

Asian Food Science Journal

21(6): 26-35, 2022; Article no.AFSJ.86716 ISSN: 2581-7752

Modelling Water Absorption Kinetics of Abrohemaa, Omankwa, and Akposoe Maize Varieties

Isaac Godfred Antwi^{a*}

^a Department of Agricultural and Biosystems Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AFSJ/2022/v21i630433

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/86716

Original Research Article

Received 04 February 2022 Accepted 26 April 2022 Published 28 April 2022

ABSTRACT

The study investigated the effect of temperature and variety on water absorption kinetics of three Ghanaian maize varieties (Abrohemaa, Omankwa, and Akposoe) during soaking and also to generate the required moisture diffusivity data for the varieties. The study employed a gravimetric method at four different temperatures of 30°C, 40°C, 50°C, and 60°C. Varying soaking temperature affected the water absorption rates and behaviours of the varieties and that soaking was reduced by increasing the soaking water temperature. The differences in rate of water absorption by the varieties could be attributed to kernel characteristics such as physiochemical and nutritional composition. The Fick's diffusion law satisfactorily predicted the absorption kinetics of the varieties at all temperatures and that variety and temperature were the most important factors controlling water absorption rate of the maize kernel. The moisture diffusivities of the kernels varied in the order of Abrohemaa > Omankwa > Akposoe and increased as the soaking temperature increases with values ranging from $2.91 - 3.93 \times 10^{-10} \text{ m}^2/\text{s}$ for *Akposoe*, $3.19 - 4.33 \times 10^{-10} \text{ m}^2/\text{s}$ for Omankwa and $3.66 - 4.74 \times 10^{-10}$ for Abrohemaa. The Arrhenius equation was able to effects of temperature on the diffusion describe the coefficient with activation energy values of 7.04 for Abrohemaa and 8.31 kJ/mol for both Akposoe and Omankwa.

Keywords: Temperature; water absorption; diffusion; maize; soaking.

*Corresponding author: Email: yawantwi1966@gmail.com;

1. INTRODUCTION

Maize (Zea mays L.) is one of the many cereal crops grown and marketed in many parts of the world and plays major economic role in Sub-Saharan Africa (SSA) [1]. It is regarded as dominant cereal and staple crop produced and consumed across Africa regions and in many parts of America. Govaerts [2][3] put the daily consumption per capita as 290 g in Guatemala and Mexico while consumption per capita in Venezuala and Colombia was estimated as 100 g/day. The Maize kernel serves as inexpensive source of protein and cheap energy and therefore becomes a good replacements or add-on to the major food staples. FAOSTAT [4] maintained that maize constitutes 40% of the total cereal production and 80% of the total production is consumed as food in the SSA regions. It is also believed that maize could become the food for the next generation and [3] argued that the consumption of maize in the Sub-Saharan regions is likely to increase threefold by the year 2050. Nuss et al [5] observed that, Sub Saharan Africans derived 30% of the energy intake from maize. Cereals contribute immensely to agricultural production and help to provide the needs of Africa's growing population. This accession indicates that the consumption of maize will remain extremely important for years to come. In Ghana, more than 1 million (20%) of estimated 5 million small scale farming gain main income households from the production of maize [6]. In 2018/2019 growing season, Ghana achieved a production level of 1.09 billion metric tons in maize. Maize processing often requires rehydration of the kernels to make it easy for further operations such as milling, cooking and also to achieve desired palatability. Thus, the knowledge of absorption of water by the kernels is extremely important to the food industries [7].

The rate and amount of moisture imbibed by kernels during rehydration is determined by numerous factors; including the initial moisture content, thickness of outer bran layer, variety of kernel, kernel size, soaking duration as well as temperature and soaking water acidity [8]. Studies have shown that the rate at which water is absorbed by kernels is greatly influenced by temperature and soaking period [9]. A rise in soaking temperature produces higher water absorption rate[10][11].

From a processing and engineering prospective, food processors are not only interested in

determining how fast water absorption can be achieved, but also, how processing parameters, including temperature, affect the process [7] [12] as well as how soaking time could be predicted at a specific processing condition. The models obtained from Fick's laws of diffusion and the Peleg model are widely employed to characterize the soaking of cereals and legumes kernels [13]. Modelling the absorption kinetics during maize soaking is important since it offers industry players the opportunity to manipulate the operation to optimize industrial processing of maize-based dishes.

Hence, availability of quantitative data on processing parameters is necessary for optimization of the soaking conditions, design of food processing equipment as well as predicting water absorption behaviour of maize kernels. Nevertheless, the available literature provides little or no data on the moisture absorption kinetics of Abrohemaa, Omankwa, and Akposoe maize varieties grown in Ghana. Consequently, the current study was designed to investigate the temperature and variety effects on these varieties during soaking and also to generate the required moisture diffusivity data for these three Ghanaian maize varieties.

2 MATERIALS AND METHODS

2.1 Collection and Preparation of Maize Kernels

Five hundred gram (500 g) each of the three maize varieties (*Abrohemaa*, *Omankwa*, and *Akposoe*) was obtained from the experimental farm of Crops Research Institute (CRI), Fumasua, Kumasi. The kernels of the varieties were prepared manually and only whole and good kernels were selected for the experiment. Each sample was packed separately into zip-lock polythene bags and placed in a refrigerator to prevent moisture loss or gain.

2.2 Estimation of Initial Moisture Content

The initial moisture content of the kernels was estimated by the standard oven drying procedure described by [14]. The three varieties of sample size 5 g was weighed using Electronic Compact Scale, SF-400C and placed in labelled dishes. The dishes, together with the samples were placed in standard oven and uniformly heated to a temperature of $103^{\circ}C + 2^{\circ}C$ for 4 h. The weight loss of the sample was monitored with the electronic Compact Scale, until subsequent

weight loss was less than 0.01 g. The weight loss by the sample was taken as the weight of water in the sample before drying. The procedure was triplicated and the average value was estimated.

The initial moisture content (M_d) on dry basis was then computed as follows:

$$M_d = \frac{W_w}{W_d} \times 100\%$$
 (1)

 $W_d = W_t - W_w$

Where:

 $\begin{array}{l} W_t = \mbox{weight of sample before drying,} \\ W_d = \mbox{weight of sample after drying (dry matter)} \\ W_w = \mbox{weight of water loss} \end{array}$

2.3 Measurement of Length, Width and Thickness of Kernel

The length, width and thickness of the kernel were determined by the method described by [15]. Hundred (100) kernels were picked at random and their principal diameters were measured along three directions with a digital micrometer screw gauge with accuracy of 0.01 mm. The major diameter was equated to the length of the kernel, the intermediate diameter equated to the width, and the minor diameter equated the thickness of the kernel. The micrometer screw gauge was held at right angle to the direction of the dimeter being measured. Hundred kernels were selected and used to determine the average value of the length while 50 kernels were used for both width and thickness as proposed by [16]. For the sake of irregularity and non-uniformity of the shape of the kernels, the highest values of the dimensions were recorded and used.

2.4 Estimation of Equivalent Radius (*r*)

The equivalent radius was evaluated from the average volume of the kernels. The volume of a kernel was calculated based on the assumption that the volume of the kernel can be approximated to the volume of a spherical object.

The volume of the kernel was determined by filling a 100 - ml measuring cylinder with 50ml of water. Then, 50 kernels were immersed in the water. The amount of water displaced was recorded. The procedure was replicated and the true volume of a kernel was calculated.

The average volume of a kernel was equated to the volume of a sphere $\left(V = \frac{4}{3}\pi r^3\right)$ and equivalent radius (r) was obtained. Thus,

$$r = \sqrt[3]{\frac{3\nu}{4\pi}} \tag{2}$$

2.5 Determination of Saturation Moisture Content (Ms)

Three set of sample size $5 g \pm 0.01g$ for each variety was soaked at four different water temperatures in a portable water bath fixed with temperature control system. The samples were situated separately in a labelled nylon mosquito net and placed into the water bath at a predetermined temperature of $30^{\circ}C \pm 2^{\circ}C, 40^{\circ}C \pm$ 2° C, 50° C \pm 2° C, and 60° C \pm 2° C. The sample was removed at time interval of 1 h, and quickly wiped out the residual water on the surface of the kernels [17] and then reweigh [18]. The weight gain of the sample was monitored at each time interval using the electronic Compact Scale. The moisture content of the sample at specific time interval was calculated and recorded. The saturation moisture content (M_s) was computed when the subsequent weight gain of the sample was ≤ 0.01 g.

2.6 Modelling of Absorption Kinetics

At constant temperature, it is assumed that diffusion process follows Fick's second law of diffusion. Therefore, Fick's three-dimensional equation can be applied for an axisymmetric diffusion:

$$\frac{\partial M}{\partial t} = D\left(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2} + \frac{\partial^2 M}{\partial z^2}\right)$$
(3)

Where, D is the diffusion coefficient and M is the water content at time t. The equation (3) was rearranged to obtain a solution for an object with a spherical shape (Seyhan-Curtas et al.,2001),

$$MR = \frac{M - M_{i}}{M_{e} - M_{i}} = 1 - \left(\frac{6}{\pi^{2}}\right) \sum_{i=1}^{\infty} \left(\frac{1}{i^{2}}\right) \exp\left(-Di^{2}\pi^{2}\frac{t}{r^{2}}\right)$$
(4)

where,

MR = moisture ratio,

$$M_{\rm i}$$
 = initial moisture content,

 $M_{\rm e}$ = equilibrium moisture content,

Di = effective diffusion coefficient,

i = number of terms in the summation,

r = equivalent radius of the kernels and

t = soaking time.

The effective diffusion coefficient, D_i was evaluated from the slope of a curve, 1-Mr against the soaking time t.

The temperature dependency of diffusion coefficient (D_i) was evaluated using an Arrhenius equation:

$$Di = D_0 e^{-Ea/RT}$$
(5)

where:

 $D_o = diffusion constant (m^2/s),$

Ea = activation energy (kJ/mol),

R = general gas constant (8.314 J/molK) and

T = absolute temperature (*K*). The Ea values for the selected varieties were calculated from the linear regression of Di against reciprocal of soaking time (1/*T*). The constant D_o and the slope Ea/R were computed. The Ea values were obtained by multiplying the gas constant (8.314 J/molK) by the value of the slope.

3 RESULTS AND DISCUSSION

3.1 Moisture Content and Dimensions

The initial moisture contents (M_i) in percentage dry basis (%db), length (L), width (W), thickness

(T), equivalent radius (r) and surface area (SA) of the kernels are presented in Table 1.

Table 1 shows values for length (I), width (W), thickness (T) and surface area (SA) of the kernels used in this study. The SA ranged from 507.23 mm² to 596.65 mm². These values are in agreement with values documented by [19]. In general, for different varieties one would anticipate an inverse relation between the absorption rate and kernel size, since a larger kernel yields a smaller specific surface area for moisture movement [20].

3.2 Saturation Moisture Content and Diffusion Coefficient

The water absorption curves of maize varieties soaked at temperatures are illustrated in Figs. 1a, 1 b and 1c.

The maize varieties showed moisture absorption behaviour similar to what has been published by [7][17][21]. The initial water absorption was rapid, immediately followed by a slower rate and at later stages asymptotically got to the saturation point (M_s). Moisture saturation was reached within 12 h of soaking at temperature of 30°C but soaking time was shortened to 8 h as soaking temperature rises to 60°C. This observation was in line with reports by other published studies [22].

Maize Mi (%db) L(mm) W(mm) T(mm) r(mm) SA(mm2) Aborohema 11.76 11.03 8.98 4.74 4.04 596.65 Omankwa 11.76 10.47 9.02 4.53 4.02 560.79 Akposoe 13.66 10.20 507.23 8.80 4.10 3.65

Table 1. Initial moisture content and physical properties of maize varieties

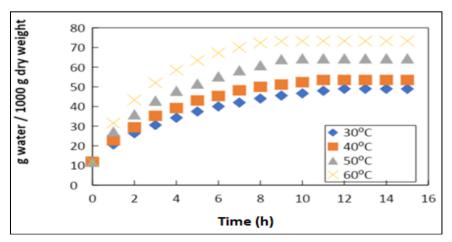


Fig. 1a. Water absorption curves of Abrohemaa

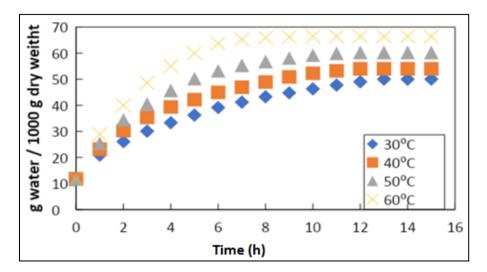


Fig. 1b. Water absorption curves of Omankwa

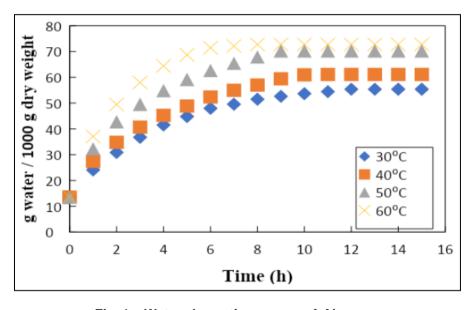


Fig. 1c. Water absorption curves of Akposoe

The rate at which water was absorbed by these kernels was found to increase with increasing soaking temperature as a result of increased diffusion rates. Also, high water temperature could cause damage to cell tissues leading to an increased opening of the pores which will consequently increase the rate of water Identical findings have absorption. been documented by [23] [24] [25][26][27]. Reports by other researchers such as [17][21] derived similar hydration curves for red kidney beans, selected Turkish legumes, wheat and barley.

The study also found that water absorption capacity increased as the soaking temperature increases and that the rates of moisture increment differ for the varieties considered. The observed phenomenon could be attributed to the difference in varietal characteristic such as nutritional composition of the varieties. This confirms earlier reports on the water absorption behaviour of rice by [28] [29].

The study further observed that *Akposoe* had moderately higher water gain than the other varieties. At temperatures of 30°C and 40°C, *Abrohemaa* recorded the least water gain as anticipated while *Omankwa* recorded minimum water gain at 60°C. Generally, water absorption rates were seen to be influenced by temperature. The observed effect of temperature on absorption rates agreed with other published studies [30][17][21]. Shafaei et al. [22] made

identical observation after studying water absorption characteristics of chickpea and soybean.

An increased specific surface promotes higher absorption capacity due to smaller nature of kernel size [13]. This phenomenon was noticed in the current study. Akposoe had a small kernel size in relation to Omakwa and Abrohemaa therefore recorded higher water absorption capacity as expected. In contrast, Abrohemaa kernel was relatively bigger but recorded the upmost absorption capacity at temperatures 50°C and 60°C. This behaviour could be attributed to variations in severity of disorderliness brought about by different temperature levels to bear on the nutritional composition. The observed occurrence could suggest a high probability of Abrohemaa containing more starch content than Akposoe and Omakwa. Addo et al. [7] made similar observation that high starch content of Obatanpa was accountable for its higher water absorption capacity although Mamaba kernel was relatively smaller than Obatanpa. Many reports, including Ituen et al. [31], have shown that kernel characteristics and temperature are the most important factors responsible for variations in equilibrium moisture content values. Brennan et al. [32] also made similar assertion that the extent to which protein and starch (water holding constituents) have been destroyed by temperature during drying principally influenced reconstitutability of dried food products.

3.3 Water Absorption Rates of Maize Hybrids

The data on moisture ratio obtained from the soaking experiment were plotted against the square root of soaking period. Based on eqn. (4), the effective diffusivity values for the varieties during water absorption process was determined. The moisture contents (M_s) employed in eqn. (4) and the coefficient of determination (R^2) are indicated in Table 2.

Estimated D_i values of the selected varieties at various water temperatures are indicated in Table 2 above. Generally, the experimental data fitted the diffusion equation with high accuracy. The R² values obtained from the linear regression analysis varied from 0.94 to 0.99. The D_i of Abrohema varied from 3.66 – 4.74 × 10^{-10} m²/s; *Omankwa*, 3.19-4.33 × 10^{-10} m²/s and *Akposoe* varied from 2.91-3.95 × 10^{-10} m²/s. The observed differences in D_i could be

attributed to differences in kernel characteristics due to varietal variations of the maize. Agarry et al [33] attributed the kernel's propensity to absorb water to the two main constituents (protein and carbohydrate) with protein possessing a higher capacity to absorb water than carbohydrate.

Therefore, variations in nutritional characteristics of the kernels could provide another explanation for Abrohemaa variety having higher diffusion and Akposoe coefficient than Omankwa, varieties. It is also probable that Abrohemaa kernel contains high protein concentrations than Omankwa and Akposoe, causing it to soak up more water than the two varieties within the same temperature and time conditions. In comparison with other studies, the D_f values obtained in this work is marginally higher than those documented by [7] for Mamaba and Obatanpa but were lower than values reported by [8]. The observation could possibly be attributed to variations in the physiochemical and nutritional characteristics of the varieties studied. Addo et al. [7] and Agidi et al. [34] agreed to this assertion when they reported that seed's size and nutrient are primarily responsible for water uptake in seeds soaking. Additionally, Webb [35] also disclosed that among the starch, amylose content has been found to be the most wellknown property for forecasting rate of moisture gain. The rates of water absorption of the selected varieties are presented in Fig. 2a, 2b and 2c.

3.4 Activation Energies (Ea) of Selected Maize Varieties

The values of diffusion coefficients of the selected maize were fitted into an Arrhenius-type relationship (eqn. (5)) in order to relate the temperature effect to moisture diffusivity of the maize kernels. A plot of D_i versus reciprocal of absolute temperature are presented in Fig. 3. The \mathbf{R}^2 obtained varied from 0.96 to 0.98 which represents a good fit of the experimental data.

Fig. 3 portrays the correlation between temperature and the diffusion coefficients of the varieties (*Akposoe, Abrohemaa and Omankwa*). The graphs indicate that the Arrhenius equation was able to describe the strong effects of temperature on the water absorption behaviour of the maize varieties. The Ea obtained for the selected Maize varieties are presented in Table 3.

The Ea estimated from the slopes of the curves in figure 3 shows Ea values of 8.31 kJ/mol for *Akposoe*; 7.04 kJ/mol for *Abrohemaa* and 8.31 kJ/mol for *Omankwa*. The marginally low energy values obtained in this study suggest that the varieties were less sensitive to heat and that there was a heat build-up during the absorption process. In comparison, Ea values obtained in this study were identical to values reported by Addo et al. (2006) for Obatanpa (6.54 kJ/mol) and Mamaba (6.82 kJ/mol). Idun-Acquah et al. [36] obtained similar Ea values for Asontem (7.27 kJ/mol), Hewale (7.26 kJ/mol) and Asomdwee (6.26 kJ/mol). In contrast, Verma and Prasad [12]; Charan and Prasad [37] reported large values of activation energies in the range of 33.5-41.56 and 45.75 respectively for certain varieties of maize. These differences in activation energies could be attributed to varietal variations resulting from physiochemical and nutrient composition of the maize varieties.

Table 2. Effective diffusion coefficient (D_i) values and Saturation Moisture Content (M_s)

Variety	30°C			40°C			50°C		60°C			
	D _i *	R ²	Ms	D _i *	R ²	Ms	D _i *	R ²	Ms	D _i *	R ²	Ms
Abrohemaa	3.66	0.99	48.95	3.96	0.98	53.47	4.21	0.99	64.55	4.74	0.98	73.27
Omankwa	3.19	0.99	50.02	3.48	0.99	54.00	3.75	0.97	60.27	4.33	0.94	66.41
Akposoe	2.91	0.97	55.37	3.13	0.99	61.10	3.38	0.99	70.12	3.95	0.96	72.74

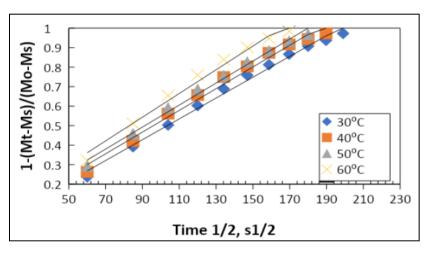


Fig. 2a. Water absorption rate for Abrohemaa

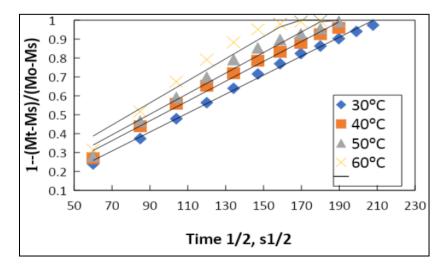


Fig. 2b. Water absorption rate for Omankwa

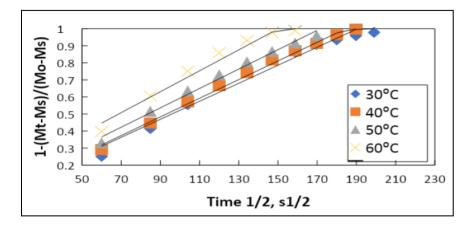


Fig. 2c. Water absorption rate for Akposoe

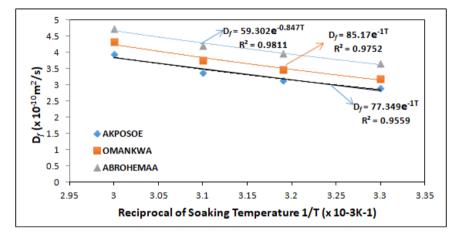


Fig. 3. The relationship between water Diffusivity and reciprocal of temperature

Table 3. Estimated values of Activation Energy (Ea) of selected maize varieties

Variety	Ea(kJ/mol)	R ²
Akposoe	8.31	0.96
Abrohemaa	7.04	0.98
Omankwa	8.31	0.98

4. CONCLUSION

The water absorption kinetics of three maize varieties, *Akposoe*, *Abrohemaa* and *Omankwa* were studied using phenomenological models deduced from Fick's law of diffusion. The study found that temperature and variety significantly influenced the water absorption rate and capacity of the kernels. The soaking duration could be shortened by raising the water temperature from 30°C to 60°C. Variations in rate of water absorption could be attributed to kernel characteristics such as physiochemical and nutritional composition of the varieties. The Fick's diffusion law adequately simulated and predicted

the water absorption kinetics of the varieties. The effective moisture diffusivity values varied from $3.66 - 4.74 \times 10^{-10} \text{ m}^2/\text{s}$ for Abrohema; $3.19 - 4.33 \times 10^{-10} \text{ m}^2/\text{s}$ for *Omankwa*; and $2.91 - 3.95 \times 10^{-10} \text{ m}^2/\text{s}$ for *Akposoe*. The temperature dependency of moisture diffusivity of the varieties was satisfactorily represented by the Arrhenius equation with the activation energies for *Abrohemaa* (8.31 kJ/mol), *Akposoe* (7.04 kJ/mol) and *Omankwa* (8.31 kJ/mol).

ACKNOWLEDGEMENTS

The author conveys his gratefulness to the staff of Crops Research Institute (CRI) at Fumesua, Kumasi-Ghana and the Agricultural and Biosystems Engineering Department of KNUST, Kumasi Ghana.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

- 1. Badu-Apraku B, Fakorede MAB. Maize in Sub-Saharan Africa: importance and production constraints," Advances in Genetic Enhancement of Early and Extraearly Maize for Sub-Saharan Africa, Cham, Switzerland: Springer International Publishing; 2017.
- Govaerts B, Chávez X, Fernández A, Vega D, Vázquez O, Pérez M, Carvajal A, Ortega P, López P, Rodríguez R, Kruseman G, Donnet L, Palacios-Rojas N, Verhulst N, Gardeazabal, A, González G, Sánchez KC, Rosado LG. Maize para México - plan Estratégico 2030. CIMMYT: México; 2019. Available:https://repository.cimmyt.org/xml ui/bitstream/handle/10883/20219/60937.pd
- 3. Ekpa O, Palacios-Rojas N, Kruseman G, Fogliano V, Linnemann AR. Sub-Saharan African maize-based foods: processing practices, challenges and opportunities Food Rev. Int. 2019;35 (7):609-6039.
- 4. FAOSTAT. Food Balance Sheet; 2016. Available:http://faostat.fao.org/site/345/def ault.aspx
- Nuss ET, Tanumihardjo SA. Maize: A. Paramount Staple Crop in the Context of Global Nutrition. Compr. Rev. Food Sci. Food Saf. 2010;9(4):417-436. DOI: 10.1111/i.15414337.2010.00117x.
- 6. World Bank. Maize Value Chain Study & Intervention Analysis in Ghana; 2008.
- Addo A, Bart-Plange A, Dzisi K. Water Absorption Characteristics of Obatanpa and Mamaba Maize Hybrids (*Zea mays*). International J. of Food Engineering. 2006; 2(3):1556-3758.
- Demirhan E, Özbek B. Modeling of the Water Uptake Process for Cowpea Seeds (*Vigna unguiculata* L.) under Common Treatment and Microwave Treatment. Journal of Chemical Society of Pakistan. 2015;37:1-10.
- 9. Shafaei SM, Masoumi AA. Estimating Moisture Absorption Kinetics of Beans during Soaking Using Mathematical Models. CIGR Journal. 2014;16:231-237.
- Kashaninejadl M, Kashiri M. Hydration kinetics and changes in some physical properties of wheat kernels. J. of Iranian Food Science & Tech. Research. 2007;45:58-59
- 11. Sfayhi-Terras D, Hadjyahia N, Zarroug Y. Effect of soaking time and temperature on

water absorption capacity and dimensional changes of bulgur. Journal of General Chemistry. Cereal Chem. 2021;98:851-857.

Available:https://doi.org/10.1002/cche.104 27.

- 12. Verma RC, Prasad S. Kinetics of absorption of water by maize grains. Journal of Food Engineering. 1999;39:395-400.
- Tang J, Sokhansanj S, Sosulski FW. Moisture-absorption characteristics of Laird lentils and hard shell seeds. Cereal Chemistry. 1994;71(5):423-428.
- AOAC. Official methods of analysis (17th ed.). Arlington: Association of Official Analytical Chemists._Washington D.C; 2003.
- 15. Baryeh EA. Physical properties of bambara groundnuts. Journal of Food Engineering. 2001;47:321-326.
- Hauhouot-O'Hare M, Criner BR, Brusewitz GH, Solie JB. Selected Physical Characteristics and Aerodynamic Properties of Cheat Seed for separation from Wheat. CIGR Journal of Scientific Research and Development. 2000;2:347-356.
- Seyhan-Gurtas F, Ak MM, Evranuz EO. Water diffusion coefficients of selected legumes grown in Turkey as affected by temperature and variety. Turkish Journal of Agriculture. 2001;25:297-304
- Lu R, Siebenmorgen TJ, Archer TR. Absorption of water in long-grain rough rice during soaking. Journal of Food Process Engineering. 1994;17:141-154.
- Gurses L. BazÝ Yerli Kurubaklagil Sebzelerinin Kimyasal Bileßimleri ve ,eßitlerin Konserveye YarayÝslÝlÝklarÝ †zerine AraßtÝrmalar. Ankara: Ankara niversitesi YayÝnlarÝ. 1981;43-57.
- Hsu KH, Kim CJ, Wilson LA. Factors affecting water uptake of soybean during soaking. Cereal Chemistry. 1983;60:208-211.
- 21. Tagawa A, Muramatsu Y, Nagasuna T, Yano A, limoto M, Murata S. Water absorption characteristics of wheat and barley during soaking. Transactions of the ASAE. 2003;46(2):361-366.
- 22. Shafaei SM, Masoumi AA, Roshan H. Analysis of Water Absorption of Bean and Chickpea during Soaking Using Peleg Model. Journal of the Saudi Society of Agricultural Sciences. 2014;15:135-144.

- 24. Addo, Ahmad, Bart-Plange A. Kinetics of Water Sorption by Egusi Melon (cucumeropsis edulis) Seeds. ARPN J. of Agricultural and Biological Sci. 2009; 4(6):14-17.
- 25. Tunde-Akintunde TY. Water absorption characteristics of Nigerian Acha (Digitariaexilis). International Journal of Food Engineering. 2010;6(5)art11:1-10. DOI: 10.2202/1556-3758.1650.
- Agu HO, Badau MH, Abubakar UM. Modeling the water absorption characteristics of various local pearl millet grains and hungry rice (digitariaexilis) during soaking using peleg's equation. Focusing On Modern Food Industry. 2013;2(4):161-69.
- Udoro EO, Kehinde AT, Olasunkanmi SG, Charles TA. Studies on the physicochemical, functional and sensory properties of Gari processed from dried cassava chips. Journal of Food Process Technology. 2014;5:293. DOI: 10.4172/2157-7110.1000293
- Shittu TA, Aminu RA, Abulude EO. Functional effects of Xanthan gum on composite cassava-wheat dough and bread. Food Hydrocolloid. 2009;23:2254-2260.
- 29. Bandyopadhay S, Roy CN. Rice Processing Technology. New Delhi: IBTT Publishing; 1992.
- 30. Abu-Ghannam N. Modelling textural changes during the hydration process of

red beans. Journal of Food Engineering. 1998;38:341-352.

- 31. Ituen EUU, Mittal JP, Adeoti JS. Water absorption in cereal grains and its effects on their rupture stress. J. of Food Process Engineering.1985;8:147-158.
- Brennan JG, Butters JR, Cowell ND, Lilly AEV. Dehydration in Food Engineering Operations. London: Elsevier Applied Science; 1990.
- Agarry SE, Afolabi TJ, Akintunde TTY. Modelling the water absorption characteristics of different maize (*Zea Mays* L.). types during soaking. Journal of Food Processing & Technology. 2014; 5:26. Available:https://doi.org/10.4172/2157-
 - 7110.1000326
- 34. Agidi G, Musa SD, Chukwugoziem IJ. Water Absorption Behaviour of Milled Parboiled Rice in Relationship with Variety and Some Basic Thermodynamic Properties of Steam. AU J.T. 2009;13(2):101-106.
- Webb BD. Cooking, processing and milling qualities of rice. Texas: Texas Agric. Experimental Station; 1975.
- Idun-Acquah NN, Addo A, Bart-Plange A. Effect of Soaking Temperature on Water Absorption Characteristics of Selected Ghanaian Cowpea Varieties. Open Journal of Applied Sciences. 2019;9:736-748. Available:https://wWW.Scirp.org/journal/oj apps.
- Charan R, Prasad S. Moisture diffusion during hydration of maize. Journal of Food Science and Technology. 1996;33(5):383-388.

© 2022 Antwi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/86716