
regulator BRAF is a proto-oncogene that is 
mutated in nearly 50% of all MMs [57]. It has 
been clearly shown that BRAF-mutant melanoma 
patients have a 2-fold (24% versus 12%) 
increased risk of BM development contrasted 
with their BRAF wild-type counterparts [58]. 
Because patients presenting with active BMs 
were prohibited from the vast majority of the 
clinical trials, our information about the viability of 
BRAF-inhibitors in MM originated BMs is 
restricted. Results of past retrospective 
investigations utilizing single-agent therapies with 
dabrafenib and vemurafenib exhibited 
intracranial overall response and intracranial 
disease control rates ranging between 42-50% 

and 66%-83%, respectively [59-62]. In 2019, 
Holbrook and colleagues announced that the 
combination of encorafenib and binimetinib was 
capable to achieve a new response in 8 (33%) of 
24 patients, with a median response duration of 
22 weeks [63]. This study is of particular 
importance as 21 (88%) of the 24 subjects 
treated with the novel combination had 
previously received BRAF/MEK inhibitors, which 
underlines the potential viability of rechallenge 
with BRAF/MEK inhibitors in such patients. 
 
Hitherto, 3 phase II trials investigated the efficacy 
of BRAF/MEK inhibitors in previously treated and 
treatment naïve MM BMs [64-66]. The BREAK-
MB study was a phase II trial that enrolled 172 
BM patients with BRAF V600 mutated MM: 89 
and 83 patients with and without previous BM-
directed local therapies, respectively [64]. The 
authors reported that dabrafenib had a significant 
activity with an acceptable safety profile on BMs 
irrespective of whether they were treatment-
naive or progressive BMs after past local 
treatments. McArthur et al. reported the results of 
another phase II trial evaluating the efficacy of 
vemurafenib in patients with/without prior 
treatments for BMs from BRAF mutated MMs 
[65]. The results of this study revealed clinically 
meaningful response rates to vemurafenib 
without excessive neurological toxicity. The 
COMBI-MB was a phase II clinical trial designed 
to assess the safety and efficacy of dabrafenib 
combined with trametinib in 125 patients with 
BRAF V600 mutated MM BMs [66]. In this study, 
Davies et al. announced that dabrafenib plus 
trametinib combination was active with a 
manageable safety profile in BRAFV600-mutant 
MM BMs, although the median response duration 
was relatively short. 
 
Inhibition of BRAF has been associated with 
radiosensitization in vitro through increased the 
G1 cell cycle arrest rates by the interference of 
the MAPK/Erk signal transduction pathway in 
V600E mutant MM cell lines [67,68]. Besides, 
radiation therapy may enhance the uptake of 
BRAF inhibitors by transiently disrupting the 
BBB. Although various researchers examined the 
clinical efficacy and safety of radiotherapy and 
BRAF inhibitors in BMs from BRAF V600 
mutated MM patients, yet, almost all are small-
scaled retrospective studies rendering the 
achievability of conclusive remarks quite difficult. 
Narayana et al. reported that 48% of BMs had a 
complete response after vemurafenib plus WBRT 
or SRS in 12 patients with 48 BMs, with a 
median overall survival of 13.7 months [69]. 
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Ahmed et al. administered vemurafenib and SRS 
concurrently in a group of 24 patients and 
reported 92% and 75% BM control rates at 6- 
and 12-months, respectively [70]. Xu and 
colleagues examined the impact of BRAF 
mutation status and the use of BRAF inhibitors in 
conjunction with brain SRS [71]. The median 
largest dimension of treated BM and the median 
margin radiation dose were 6 mm (range 1.1–
59.7 mm) and 20 Gy (range 13–23 Gy), 
respectively. The authors divided 65 eligible 
patients into 3 three groups: Group A, those with 
mutant BRAF without BRAF inhibitor treatment 
(13 patients); Group B, those with mutant BRAF 
with BRAF inhibitor treatment (17 patients); and 
Group C, those with wild-type BRAF (35 
patients). The local control rate was improved in 
the patients treated with SRS in conjunction with 
BRAF inhibitor (Group B) compared with patients 
with wild-type (Group C) or with BRAF mutation 
but no BRAF inhibitor (Group A) as an adjunct 
treatment for BMs. At 1 year, the local tumor 
control rate in Groups A, B, and C was 82.4%, 
92%, and 69.2%; P = 0.022, respectively. Ly et 
al. hypothesized that BRAF inhibitors would 
improve local control in previously treated BMs 
from MMs those undergoing a single fraction 
SRS of a median dose of 20 Gy [72]. Patients 
with a proven BRAF mutation were treated with a 
BRAF inhibitor. Fifty-two patients were managed 
for 185 BMs and 13 tumor beds. The 1-year local 
control rate for BMs was significantly higher in 
the patients with BRAF mutation plus BRAF 
inhibitor plus SRS contrasted with those without 
BRAF treatment (85.0% versus 51.5%; P= 
0.0077). Latterly, Martins et al. analyzed 
BRAF/MEK inhibitors initiated during the 9-weeks 
before or after SRS in MM patients presenting 
with newly diagnosed BMs [73]. The authors 
demonstrated that the addition of BRAF +/-MEK 
inhibitors to SRS was associated with 
significantly lengthened median overall survival 
times (24 versus 7 months; P= 0.0001). 
Additionally, the results of a recently reported 
systemic review by Weaver et al. showed that 
BRAF/MEK inhibitor was well tolerated with 
substantially improved local control, distant 
control, and overall survival rates in the absence 
of notable toxicity increments when joined with 
SRS for the treatment of BMs from MMs [74]. 
 
Although the toxicity is of considerable concern 
for the concurrent or sequential use of 
BRAF/MEK inhibitors and SRS, neurologic 
symptomatic intracranial toxicity risk appears low, 
which is accounted for to be comparable with 
SRS alone toxicity rates [75]. Brain necrosis and 

hemorrhage comprise the specific worries for 
SRS alone and SRS plus BRAF/MEK inhibitors-
related toxicity. Ahmed et al. [70] reported only 
one case with intracranial hemorrhage requiring 
craniotomy two months after the SRS in a group 
of 24 patients with 80 BMs. Although intracranial 
hemorrhage is frequently associated with 
melanoma metastases, Ghia et al. found no 
SRS-related alterations on the risk of intracranial 
hemorrhage [76]. Despite the leading cause of 
neurologic death was intracranial hemorrhage in 
their series, Ly et al. reported that 60% of such 
patients never received BRAF inhibitors [72]. 
However, Gaudy-Marqueste et al. reported no 
toxicities from the combination, despite most 
patients (20 of 30) receiving concurrent BRAF 
inhibitors and SRS [77]. Therefore, in general, 
the accessible SRS and BRAF/MEK inhibitors 
data do not indicate an increased risk of clinically 
significant hemorrhage. Considering the brain 
necrosis, Narayana et al. [69] reported one case 
of potential radionecrosis among 6 patients who 
received vemurafenib before or after SRS. In 
another study, Peuvrel et al. [78] reported 
revealed perilesional edema and radionecrosis in 
two patients who received 20 Gy SRS and 
vemurafenib started in the past 3 months. 
Similarly, Liebner et al. [79] likewise reported 2 
patients with radionecrosis after SRS and 
vemurafenib combination. Consequently, 
depending upon the current proof, the risk of 
brain radionecrosis does not appear to increase 
beyond that of SRS alone with the addition of 
BRAF/MEK inhibitors to SRS in such patients. 
 

6. RENAL CELL CARCINOMA 
 
The 5-year cumulative incidence of BM for renal 
cell carcinoma (RCC) patients is 7-13%, which 
exhibited a significant increment in the most 
recent twenty years as a result of the wide 
accessibility of more salutary imaging tools and 
implementation of survival enhancing systemic 
agents to the therapeutic algorithm [80,81]. 
Because RCC is radiobiologically resistant to 
conventionally fractionated and mildly 
hypofractionated WBRT, considering together 
with the increased WBRT-induced neurotoxicity 
risk, SRS has become the favored local non-
surgical management of RCC BMs [82]. 
 
Remarkable improvements in the systemic 
therapy of metastatic RCC let the combinations 
of immune checkpoint inhibitors (ICIs) or ICI + 
TKI as the current standard first-line treatments 
for metastatic RCC patients. However, TKI 
monotherapy still remains as an efficient therapy 
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for patients presenting with refractory disease 
and as a first-line treatment for 
immunosuppressive or frail patients. To date, 
numerous agents have been approved for the 
metastatic RCC, yet, their BBB penetration 
capacities are limited, including the sorafenib, 
sunitinib, and pazopanib: namely the VEGF-
TKIs. Hypothetically, the utilization of TKIs with 
RT may enhance RT efficacy through inhibiting 
the angiogenesis factors Ang-2, Ang-1, and Tie-
2, and tumor growth factor TGFα, and mitogen-
activated protein kinase (MAPK) pathways. 
 
Only three comparative retrospective studies 
investigated the efficacy of TKIs on RCC BMs 
when combined with the SRS or WBRT [83-85]. 
Bates et al. reported that addition of concurrent 
TKI to radiotherapy was not linked to any 
improvement in local control or overall survival 
rates in a small cohort of only 25 patients [83]. 
Starkly conflicting with these results, Verma et al. 
found that the usage of TKI was associated with 
significantly improved median overall survival of 
23.6 months as opposed to 4.41 months with no-
TKI use (P = 0.0001) in 81 RCC patients with 
216 BMs [84]. The median BM size was 5 mm 
(2-23 mm) in this study. Likewise, Cochran et al. 
examined the outcomes of 61 patients with RCC 
BMs who underwent Gamma Knife SRS and 
suggested that the addition of TKI to SRS was 
connected to significantly improved median 
overall survival (16.6 versus 7.2 months; P=0.04) 
and 14-year freedom from local failure (93% 
versus 60%; P = 0.01) rates respectively [85]. 
Additionally, the multivariate analysis results 
unveiled the addition of targeted agents (HR: 
3.02, P = 0.003) as the unique predictor of 
enhanced survival results. 

 
Cabozantinib is a novel effective multitargeted 
TKI that is active on the VEGF, MET, and AXL 
axis in metastatic RCCs [86]. Cabozantinib can 
easily penetrate through the BBB and exert direct 
actions on BMs as MET expression is 
significantly higher in BMs than the index RCC 
site [87-89]. Peverelli et al. examined the results 
of 12 patients with RCC BMs treated with 
cabozantinib and reported that all 5 patients who 
received cabozantinib plus brain-directed 
approach enjoyed the controlled BMs with no 
additional severe toxicity [90]. Recently, Negrier 
et al. announced the results of two cases with 
recurrent RCC BMs after SRS plus targeted 
agents and immunotherapies [91]. Underscoring 
the demand for the conduction of prospective 
trials with cabozantinib for patients presenting 

with treatment-resistant and/or treatment-naive 
RCC BMs, the authors reported that orally 
administered cabozantinib was able to regress 
RCC BMs that were resistant to past SRS 
radiation and angiogenic TKIs. 
 

7. DISCUSSION 
 
The addition of the targeted therapies to the 
treatment algorithms of certain advanced 
cancers produced significant improvements in 
the disease control, survival, and quality of life 
parameters, particularly in those patients 
presenting with extracranial metastases. As a 
distinct difference, despite the proof is quickly 
aggregating, yet, our present information on the 
safety and efficacy of targeted therapies in the 
treatment of BMs from various solid cancers 
remains to be limited. But accessible data 
emphatically propose that targeted agents 
achieved noticeable progress in augmenting the 
BM control rates and the associated reduction in 
the neurologic deaths (Fig. 1), chiefly in the 
scenario of combined use of targeted agents and 
the SRS. 
 
Though overall promising, still, there is too much 
work to be done to achieve the most favorable 
outcomes with the combination of targeted 
agents and SRS. For example, no strong 
consensus exists on the administration timing of 
the targeted agents relative to SRS. Likewise, we 
do not possess enough evidence to recommend 
the use of fractionated or single fraction SRS 
together with such agents, which may lead to the 
best BM control and survival outcomes. Because 
of their molecular size and chemical structure, 
better penetration of the BBB remains to 
overcome to achieve more effective 
cerebrospinal fluid concentrations for most, if not 
all, targeted agents. Unfortunately, to date, most 
targeted agents and SRS combinations have 
been assessed for their efficacy after failures to 
past WBRT, which unquestionably represents a 
poor-outcome group. Different blends of SRS 
plus targeted agents and novel immunotherapies 
deserve to be researched in the immunotherapy 
era. Finally, although the Response Assessment 
in Neuro-Oncology Brain Metastases (RANO-
BM) has been recommended for routine usage, 
still, we do not have a current and established 
response criterion for BMs. Therefore, universally 
validated response assessment tools need to be 
urgently developed for comparing the results of 
different studies with a standard method and 
reveal their precise scientific values. 



Table 1. Studies of targeted agents and stereotactic radiosurgery for brain metastases
 

Reference Primary 

Kim et al. [92] NSCLC 
Sperduto et al. [15] NSCLC 
Parsai et al. [51] Breast  
Yomo et al. [26] Breast 
Xu et al. [71] MM 
Wolf et al. [93] MM 
Staehler et al. [94] RCC 
Cochran et al. [85] RCC 

 

 
Fig. 1. The pretreatment MRI (A) scan of a 57
parietal lobe brain metastasis from ALK
definitive Gamma Knife radiosurgery (B) plus crizotinib. An MRI 9 months after 

demonstrates significant regression of the brain metastasis (C)

8. CONCLUSION 
 
In conclusion, albeit too much work is assuredly 
required to be done, in any case, the accessible 
information counsels a significant role for 
targeted agents for the improvement of the 
results acquired with SRS for BMs of various 
origins [15,26,51,71,85,92-94] (Table 1)
Therefore, since the incidence of BMs will 
continue to grow as a result of more effective 
systemic and local therapies, both r
oncologists and medical oncologists should value 
sustained cooperation as the sole solution to 
overcome many obstacles and to attain the most 
beneficial outcomes in patients presenting with 
BMs from various primaries. 
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Studies of targeted agents and stereotactic radiosurgery for brain metastases

Patients (N) Targeted agent Overall survival 
(months)

18 Erlotinib/Gefitinib 37.1 
41 Erlotinib 6.1 
47 Lapatinib 27.3 
24 Lapatinib/trastuzumab 19.5 
17 Vemurafenib 23.0 
31 Dabrafenib 11.2 
51 Sorafenib/Sunitinib 11.1 
24 TKI/mTORi/bevacizumab  16.6 

The pretreatment MRI (A) scan of a 57-year-old female patient with a large right
parietal lobe brain metastasis from ALK-mutant non-small-cell lung carcinoma treated with 
definitive Gamma Knife radiosurgery (B) plus crizotinib. An MRI 9 months after 

demonstrates significant regression of the brain metastasis (C) 
 

In conclusion, albeit too much work is assuredly 
required to be done, in any case, the accessible 
information counsels a significant role for 
targeted agents for the improvement of the 
results acquired with SRS for BMs of various 

94] (Table 1). 
Therefore, since the incidence of BMs will 
continue to grow as a result of more effective 
systemic and local therapies, both radiation 
oncologists and medical oncologists should value 
sustained cooperation as the sole solution to 
overcome many obstacles and to attain the most 
beneficial outcomes in patients presenting with 
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