
*Corresponding author: E-mail: osaki.miller@iaue.edu.ng, osai.miller@iaue.edu.ng;

Asian Journal of Research in Computer Science

14(3): 12-24, 2022; Article no.AJRCOS.84911
ISSN: 2581-8260

Explicit Risk Management in Agile Software
Projects: Its Relevance and Benefits

Osaki Miller Thom-Manuel a*

a
 Information and Communication Technology Centre, Ignatius Ajuru University of Education, Nigeria.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJRCOS/2022/v14i330340

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,

peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/84911

Received 23 March 2022
Accepted 29 May 2022

Published 26 August 2022

ABSTRACT

Risk management is the systematic process of controlling risks and it is critical to the success of all
software development projects. Agile software development methodologies by the inbuilt features
utilized, control risks. However, this does not work for all cases of software development projects
and supplementary means may need to be applied. This can be addressed by introducing an
intentional and formal way of managing risks in the agile environment. Explicit risk management
promises numerous benefits if properly implemented.
This study intends to review and deduce based on the risks identified, the relevance and benefits of
formally managing risks in agile software development projects. To achieve the aim of this study,
the researcher reviewed risk management procedures in a typical agile setting as well as research
that exposed the insufficiency of the inherent risk management process in agile projects and the
identified risks. Related research papers from peer-reviewed journals and other reliable sources
were reviewed to extract risks that occurred using agile without explicit risks management. The
study inferred that some risks do exist that occurred with the introduction and use of the agile
method itself. Also, there could be risks that surface when the project size exceeds a limit. Thus,
managing risks explicitly will go a long way to address such risks. Consequently, the researcher
was able to deduce the relevance and benefits of implementing explicit risk management in an
agile software development project.
This study showed that it is beneficial to incorporate formal risk management procedures in agile
software development when mega software projects are being developed. However, to maintain
the agility of the agile methods which happens to be a major benefit of the utilization of agile
methods, more research is needed to further explore explicit risk management in the agile
environment without violating the swiftness in the agile settings.

Review Article

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

13

Keywords: Explicit risk management; agile; software projects; SCRUM; risk.

1. INTRODUCTION

Like every other project, software development
projects are faced with some level of uncertainty.
Uncertainties in software projects may result in
risks ranging from scope creep, budget overrun
[1], not meeting the scheduled delivery deadline,
production of software with wrong and or
incomplete software specifications [2], and many
more.

Risks are inevitable in every project and must be
managed. Risk management is the systematic
procedure that involves identifying, analyzing,
prioritizing, controlling, and monitoring risks to
reduce and possibly eliminate any negative
outcome of the risks in actualizing the project’s
objectives. It is a must-follow process [3,4] and
needs to be carried out throughout the entire
software development process. The need for
managing risks even becomes more necessary
as the project size and complexity increase [5].
The significance of risk management in software
development has led to the proposition of several
standards that are generic namely ISO 31000 [6],
ISO 14971 [7], and PMBOK [8].

Agile software development methodologies are a
group of methods having some common features
namely time-boxed development cycles, ability to
change or modify requirements during
development, constant communication with
customers, involvement of self-organizing cross-
functional teams, and regular testing after each
iteration builds among others. These inbuilt
features manage software development risks and
especially internal or project-individual risks [9].
To manage external risks, some form of formal
procedure is needed to identify, analyze and
control risks [10]. While this works well with small
projects [3,20]; software development domains
that are highly regulated [15] such as automotive
[11] and healthcare [12], as well as generally
large projects [4], are bound to have higher
number of iterations and some risks will be left
unidentified or forgotten in the process. The
resultant effect could be faced in the later stage
of the development cycle and this will likely be
costlier to rework [3,4].

To avoid this kind of scenario, it is important to
incorporate risk management procedures
explicitly with the agile methods [13,14,15,16].
This is necessary because risk management is a

systematic process that is continuous all through
the development of the software and in fact is a
project of its own [17] that should be integrated
formally. Managing risk in an unordered and
unconscious manner will not deliver the best
result. Agile methods do not recommend specific
procedures to support risk management [18].
They think that the short iterations they utilize
curtail risks however this is insufficient [19,20].
According to [21], the inherent risk management
procedure by SCRUM which is an agile method
is not as good as in the case of risk management
in traditional software development methods
because some steps of the risk assessment are
not fulfilled except for the activities of the risk
identification. Consequently, it is suggested that
SCRUM be enriched with some selected steps
from PRINCE2 risk management which promises
a better result for delivery even in global software
development projects [21]. According to [22], in
most cases, agile methods are preferred to
traditional methods as the features they possess
bring about flexibility and swiftness in delivering
the software product, but it also stressed that
agile methods fail atimes [23] due to among
others, the inadequate risk management [24].
This implies that lack of risk management is risk
in itself [5]. Agile teams are democratic and self-
organizing ideally, consisting of developers with
all the necessary required skills, however, they
do not consider a risk manager [2,3,25,26]
whose sole duty is to take note of all risks
identified by the team and also ensure that the
risks are managed properly. It is believed that
risk management is passive and implied in the
agile process. [25,27] states that though Agile
methods are speedy ways of developing
software, the need to implement a robust risk
management practice cannot be ruled out. Better
ways to integrate proactive risk management
measures need to be put in place carefully
without compromising the agile spirit. It is
categorically stated by [28] that Agile methods
need a formal technique to manage risks when
multiple agile teams work on the same
product, stressing that a higher coordination
effort is required and more formal practices are
applied.

Even proponents of Agile Methods attest to the
fact that former risk management is necessary
for some projects. According to [28], most
successful software projects utilize the hybrid of
traditional risk management and the agile
software cycle. In other words, traditional risk

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

14

management and agile software cycle are
complementary. Meanwhile, traditional risk
management follow a formal process.

As a practitioner, he pointed out that in Agile
methods, formal way of managing risk becomes
necessary when the project is expensive, has
many touchpoints, and involves the use of new
technology. According to [29], high- risk projects
built in the agile environment need risk
management implemented explicitly.
Furthermore, [30,31] state that risks and
nonfunctional requirements (NFRs) are not well
defined in agile settings. However, there exist
nonfunctional requirements-related risks that can
threaten software development [32]. This is
obvious as agile methods primarily are tailored to
delivering fast and efficient software products
which happen to be the functional requirements
aspect of the software. Proper consideration of
Functional and nonfunctional requirements
together brings about good software quality.
Thus, inconsideration of the nonfunctional
requirements brings about the poor quality of
software architecture. Utilizing some external
procedures in managing NFRs will greatly reduce
the risks related to them. Previous works were
made to identify possible risks that can
emerge when utilizing agile methods in
projects and in this paper, the researcher intends
to review and deduce based on the risks
identified, the relevance and benefits of formally
managing risks in the agile development
projects.

2. METHODOLOGY

A study of the SCRUM framework, a popular
agile method is made, first of all, to explore
development steps and features in agile methods
generally. This was followed by the review of
related research papers from peer-reviewed
journals and other sources on software
development projects implemented using agile
methods without any form of formal risk
management procedures. The aim was to
ascertain the sufficiency of the inherent risk
control measures in the agile setting and if not
sufficient, extract risks identified in such
projects. A summary of risks identified in the
reviewed studies was made. Thereafter, the
researcher was able to deduce the relevance
and benefits of implementing explicit risk
management in agile software development
projects. The conclusion was then made and
further studies suggested.

3. RISK MANAGEMENT IN A TYPICAL
AGILE ENVIRONMENT

Scrum, Kanban, Xtreme Programming, Crystal,
Lean and Feature-driven development are
flavours of Agile development methodologies. To
explain the procedures followed generally in an
agile setting, scrum is illustrated here. From the
studies reviewed, scrum happens to be a popular
agile methodology [30,33,34] hence the reason
for our choice.

Typically, In Scrum, there are mainly three roles
namely the Product Owner, Scrum Master, and
the team. The product owner is a representative
of the owner and user of the software under
development. In other words, the product owner
is the project’s key stakeholder. The
ScrumMaster ensures the team is as productive
as possible. He guides the team and prevents
deviation from the goal by removing
impediments. The team is made up of 5 – 9
people nonetheless scrum can be used for
bigger projects by utilizing many teams. A scrum
team is made up of diverse sets of skills suitable
enough to develop software products with little or
no supervision. Thus, the scrum team is said to
be cross-sectional and self-organizing.

At the start of the project, a project vision is
made known, and features required in the
product to be developed are listed in their order
of priority by the product owner. This forms the
product backlog. The sprint or iteration, which is
the time set by the team to complete a selected
list of features from the product backlog is set.
This time-boxed sprint usually within 2 – 4 weeks
becomes a fixed time for a sprint throughout the
project. The selected features list from the
product backlog is to be accomplished in a given
sprint from the sprint backlog. The team
organizes each feature in the sprint backlog into
a task list and executes these tasks of each
feature. Once started, no interruption by way of
adding or removing from the sprint backlog is
entertained until the end of the sprint. However,
changes can be made in the product backlog.
During the duration of each sprint, on daily basis,
a stand-up meeting that lasts 15 minutes is made
by the team where each member of the team
states what he/she carried out the previous day,
and what he/she plans to achieve that day, and
whatever obstacle encountered.

At the end of each sprint, a sprint review meeting
is held. The features built are implemented
before the product owner to check if
requirements/ features are met. Thereafter a

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

15

Fig. 1. SCRUM Framework (scrum.org)

sprint retrospective meeting is held by the team
members to evaluate obstacles encountered in
the just-concluded sprint and how to improve on
them.

Another list of features from the top of the
product backlog is moved to the sprint backlog
for implementation in the next sprint. This is done
until all features are completed. All other agile
flavors follow the same steps but with slight
modifications. The inherent practices in agile
namely daily standup meetings, splitting
implementable features into chunks, use of time-
boxed iterations, review, and retrospective
meetings all help to mitigate risks. However, from
the literature reviewed these inbuilt measures of
tackling risks are insufficient. The flow of
activities in a typical scrum environment is shown
in Fig. 1.

Moran A [35] listed business risks, financial risks,
and technical risks as the major risks in software
development. In his study, testing, validation, and
documentation that ensure regular delivery in
short increments as well as continuous
integration practices are seen as being practiced
in the scrum, a popular agile method. However,
agile teams hardly do documentation. Moreover,
in large projects, the number of iterations will
increase and consequently, result in the omission
of some risks untreated. The engagement of
cross-functional teams is seen as a complete
solution to improving the awareness and use of
the latest technologies and ideas that will result
in the production of quality software. This is true,

however, the likelihood of leaving some risks
unattended is obvious as there is no clear
handler of risk management [4]. It is perceived
that the product owner plans how the budget
utilized will be in the project. He ensures that the
expectations of the stakeholders are met at
quicker releases thereby reducing the cost of
production, but this is seeming in smaller projects
where iterations and complexity of software are
mild.

4. THE NEED FOR EXPLICIT RISK

MANAGEMENT IN AN AGILE
ENVIRONMENT

Derfer [36] study on risks in agile methods of
development revealed that the inherent risk
control practice utilized in agile is insufficient and
suggested the use of a formal risk management
approach. The study identified some risks which
occurred as a result of the use of the agile
method itself and other risks which become more
pronounced when the agile method was
introduced. The study was conducted in a large
telecommunication-based company. Six projects
which involved the customizing of a mega
software product to suit the needs of customers
in their respective operation locations were
carried out. Major development and testing
efforts were made. Customers’ requirement
needs and where the product is used were
different though the same technology was
deployed. Members of the development team
working on a project are located in the same

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

16

center however the project teams are located in
different geographical areas. Three of the
projects had their development teams in Poland,
while two other projects had their teams in South
Africa and the remaining one in Germany.
Customers resided in locations other than the
project development team that executed the
project. Customers were large mobile network
operators in Africa, Europe, and Latin. Scrum,
Extreme programming, and Agile Project
Management (APM) were the agile methods
used in the six projects. Though in five of the
projects, teams had no prior experience with
agile methods, thorough training on agile
practices was made. Scrum was the main
method utilized though some practices of XP
programming and Agile Project Management
were applied. Semi-structured interviews were
conducted with key project stakeholders. The
interviews were aimed at identifying the strength
and weaknesses of the examined projects as
regards Agile methods as well as risks and
opportunities for future Agile projects. Identified
risks were as follows: risk of neglecting
continuous integration, development process
risks, development system risks, and contract
risks, Most of these risks are further sub-divided
into more risks. Development process risks were
subdivided into Inefficient Scrum meetings and
ineffective Scrum roles, Team not being able to
self-organize and make group decisions, Wrong
team decisions, and Misuse of self-organization
to stop/revert the adoption of the Agile
methodology. Development system risks were
subcategorized into the lack of or limited
compatibility of tools with Agile practices and
missing infrastructure at the customer’s site.
They are risks that emanated from the
introduction of Agile or became more visible
when agile was introduced.

According to [37] the method of task prioritization
as a way of managing risks in the agile methods
is inadequate. He pointed out that such activities
as the proper use of resources in achieving the
enterprise goals are not inherent within the
execution of tasks but are very important to be
taken care of as they are considered part of the
project. In other words, there are risks that
cannot be addressed by the implicit way of
development employed by the agile methods.

Elbanna A [38] stressed the need for
implementing risk management in an explicit
manner. According to him, techniques such as
time-boxed iterations, demos, retrospectives and
team ownership of each sprint’s commitment go
a long way in addressing some risks in the agile

projects, however, these mechanisms are
inadequate as they cannot be used to take care
of risks in projects that are of medium to a larger
size which are beyond a team’s control. [38]
emphasized that agile processes are better at
identifying risks at the early stage of
development rather than proffering solutions to
identified risks.

Despite the fact that agile-based projects handle
risks dynamically utilizing their inbuilt approach
that is iterative and seasoned with daily meetings
which together minimize risks, [39] explained that
they still require some form of the explicit method
of managing risks which is imperative but
lacking. From the literature reviewed, proper risk
management procedure is a necessity as its
absence in a software project results in failure of
varying magnitude. The study revealed that
globally only 16.2% of software projects are
completed within the stipulated budget and time
while 52.7% and 31.1% of projects are faced with
issues of late delivery and budget overrun and
outright cancellation respectively.

The result of the study conducted by [40]
confirmed that agile methods by their inherent
practices mitigate certain risks which had helped
to facilitate speedy means of completing software
production. However, their studies also
discovered some risk factors associated with
agile software development methods. This
implies the necessity of the use of other means
of managing risks and also further buttressed the
significance of utilizing a formal means of
mitigating risks associated with agile methods. In
their study, the Agile method of software
development practices was examined in 28
organizations. 112 Interviews and 25 interviews
were conducted in the 28 organizations and with
other agile software development consultants
and contractors respectively. This was to
investigate the reasons behind the increase in
failure and let-up in the use of agile software
practices by some companies. Key risk factors
related to Agile methods were identified. These
include technical debt, fractured development
and operation, increased defects in newly formed
Agile Software Development (ASD) teams,
Fragmentation of project management tools, and
Knowledge Retention. Obviously, agile software
developers are faced with conditions that
sometimes threaten the smooth flow of the
process, which is likely to compromise agility.

According to the study result of [2], an estimated
savings of 40% is made when a formal risk

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

17

management process is integrated with the agile
software method in software projects. A
mathematical risk management model for use in
the agile methods was developed to implement
an explicit risk management practice. Features
that will estimate risk management process cost,
as well as cost-benefit for implementing a formal
risk management procedure in agile software
development projects, were achieved. Use case
model and activity diagram were developed to
capture and understand activities involved,
thereafter numerical calculation procedure
derived appropriately, adopting risk cost
estimation tool by [41]. Derivations for formal risk
management cost and cost-benefit for
implementing the formal risk management
process made.

An online survey study that involved the
distribution of questionnaires to 54 agile adopters
by [42] was made. It was aimed at unearthing
risks faced by agile practitioners and how such
risks are moderated. Findings revealed that
among others, requirements and schedule risks
are the most common risks faced in software
development projects using agile methods and
except for the inbuilt risk control measures, there
are no formal ways risk management procedures
are followed. It was also revealed that agile
software developers seldom assign risk
management roles to keep track of identified
risks and their management throughout the
development process. This is evident in their
result that over 80% of the respondents
confirmed no risk management role was
assigned in their project teams. It implies no
record keeping of risk data and this, in turn,
means some risks are likely to be half-handled
and even overlooked. This could be the reason
for most software project failures.

Holvitie J [43] Study on how to improve risk
management in large agile settings was made. A
case study in a moderately large eCommerce
company was conducted by interviewing four
production leads and four cross-team project
managers. While each Production lead took
supervision of a single team where features of
the product are developed in an autonomous
way, the Cross-team Project leads supervised
multiple agile teams where more than one team
works on a requirement (s). Findings revealed
that whereas the implicit risk management
procedures were adequate for the single teams
who work independently on a particular feature,
more formal risk control strategies are required
for the latter (cross-teams) where many teams
work on a particular feature. Reasons given for

this conclusion are that there are no clear
organized responsibilities laid down on who and
how risks are to be managed and this indicates
that explicit risk control measure is necessary for
the production of large software. Consequently,
the study recommended complementing agile
practices with the Traditional software
development practice in mega software projects.

A survey study by [44] compared risk
management practices utilized in traditional
methods and agile methods with the key aim of
identifying risks associated with the methods. It
reveals that Agile methods are suitable for short-
term projects that require little planning and
documentation as opposed to traditional
methods. In addition, agile methods are flexible
such that requirements are modified and or
added at every stage of development as
opposed to the rigidity applied in the traditional
methods. However, it was deduced that the use
of agile methods itself, can lead to project size
creep, improper sprint planning, absence of
specific experts can cripple the development
process, users unable to assess software
releases before the next release of another
module, lack of progress tracking among
developers in a complex environment.

5. SUMMARY OF EXISTING RISKS
IN THE AGILE SOFTWARE
DEVELOPMENT

Most of these risks are further sub-divided into
more risks. However, sub risks are treated
separately here.

5.1 The Risk of Neglecting Continuous
Integration (CI)

Derfer [36], Institute for Agile Risk Management
[14] Continuous Integration is a software
engineering practice and in fact a best practice in
agile software methodology. It involves routine
integration of code changes into a shareable
version control repository repeatedly and testing
changes as early as possible to ensure defect-
free product production. Failure to implement CI
may result in spending more time on rework,
uncertain project completion time, and more
development effort.

5.2 Improper Sprint /Iteration Plans
[44,22]

Sprint/Iteration plan is a plan done at the
beginning of each sprint/iteration planning
meeting to agree on and shortlist user stories or

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

18

items the agile team can complete in the sprint
and how work can be done. Thus, bad sprint
plans can make the team set expectations that
are unrealistic thus making the development
process complex.

5.3 Risk of Team not being able to Self-
organize and make Group Decisions
[36,18]

Self-organization is an integral part of agile
software development process. Though it can
improve team performance when appropriately
done, it also has risks associated with it. For
instance, when the team has too much work to
process, coupled with the involvement of a team
member with narrow expertise and knowledge. In
agile projects, apart from the team executing
tasks in iteration builds, they also monitor,
control, and make decisions on how the tasks
are done. Thus, team members do not only do
project execution tasks but managerial tasks as
well. Wrong decisions are likely to be made if
full knowledge about the project is unknown and
when the decision of a team member is accepted
because he/she is popular instead of on merit.

5.4 Missing Infrastructure at Customers’
Site for Proper Customer
Involvement in the Development
Process [36,18]

All necessary infrastructure (both hardware and
software) needs to be put in place. Such as
dedicated hardware which includes hardware
networking components and their installation. In
fact, all required for implementing the test
platform should be provided and put in place
even before the commencement of the test
otherwise the test will not be affected at all or
done haphazardly, or even delay the agile spirit if
it has to be arranged for test time.

5.5 The Risk of Lack of or Limited
Compatibility of Tools with Agile
Practices [36,18]

Agile engineering practices such as test-driven
development and continuous integration require
some tools different from those used in the
traditional development scene. Thus, there are
bound to be compatibility issues when such old
tools are used in place of the agile-driven tools.
In the existing literature, the risk of incompatibility
was experienced. Besides, the high cost of

running regression tests as well as the elongated
run time of the testing process was evident.

5.6 Risks due to the use of Faulty
Deliverables

This according to the study [36] involves the use
of readymade components and software tools
either produced in-house or external by the
project team in the developing process to reduce
costs and time without modification of such tools
to suit its use in the agile settings.

5.7 Risk of Inefficient Scrum Meetings
and Ineffective Scrum Roles [36]

Agile development process is associated with
regular meetings as well as the introduction of
new roles different from that in the traditional
methods. The meetings consume substantial
time and effort. New roles like the product owner
and scrum masters introduced are costlier to
maintain than the project roles of the traditional
methods. Daily meetings and roles are vital agile
practices, they do not add direct value to
customers and are significant project overheads
that if not managed properly will result in delays
and overruns.

5.8 Project Size Creep [44]

The incremental feature utilized by agile allows
for the addition of new features at each
sprint/iteration of development. This could
expand the project size and increase product
cost.

5.9 Absence of Specific Experts [44]

Agile teams are cross-functional. This implies
each team is made up of people with different
expertise and skills. The benefit is that all
capabilities required to undertake its scope end-
to-end without help from another team are
avoided. Supposing a team member leaves or
dies, it could hinder the development process
from achieving its goal at the specified time.

5.10 Users unable to assess Software
Releases before the next Release of
another Module [44]

Frequent software releases at the end of each
sprint cycle prevent users from the privilege to
completely assess previous releases as a result,
key performance indicators are not properly
spotted out.

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

19

5.11 Lack of Progress Tracking
among Developers in Complex
Environments [44]

This is the poor tracking, handling, and managing
of risks, especially in large software projects
[5,38,35,13,42,20,43]. In the medium to large
projects, the number of iterations is large, and so
also the risks that are identified. There must be a
risk manager in each location. Depending on the
size of the project and the number of locations,
Risk manager(s) must be available in meetings
to keep track of every identified risk. This can be
effectively done by issuing risk track forms to
team members who record risks identified. The
risk manager enters these risks in an automated
risk repository via risk application. That way risk
details can easily be recalled and status updated.
Such risk tools as Agile Risk Track Sheet
(ARITS) and Repository as developed by [3] are
suggested because they are web-based with
smart database, and can be used by all teams
working in different locations.

5.12 Lack of Control of Cross-teams
Implementing a Single Feature [42]

The engagement of many teams in the
implementation of a single feature of the software
indicates that such a feature is large. This in turn
means the software is a large one. According to
[42,38], a formal risk management process is
needed to exercise control over who will deal
with which risk, keep records as well as track its
migration.

5.13 Technical Debt [40]

Also known as tech debt or design debt or code
debt) describes consequences that occur when
development teams utilize easier and faster
approaches (shortcuts) to meeting delivery
deadlines usually a software functionality within
the specified time [45,46]. These consequences
in whichever form it comes namely code debt,
test debt, documentation debt, and design debt
involve some financial cost to refactor in the
future. Thus, it is the result of prioritizing speedy
delivery over perfect code [46]. Technical DEBT
is noticeable in agile and in fact, accumulates
over time due to their adherence to strict rules of
delivering software features to clients within
sprint in a consistent and continuous manner.
Accumulation of such debt could lead to reworks
and complexity which in turn could require more
effort, money, project delay, and poor software
quality as well in the long run [18].

5.14 Risks Related to Close Involvement
of Business Stakeholders /
Customers

According to the literature reviewed, though one
of the successes achieved in agile is attributed to
communicating constantly with stakeholders
which makes them have an edge over the
classical methods, stakeholders usually delist
nonfunctional requirements such as security
threats from the list of user stories. Probably due
to a lack of understanding of the technicalities
involved. Meanwhile, Security threats are evident
and need to be checked continuously, failure to
do so, further increases technical debt [40].

5.15 Fractured Development and
Operation Risk [40]

According to [18], this refers to the disconnect
between the agile development team (ADT) and
the IT operations team. While the ADT focuses
on building new software modules and
applications as well as ensuring quick delivery to
users, the Operation team ensures users get fast
and bug-free software products that are stable
and reliable in its operational environment. The
IT operations teams usually include systems
administrators, network engineers, and
infrastructure specialists. On the other hand, a
typical agile team consists of the product owner,
team leader, specialists, architecture owner,
development team members, scrum master,
stakeholders which includes direct and indirect
users, and, senior and portfolio managers [27].
Though both groups work towards the common
goal of providing good software builds and
services, their approaches in accomplishing that
is different as they have different jobs, job
priorities, work practices, and pace. As a result,
the risks of delayed delivery of software builds
within the scheduled time are evident. This is so
as Operations Team attends to Infrastructure and
service needs rather in a linear order contrary to
the agile approach and pace of delivering builds
in short time-boxed iterations. Another issue
experienced in the research reviewed is that
there is poor collaboration between the agile
team and the IT operation team and this had
resulted in the Agile team producing software not
compatible for implementation in the operations
environment without a rework. For example,
reworking a software to suit its use in a server of
the operating environment. The agile team has
their sole interest in delivering working software
within the allotted iteration without taking into
consideration necessary knowledge of the
operational environment and deployment such as

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

20

Infrastructure and networking operational issues
which are necessary for the system to operate in
its live environment, rework requests are not
given the utmost priority that it deserves but
developing of new features is at the foremost.
Overall, the risk of delayed deployment of the
developed software is likely to occur.

There are Increased defects in projects handled
by Agile Software Development (ASD) teams
that are new to an agile way of development [40].
This is risky as this implies more effort, time, and
cost to correct such defects. It was however seen
that as developers gain experience in the agile
environment, the occurrence of such defects
begins to decrease and reaches an acceptable
level. This according to the study [40] was
observed in small organizations.

5.16 Fragmentation of Project
Management Tools [40]

Because Agile teams are self-organizing, they
tend to choose project management tools they
are conversant with to actualize their
development needs. Though this motivates them
and enhances their performance, it could also
lead to confusion and complexities during the
integration of work across domains and teams
[40].

5.17 Knowledge Retention [40]

ASD teams by virtue of their policy, value face-
to-face communication over written
documentation. This means details of each
system developed are retained until completion
only if team members that started work on it are
retained till the end and with the organization.
Practically this is not so, members are often
reshuffled and reassigned tasks to other teams
from time to time. If a new member joins a team,
velocity and quality drops. The reason behind
this is that Light documentation is utilized in agile
software methods. Thus, details about the
system developed are not enough to expose the
new team member to an understanding of the
codes. Consequently, more time is used to
unravel the details of the version of the software
and the way forward.

5.18 Customers’ Low Level of Interaction
with Agile Team and in a Way
Different from the Agile Way [36]

One major characteristic of the agile method of
development is Customers’ close interaction with
the development team from the beginning to the

end of the project. This is to ensure that software
builds meet the requirement specification.
However, according to the reviewed study, one
of the risks noticed is that customers were not
always in close contact with the development
team and in most cases only make themselves
available at the beginning and end of the project.
With the manifestation of this risk comes another
risk of customers not being available to give
feedback and responses to the development
team on requirements and other inquiries on the
next iteration/sprint.

Requirements and schedule risks are the
most common risks faced in software
development projects using agile methods
[36,41]. In an agile environment, users' needs
can be modified at any time in the development
cycle. This change if not well managed can lead
to scope creep.

6. RELEVANCE AND BENEFITS OF
EXPLICIT RISK MANAGEMENT
PRACTICE IN AN AGILE SETTING AS
DEDUCED FROM STUDIES
REVIEWED

Generally, the relevance and benefits of explicit
risk management are inherent in the various
steps and roles of the risk management process.

Agile software development methodologies also
manage risks but in an implicit way. The modular
development of software and its unit testing in
each iteration as well as integration testing with
other modules alongside acceptance testing to
check its conformance with requirements
specifications are all effective ways to mitigate
risks. In spite of this, from the literature reviewed,
other risks do exist that occur with the
introduction and use of the agile method itself.
Also, there could be risks that surface when the
project size exceeds a limit. Thus, managing risk
explicitly will go a long way to address such risks.
In a nutshell, explicit risk management in Agile
software development methods will do the
following:

1. Help to keep track of risk data by the
introduction of a risk manager. Risks data
are very important to keep track of risks
identified, closely monitor the treatment of
the risks identified and ensure their
mitigation. Thus, the presence of a Risk
Manager in the development team is very
important to avoid skipping identified risks.
Such a role is not explicitly spelled out in a
core agile setting [3].

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

21

2. Help to initiate the proper use of resources in
achieving the enterprise goals. Agile
methods need to utilize some formal means
of using relevant resources since it is not
part of the execution of tasks assigned in the
inherent process yet it is an important aspect
[37].

3. Help to address risks that emanate from the
introduction of Agile or became more visible
when agile was introduced as revealed in the
studies reviewed. Such risks can be well
taken care of by external processes [36].

4. Help to manage risks when multiple agile
teams work on the same product/feature.
This is so because higher coordination
effort is required, and the application of
more formal practices is needed when
cross-teams work on a product. According
to [42], there are no clear organized
responsibilities laid down on who and how
risks are to be managed and this indicates
that explicit risk control measure is
necessary for the production of large
software.

5. Generally, explicit risk management is a
necessity in the development of large
software projects using the agile method of
development. The execution of large
software projects in the agile environment is
completed in many iterations and more
efforts to track and control risks consciously
is needed otherwise some risk may be left
unattended to and may escalate to bigger
problems at some point in the development
cycle.

6. Explicit risk management may likely help to
reduce monies expended for rework of risks
by about 40% where only the inherent agile
risk control practices are being utilized [41].

7. Explicit risk management will greatly reduce
the risks that will emanate due to the
improper management of nonfunctional
requirements in agile settings. A good
implementation of Functional and Non-
functional requirements together results in
the production of quality software [31,32].
Since agile methods are tailored to delivering
software modules fast which happens to be
the functional aspect of the development
process, incorporating explicit means of
managing risks associated with
nonfunctional requirements is necessary.

7. CONCLUSION

Explicit risk management in medium to large
scale agile software development projects is

highly recommended to manage risks including
those risks that will emanate as a result of
adopting the agile method of development. Agile
methods are methods practiced by many
because of their features of swiftness in software
product delivery however, the introduction of
agile methods is associated with risks and must
be dealt with. Large software projects are
characterized by many features resulting in
increase in the number of iterations. Without the
deployment of the services of a risk handler
whose sole duty is to take record of risks and
track their mitigation, it will be difficult to identify
risks and ensure the control of all the risks
identified. There is no dedicated risk handler in a
typical agile setting. Also, proper record keeping
of risks details including what actions reduce or
eliminate their effects will serve as historical
records for such risks and will consequently
guide developers on possible risks to expect and
how to tackle such risks in similar projects.
Again, though agile teams do some form of
documentation they concentrate more on quick
delivery of the software. Keeping track of risks
details and their mitigation can be achieved by
documentation or better still utilization of the Risk
Repository system. Non-functional requirements
[30,47] like security, and learnability are not
taken care of using the existing inbuilt features in
agile thus requiring external means of control.
This is also an important aspect to achieve
quality software. The cost of rework of identified
risks possibly outweighs the cost of managing
risks explicitly as seen in the literature reviewed
and as such it is recommended that explicit risk
management be incorporated into agile methods.
In all, explicit risk management in agile methods
of development is worth trying as it extends the
utilization of agile methods to the development of
all sizes of software development projects and
highly regulated software projects. Further
studies reviewing a larger number of agile
software projects are suggested to help further
explore explicit risks management benefits in
agile software development projects. Though the
findings used in this study included the review of
completed agile software projects, ongoing agile
software development projects would have been
sought to identify risks condition and how the
risks are possibly tracked or mitigated, or
ignored. This can also be another point of study
in the near future.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

22

REFERENCES

1. Olaronke I, Rhoda I, Ishaya G. An

Appraisal of Software Requirement
Prioritization Techniques. AJR CoS.
2018;1:1-16.

2. Thom-Manuel OM, Ugwu C, Onyejegbu N.
An Extended Agile Software Development
Project Budget Model.International Journal
of Computer Science and Software
Engineering. 2017: 6(12):306-314.

3. Thom-Manuel OM, Ugwu C,
&OnyejegbuLN A New Mathematical Risk
Management Model for Agile Software
Development Methodologies. International
Journal of Software Engineering &
Applications. 2018; 9(2):67-86.

4. Cohn, Mike. Succeeding with Agile:
Software Development Using Scrum.
Kindle ed. Addison- Wesley; 2009.

5. Franck Marle. An Assistance to Project
Risk Management Based on Complex
Systems Theory and Agile Project
Management. Complexity; 2020.
Article ID 3739129, 20 pages, 2020.
Available:https://doi.org/10.1155/2020/373
9129

6. International Organization for
Standardization. Risk Management. (ISO
Standard No. 31000:2009).

7. International Organization for
Standardization. Medical devices –
Application of risk management to medical
devices. (ISO Standard No. 14971:2019).

8. PMI - Project Management Institute. A
Guide to the Project Management Body of
Knowledge (PMBOK®Guide) Sixth Edition
(6th ed.). PMI; 2017.

9. Hijazi H, Khdour T, Alarabeyyat AA.
Review of risk management in different
software development methodologies.
International Journal of Computer
Applications. 45(7):8-12.

10. Carvalho MM, Junior RR. Impact of risk
management on project performance: The
importance of soft skills. International
Journal of Prod. Res. 2015;53(2):321-
340.

11. VDA - Verband der Automo bilindustrie,
QMC - Quality Management Center
Working Group 13 - Automotive SIG.
Automotive SPICE Process Assessment -
Reference Mode – version 3.0; 2015.

12. MacMahon ST, McCaffery F, Keenan F.
The MedITNet assessment framework:
development and validation of a framework
for improving risk management of medical

IT networks. Journal of Software: Evolution
and Process. 2016;28(9):817-834.

13. Hammad M, Inayat I. Integrating Risk
Management in Scrum Framework. 2018
International Conference on Frontiers of
Information Technology (FIT); 2018.

14. Institute for Agile Risk Management. Agile
Risk Management; 2020.
Available: https://agileriskmanagement.org/

15. Vieira, Marcel, Jean Carlo Rossa Hauck
and Santiago Matalonga. How Explicit Risk
Management is Being Integrated Into Agile
Methods: Results From a Systematic
Literature Mapping. 19th Brazilian
Symposium on Software Quality;
2020.

16. Feizi Kamran, Asadi Gharabaghi Mehdi,
Olfat Laya, Taghavifard Mohammad Taghi.
Risk management in Agile Software
Development projects: Designing a
process model with a qualitative approach.
Iranian Journal of Management Sciences;
2020. Cited 2022May02];15(57):1-27.
Available:https://www.sid.ir/en/journal/View
Paper.aspx?id=822394

17. Ylimannela, Ville. A model for risk
management in agile software
development; 2013.

18. Moran A. Agile risk management. In Agile
Risk Management. Springer, Cham.
2014;33-60.

19. Chaoucha S, Mejrib A, Ghannouchia SA. A
framework for risk management in Scrum
development process. Procedia Computer
Science. 2019;164:187-192.

20. Alharbi ET, Qureshi MRJ. Implementation
of Risk Management with SCRUM to
Achieve CMMI Requirements. Computer
Network and Information Security. 2014;
11:20-25.

21. Katarína B, Šimíčková J. Risk
management in traditional and agile project
management. International Scientific
Conference on Sustainable, Modern and
Safe Transport (TRANSCOM). pp. 986–
993 High Tatras, NovySmokovec – Grand
Hotel Bellevue, Slovak Republic: Elsevier
B.V.

22. Suryaatmaja K, Wibisono D, Ghazali A,
Fitriati R. Uncovering the failure of Agile
framework implementation using SSM-
based action research. Palgrave
Communications. 2020;6(1):1-18.

23. Dhir S, Kumar D, Singh VB. Success and
Failure Factors that Impact on Project
Implementation Using Agile Software
Development Methodology. In: Hoda M,

https://www.proquest.com/pubidlinkhandler/sng/pubtitle/International+Journal+of+Computer+Science+and+Software+Engineering/$N/2044552/OpenView/1993349917/$B/B507BD20A52146D0PQ/1;jsessionid=CFF98853A8748B41A9FCDC34BEA21617.i-0ce94adfe72330a87
https://www.proquest.com/pubidlinkhandler/sng/pubtitle/International+Journal+of+Computer+Science+and+Software+Engineering/$N/2044552/OpenView/1993349917/$B/B507BD20A52146D0PQ/1;jsessionid=CFF98853A8748B41A9FCDC34BEA21617.i-0ce94adfe72330a87
https://www.proquest.com/pubidlinkhandler/sng/pubtitle/International+Journal+of+Computer+Science+and+Software+Engineering/$N/2044552/OpenView/1993349917/$B/B507BD20A52146D0PQ/1;jsessionid=CFF98853A8748B41A9FCDC34BEA21617.i-0ce94adfe72330a87
https://doi.org/10.1155/2020/3739129
https://doi.org/10.1155/2020/3739129
https://agileriskmanagement.org/
https://www.sid.ir/en/journal/ViewPaper.aspx?id=822394
https://www.sid.ir/en/journal/ViewPaper.aspx?id=822394

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

23

Chauhan N, Quadri S, Srivastava P. (eds)
Software Engineering. Advances in
Intelligent Systems and Computing.
2019;731. Springer, Singapore.
Available:https://doi.org/10.1007/978-981-
10-8848-3_62

24. Micheal K. How is Risk Management in
Agile Development Different From Risk
Management in Waterfall Model?;
2012.
Available:https://pm.stackexchange.com/q
uestions/5957/how-is-risk-management-in-
agile-development-different-from-risk-
management-in-wa

25. Hammad M, Inayat I, Zahid M. Risk
Management in Agile Software
Development: A Survey. International
Conference on Frontiers of Information
Technology (FIT); 2019.
Available:https://ieeexplore.ieee.org/abstra
ct/document/8991647

26. Deloitte Future of risk Management in
Financial Services: Integrating Risk
Management and agile Projects; 2019.
Available:https://www2.deloitte.com/conten
t/dam/Deloitte/lu/Documents/risk/lu-risk-
future-of-risk-series-integrating-risk-
agile.pdf

27. Schön EM, Radtke D, Jordan C.
Improving Risk Management in a Scaled
Agile Environment. In: Stray V., Hoda R,
Paasivaara M, Kruchten P. (eds) Agile
Processes in Software Engineering and
Extreme Programming. XP 2020. Lecture
Notes in Business Information
Processing, vol 383. Springer, Cham;
2020.

28. Wallmüller E. Business continuity. Chapter
risk management for IT and software
projects’ (Springer-Verlag, New York, NY,
USA,). 2002;165–178.

29. Ramos F, Costa A, Perkusich M,
et al. A non-functional requirements
recommendation system for scrum-based
projects’. In 30th Int. Conf. Software
Engineering & Knowledge Engineering
(SEKE); 2018.

30. Iftikhar K, ALI S, Ngadi MDA.
Enhancement of Non Functional
Requirements in Agile Software
Development. International Journal of
Computer Science and Information
Security (IJCSIS), 2016;14(12).
Available on Enhancement of Non
Functional Requirements in Agile Software
Development | Journal of Computer
Science IJCSIS - Academia.edu.

31. Matharu, Gurpreet, Mishra, Anju, Singh,
Harmee, Upadhyay, Priyanka. Empirical
Study of Agile Software Development
Methodologies. ACM SIGSOFT Software
Engineering Notes. 2015; 40:1-6.
Available:10.1145/2693208.2693233

32. Kumar, Manish, Dwivedi RK. Applicability
of Scrum Methods in Software
Development Process; 2020.
AvailableSSRN: https://ssrn.com/abstract=
3610759 or http://dx.doi.org/10.2139/ssrn.3
610759

33. Kendis Team. Risk Management in Agile
Scrum; 2019.
Available :https://medium.com/@media_75
624/risk-management-in-agile-scrum-
e0e5d18f0cf

34. Walczak W, Kuchta D. Risks characteristic
to Agile project management
methodologies and responses to them.
Operaions Research and Decisions. 2013;
23:75-95.

35. Moran A. Agile risk management. In Agile
Risk Management. Springer, Cham. 2014;
33-60.
Available:https://scinapse.io/papers/10428
57008

36. Derfer B. Introducing the Agile Risk
Management Framework, Agile Six
Applications, Inc; 2016.
Available:https://www.agilegovleaders.org/
wpcontent/uploads/2016/03/Agile_Risk_
Management _ Framework.pdf

37. Prakash B, Vijay Viswanathan. Risk
Prioritization for Software Development
using Grey Wolf Optimization 1458; 2019.

38. Elbanna A, Sarker S. The Risks of Agile
Software Development: Learning from
Adopters. IEEE Software. 2016;33(5):72-
79.
DOI: 10.1109/MS.2015.150

39. Khatavakhotan AS, Hashemi NT and Ow
SH. AMathematical Risk Management
Model for Iterative IT Projects based on the
Smart Database. International journal of
information and Electronic Engineering.
2011;1(3):229-233.

40. Hammad M, Inayat I, Zahid M. Risk
Management in Agile Software
Development: A Survey. International
Conference on Frontiers of Information
Technology (FIT); 2019.
Available:https://ieeexplore.ieee.org/abstra
ct/document/8991647. doi:

41. Schön EM, Radtke D, Jordan C.
Improving Risk Management in a Scaled
Agile Environment. In: Stray V., Hoda R.,

https://doi.org/10.1007/978-981-10-8848-3_62
https://doi.org/10.1007/978-981-10-8848-3_62
https://pm.stackexchange.com/questions/5957/how-is-risk-management-in-agile-development-different-from-risk-management-in-wa
https://pm.stackexchange.com/questions/5957/how-is-risk-management-in-agile-development-different-from-risk-management-in-wa
https://pm.stackexchange.com/questions/5957/how-is-risk-management-in-agile-development-different-from-risk-management-in-wa
https://pm.stackexchange.com/questions/5957/how-is-risk-management-in-agile-development-different-from-risk-management-in-wa
https://ieeexplore.ieee.org/abstract/document/8991647
https://ieeexplore.ieee.org/abstract/document/8991647
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/risk/lu-risk-future-of-risk-series-integrating-risk-agile.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/risk/lu-risk-future-of-risk-series-integrating-risk-agile.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/risk/lu-risk-future-of-risk-series-integrating-risk-agile.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/risk/lu-risk-future-of-risk-series-integrating-risk-agile.pdf
https://ssrn.com/abstract=3610759
https://ssrn.com/abstract=3610759
https://dx.doi.org/10.2139/ssrn.3610759
https://dx.doi.org/10.2139/ssrn.3610759
https://medium.com/@media_75624/risk-management-in-agile-scrum-e0e5d18f0cf
https://medium.com/@media_75624/risk-management-in-agile-scrum-e0e5d18f0cf
https://medium.com/@media_75624/risk-management-in-agile-scrum-e0e5d18f0cf
https://scinapse.io/papers/1042857008
https://scinapse.io/papers/1042857008
https://ieeexplore.ieee.org/abstract/document/8991647
https://ieeexplore.ieee.org/abstract/document/8991647

Thom-Manuel; AJRCOS, 14(3): 12-24, 2022; Article no.AJRCOS.84911

24

Paasivaara M., Kruchten P. (eds) Agile
Processes in Software Engineering and
Extreme Programming. XP 2020. Lecture
Notes in Business Information
Processing, vol 383. Springer, Cham.

42. Alshathry S, Alnamlah B, Alkassim N,
Jamail, NSM. Risk Management in Agile
and Waterfall Models: A Review.
International Journal of Advanced Science
and Technology. 2020; 29(9):1149-1157.

43. Holvitie J, Licorish
,

SA, Spínola RO,
Hyrynsalmi S, MacDonell SG, Mendes TG,
Buchan, J, Leppänen V. Technical debt
and agile software development practices
and processes: An industry practitioner
survey. Information and Software
Technology. 2018;96:141-160.

44. Wolpers S. Technical Debt and Scrum:
Who Is Responsible? Agile Zone;
2019.
Available :https://dzone.com/articles/techni
cal-debt-amp-scrum-who-is-responsible

45. Productplan. Technical Debt; 2020.
Available:https://www.productplan.com/glo
ssary/technical-debt/

46. Lynn R. Agile Roles in Software
Development; 2020.
Available:https://www.planview.com/resour
ces/articles/agile-roles-software-
development/

47. Radigan D. Continuous Integration; 2020.
Available:https://www.atlassian.com/agile/s
oftware-development/continuous-
integration

© 2022 Thom-Manuel; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/84911

https://www.productplan.com/glossary/technical-debt/
https://www.productplan.com/glossary/technical-debt/
https://www.planview.com/resources/articles/agile-roles-software-development/
https://www.planview.com/resources/articles/agile-roles-software-development/
https://www.planview.com/resources/articles/agile-roles-software-development/
https://www.atlassian.com/agile/software-development/continuous-integration
https://www.atlassian.com/agile/software-development/continuous-integration
https://www.atlassian.com/agile/software-development/continuous-integration
http://creativecommons.org/licenses/by/4.0

