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Abstract

Clustering coefficient is one of the most useful indices in complex networks. However, graph
theoretic properties of this metric have not been discussed much in the literature, especially in
graphs resulting from some binary operations. In this paper we present some expressions for
the clustering coefficient of the tensor product of arbitrary graphs, regular graphs, and strongly
regular graphs. A Vizing-type upperbound and a sharp lower bound for the clustering coefficient
of the tensor product of graphs are also given.
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1 Introduction

Let G be a simple undirected graph with vertex set V (G) and edge set E(G). Let NG(v) = {u ∈
V (G) : uv ∈ E(G)} be the open neighborhood of a vertex v ∈ V (G), degG v the degree of v,
and tG(v) the number of triangles in G which are incident to v. The local clustering coefficient of
vertex v in G, denoted by Ccv(G), is a measure that assesses the local triangle density in a vertex’s
neighborhood. This number Ccv(G) can be defined as

*Corresponding author: E-mail: rjdamalerio@gmail.com;

https://www.sdiarticle5.com/review-history/87064


Damalerio and Eballe; ARJOM, 18(6): 36-42, 2022; Article no.ARJOM.87064

Ccv(G) =

 0, if degG v ≤ 1,
tG(v)

(degG v
2 )

, if degG v ≥ 2.
(1.1)

This formula can be traced as a unifying version between its treatment in [1] and [2]. On the other
hand, the global clustering coefficient Cc(G) of a graph G with order n is a measure that indicates
the overall clustering of G, obtained by averaging the local clustering coefficients of all the vertices
in G. That is,

Cc(G) =
1

n

∑
v∈V (G)
degG v≥2

Ccv(G) =
1

n

∑
v∈V (G)
degG v≥2

2tG(v)

degG v(degG v − 1)
. (1.2)

This measure was introduced in the field of social network analysis by Duncan J. Watts and
Steven Strogatz [3] in 1998 to determine whether a graph is a ”small-world network”. Since
then, several studies from various standpoints have also emerged. However, as far as we know,
there are no investigations or studies on the clustering coefficients of graphs resulting from some
binary operations, although a related study on finding the number of distinct triangles in the tensor
product G×H was done in [4] while a triangle-counting algorithm for large networks appeared in [5].

In this paper, we investigate the clustering coefficient of the tensor product of arbitrary graphs,
regular graphs, and strongly regular graphs using some properties that the tensor product possesses
and some inherent characteristics possessed by the factors or constituents. A Vizing-type upperbound
and a sharp lower bound for the clustering coefficient of the tensor product of graphs are also aimed
to be proved. Graphs considered in this paper are all finite and undirected simple graphs. For basic
graph theory terminologies not specifically described nor defined in this paper, please refer to either
[6] or [7].

2 Tensor Product of Arbitrary Graphs

The tensor product G ×H of two graphs G and H is the graph whose vertex set is V (G) × V (H)
and for which vertices (u, v)(u′, v′) ∈ E(G×H) if and only if uu′ ∈ E(G) and vv′ ∈ E(H). Thus,

V (G×H) = {(u, v) : u ∈ V (G) and v ∈ V (H)},
E(G×H) = {(u, v)(u′, v′) : uu′ ∈ E(G) and vv′ ∈ E(H)}.

Lemma 2.1 Let G and H be any graphs. If u ∈ V (G) and v ∈ V (H), then the number of
triangles in G × H that are incident to the vertex (u, v) ∈ V (G × H) is given by the formula
tG×H(u, v) = 2tG(u)tH(v).

Proof : Let (u, v) ∈ V (G × H) such that (u′, v′)(u′′, v′′) ∈ E(⟨NG×H(u, v)⟩). Then vertices (u, v),
(u′, v′), (u′′, v′′) ∈ V (G × H) are pairwise adjacent in G × H. By the adjacency condition of the
vertices in the tensor product, one can see that vertices u, u′, u′′ are pairwise adjacent in G and
so are the vertices v, v′, v′′ in H. Therefore, every triangle incident to (u, v) in G × H emanates
from a pair of distinct triangles, one of which is incident to u in G and another one incident to v inH.

Now assume first that vertices u, u′, u′′ are pairwise adjacent in G and v, v′, v′′ are pairwise adjacent
inH. By the same adjacency condition in the tensor product we can see that vertices (u′, v′), (u′′, v′′),
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(u′, v′′), (u′′, v′) ∈ NG×H(u, v) such that (u′, v′)(u′′, v′′), (u′, v′′)(u′′, v′) ∈
E(⟨NG×H(u, v)⟩). Thus, each pair of triangles, one incident to u in G and the other incident to v in
H, produces two distinct triangles incident to (u, v) in G×H. That is, 1

2
tG×H(u, v) = tG(u)tH(v).

�

In Fig. 1 below, the highlighted vertices and edges emphasized the two triangles incident to vertex
(u, v) in G×H as argued in Lemma 2.1.

Fig. 1. The tensor product G×H of two arbitrary graphs G and H, in which vertices
u, u′, u′′ are pairwise adjacent in G and vertices v, v′, v′′ are pairwise adjacent in H

Theorem 2.2 Let G and H be any graphs. If u ∈ V (G) and v ∈ V (H) such that degG u ≥ 2 and
degH v ≥ 2, then the local clustering coefficient of (u, v) in G×H is given by the formula

Cc(u,v)(G×H) = f(u, v) · Ccu(G) · Ccv(H),

where f(u, v) = (degG u− 1)(degH v − 1)/(degG u · degH v − 1).

Proof : Using Equation (1.1), Lemma 2.1, and the fact that degG×H(u, v) = degG u · degH v, we
have

Cc(u,v)(G×H) =
tG×H(u, v)(
degG×H (u,v)

2

) =
2tG(u)tH(v)(
degG u·degH v

2

)
= 2 · Ccu(G) · Ccv(H) ·

(
degG u

2

)(
degH v

2

)(
degG u·degH v

2

)
= Ccu(G) · Ccv(H) · (degG u− 1)(degH v − 1)

degG u · degH v − 1
.

The next result, which is for the global clustering coefficient of G×H, is a consequence of Theorem
2.2.

Corollary 2.3 Let G and H be graphs of orders n1 and n2, respectively. Suppose δ(G) ≥ 2 and
δ(H) ≥ 2. Then the global clustering coefficient of G×H is given by

Cc(G×H) =
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

f(u, v) · Ccu(G) · Ccv(H),

where f(u, v) = (degG u− 1)(degH v − 1)/(degG u degH v − 1).
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Proof : Using Equation (1.2) and Theorem 2.2, we obtain

Cc(G×H) =
1

n1n2

∑
(u,v)∈V (G×H)

Cc(u,v)(G×H)

=
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

Ccu(G) · Ccv(H) · (degG u− 1)(degH u− 1)

(degG u · degH v − 1)
.

The claimed equality follows. �

The next result provides an upperbound for the global clustering coefficient of the tensor product of
graphs, a Vizing-type relationship, albeit on the upperbound, with some restrictions on the factors.

Corollary 2.4 For graphs G and H with δ(G) ≥ 2 and δ(H) ≥ 2,

Cc(G×H) ≤ Cc(G) · Cc(H);

equality holds if at least one of G and H is a triangle-free graph.

Proof : Let u ∈ V (G) and v ∈ V (H), where G and H are of orders n1 and n2, respectively. From
Theorem 2.2, Cc(u,v)(G ×H) = f(u, v) · Ccu(G) · Ccv(H), where f(u, v) = (degG u − 1)(degH v −
1)/(degG u · degH v − 1). Since degG u,degH v ≥ 2, it follows that (degG u − 1)(degH v − 1) <
(degG u · degH v)− 1. This means that

0 < f(u, v) =
(degG u− 1)(degH v − 1)

degG u · degH v − 1
< 1.

Assume that each of the graphs G and H has a triangle. That is, there exists specific vertices
x ∈ V (G) and y ∈ V (H) such that tG(x) ≥ 1 and tH(y) ≥ 1, implying that Ccx(G) > 0 and
Ccy(H) > 0. Hence, for such vertices, it follows from Corollary 2.2 that

Cc(x,y)(G×H) = f(x, y) · Ccx(G) · Ccy(H) < Ccx(G) · Ccy(H).

As for the other vertices (a, b) not incident to any triangle in G × H, if there are any, their local
clustering coefficients are clearly zero. Using Corollary 2.3 and the inequality f(u, v) < 1 above, we
obtain

Cc(G×H) =
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

f(u, v) · Ccu(G) · Ccv(H)

<
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

Ccu(G) · Ccv(H) = Cc(G) · Cc(H)

Hence, Cc(G×H) < Cc(G) · Cc(H), if both G and H have triangles.

On the other hand, assume that at least one of G and H is a triangle-free graph. Since the tensor
product is commutative, we can assume that graph G is triangle-free. Thus, for every u ∈ V (G),
Ccu(G) = 0 and, hence, Cc(G) = 0. From this, we can see that Cc(G) ·Cc(H) = 0. From Corollary
2.3, we also have

Cc(G×H) =
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

f(u, v) · Ccu(G) · Ccv(H) = 0

Therefore, the relationship Cc(G×H) = Cc(G) · Cc(H) is assured if at least one of G and H is a
triangle-free graph. �
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The last paragraph of Corollary 2.4 above can actually be shortened by invoking Corollary 3.6 in
[4], which says that if either G or H is triangle-free, then so is G×H.

In the 2016 paper of Yusheng Li, et al.[2], one of the results there gives a nontrivial lower bound for
the clustering coefficient of G with δ(G) ≥ 2. If δ(NG(u)) is the minimum degree of the subgraph
of G induced by NG(u) and if σ = minv∈V (G) δ(NG(v)), then Cc(G) ≥ σ/(d̂ − 1), where d̂ is the
average degree of G [2]. An analogous result for G×H is given below.

Corollary 2.5 Let G and H be graphs with δ(G) ≥ 2 and δ(H) ≥ 2. If σG = minu∈V (G) δ(NG(u))
and σH = minv∈V (H) δ(NH(v)), then

Cc(G×H) ≥ σG · σH

d̂G · d̂H − 1
,

where d̂G and d̂H are the average degrees of G and H, respectively.

Proof : Observe that

tG(u) = |E(⟨NG(u)⟩)| =
1

2

∑
w∈NG(u)

deg⟨NG(u)⟩ w ≥ 1

2

∑
w∈NG(u)

σG =
degG u · σG

2
.

A similar argument applies to tH(v) ≥ degH v · σH
2

. Additional simplifications yield Ccu(G) =
tG(u)

(degG u
2 )

≥ σG
degG u−1

and Ccv(H) = tH (v)

(degH v
2 )

≥ σH
degH v−1

. Applying these inequalities to Corollary

2.3, we obtain

Cc(G×H) =
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

f(u, v) · Ccu(G) · Ccv(H)

≥ 1

n1n2

∑
u∈V (G)

∑
v∈V (H)

(degG u− 1)(degH v − 1)

degG u · degH v − 1
· σG

degG u− 1
· σH

degH v − 1

=
1

n1n2

∑
u∈V (G)

∑
v∈V (G)

σG · σH

degG u · degH v − 1
≥ σG · σH

d̂G · d̂H − 1
.

The last inequality is due to the fact that degG u · degH v > 1 for any u ∈ V (G), v ∈ V (H), and
because the function 1

x−1
is convex for x > 1.

3 On Regular and Strongly Regular Graphs

A regular graph is a graph that has uniform degree in its vertices. If G is a regular graph with
degree d in all its vertices, then we call G a d-regular graph. For general graphs, it is not viable
to express the global clustering coefficient of the product cleanly in terms of the global clustering
coefficients of its factors. But this is not the case for regular graphs as the next result shows.

Theorem 3.1 Let G and H be graphs with orders n1 and n2, respectively. If G and H are regular
graphs with respective degree regularity dG ≥ 2 and dH ≥ 2, then

Cc(G×H) = f · Cc(G) · Cc(H),

where f = (dG − 1)(dH − 1)/(dG · dH − 1).
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Proof : Given that G is dG-regular and H is dH -regular, Corollary 2.3 asserts that

Cc(G×H) =
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

(dG − 1)(dH − 1)

(dG · dH − 1)
Ccu(G)Ccv(H)

=
(dG − 1)(dH − 1)

(dG · dH − 1)
· 1

n1

∑
u∈V (G)

Ccu(G) · 1

n2

∑
v∈V (H)

Ccv(H)

=
(dG − 1)(dH − 1)

(dG · dH − 1)
· Cc(G) · Cc(H),

which completes the proof. �

A special type of regular graphs are the strongly regular graphs. Accordingly, a graph G of order n is
said to be strongly regular with parameters n, d, µ1 ,µ2 , denoted srg(n, d, µ1, µ2), if it is d-regular,
and any pair of vertices has µ1 common neighbors if they are adjacent, and µ2 common neighbors
otherwise [8].

Theorem 3.2 [2] For any srg(n, d, µ1, µ2) graph G with d ≥ 2,

Cc(G) =
µ1

d− 1
.

Proof : See Theorem 1 of [2]. �

Our last result says that Corollary 2.5 is sharp for the tensor product of strongly regular graphs.

Corollary 3.3 For two graphs srg(n1, dG, µ
G
1 , µ

G
2 ) G and srg(n2, dH , µH

1 , µH
2 ) H with dG, dH ≥ 2,

Cc(G×H) =
µG
1 µ

H
1

dG · dH − 1
.

Proof : Using Theorem 3.1 and Theorem 3.2, we have

Cc(G×H) =
(dG − 1)(dH − 1)

dG · dH − 1
· µG

1

dG − 1
· µH

1

dH − 1
=

µG
1 µ

H
1

dG · dH − 1
,

where µG
1 and µH

1 correspond to σG and σH in Corollary ??, respectively. �

4 Conclusion

Our motive in this work was to determine whether the parameter Cc(G × H) can be expressed
meaningfuly in terms of Cc(G) and Cc(H), similar to our motives in [9] and [4]. Our results in this
paper showed that the global clustering coefficients of the factors are the key players, especially in
the generated Vizing-type upperbound of Cc(G × H). For strongly regular graphs, a sharp lower
bound was obtained. There are still a lot of work to be done in the clustering coefficient of graphs;
we hope that this work could further stimulate research efforts into this area..
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