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Abstract 

 
In this paper, a deterministic model of the Human Immunodeficiency Virus has been formulated to describe 

the transmission dynamics of the disease.  The good posedness of the model equations was proved and the 

equilibrium points of the model have been identified. Basic reproduction numbers were used to establish both 

local and global stability of the disease-free and endemic equilibrium points of the model equation. The 

analysis reveals that if the basic reproduction is smaller than one, the solution converges to the disease-free 

steady-state, which is locally asymptotically stable. If the fundamental reproduction number is more than one, 

the solution converges to the endemic equilibrium point, which is locally asymptotically stable., sensitivity 

analysis of the model equation was performed on the key parameters to find out their relative significance and 

potential impact on the transmission dynamics of the Human Immunodeficiency Virus. The results of the 

simulation show that treatment minimizes the risk of Human Immunodeficiency Virus transmission from the 

community and the stability of disease-free equilibrium is achievable when basic reproduction is less. The 

findings from the analysis of cost-effectiveness revealed that a combination of prevention and screening is the 

most effective strategy to eradicate the disease from the community. 
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1 Introduction  
 

Human Immunodeficiency Virus is the causative agent of Acquired Immunodeficiency Syndrome [1]. “The 

target cell of HIV is the CD4 T cells. A healthy human body has about 1000/mm^3 CD4 T cells. When the CD4 

T4 cells of the patient decrease to 200 / mm ^ 3 or less, this person is classified as AIDS” [2]. “When CD4 T 

cells are dwindling, they cannot give a strong response. This translates into low responses of CTLs and 

antibodies that cannot remove infection” [3]. “HIV is mainly transmitted by unprotected sex with an infected 

person, through the exchange of infected blood or blood products, or to the newborn from an infected mother. 

However, antiretroviral treatment (art) improves health, prolongs life and significantly reduces the risk of HIV 

transmission. More than 90% of sub-Saharan Africa acquires HIV infection of unprotected sexual relationship 

with infected partners” [4]. 

 

“According to updated statistics on the state of the epidemic from UNAIDS, 36.9 million people, globally, were 

living with HIV in 2017, of which 21.7 million people had access to artistic treatment (antiretroviral therapy) 

and 1.8 million people were newly infected with HIV in 2017. A total of 77.3 million people have been infected 

with HIV since the epidemic began in 1981. The numbers of death indicate that 940,000 people died of diseases 

serving in 2017, with a total of 4 million people deceased for AIDS-related illnesses from the beginning of the 

epidemic” [5]. 

 

Several mathematical models have played a major role in increasing our understanding of of the dynamics of 

sexually transmitted diseases. Several models have been proposed to study the effects of some factors on the 

transmission dynamics of these sexually transmitted diseases, including HIV/AIDS, and to provide guidelines 

on how to control their spread. Among these models Anderson et al [6] presented “a simple mathematical HIV 

transmission model study the effects of various factors on the general evolution of the AIDS epidemic”. 

Stilianakis et al. [7] who proposed and provided a detailed analysis of a dynamic model describing the 

pathogenesis of HIV, and Tripathi et al. [8] who proposed a model to study the effects of screening of unaware 

infective on the transmission dynamics of HIV/AIDS. K.O.Okosun [9] presented “the impact of optimal control 

on the treatment of HIV/AIDS and screening of unaware infective on the transmission dynamics of disease in a 

homogeneous population with a constant immigration of susceptible individuals integrating the use of condoms, 

the screening of unconscious infected persons and the treatment of infected persons”. In [10] “a mathematical 

model for the transmission of HIV/AIDS was proposed, as well as a control problem in which the aim was to 

determine the pre-exposure prophylaxis (PrEP) strategy that minimizes the number of individuals with pre-

AIDS HIV infection, balanced against the costs associated with PrEP”. The paper by Mukandavire et al. [11] 

compares “the impact of increasing condom use or HIV PrEP use among sex workers. The authors found that 

condom promotion interventions should remain the mainstay HIV prevention strategy for female sex workers 

(FSWs), with PrEP only being implemented once condom interventions have been maximized or to fill 

prevention gaps where condoms cannot be used”. In [12], the authors develop “a model of HIV risk and 

compare HIV-risk estimates before and after the introduction of PrEP to determine the maximum tolerated 

reductions in condom use with regular partners and clients for HIV risk not to change, With a case study of 

FSWs in South Africa, in [12] it is found that PrEP is likely to be of benefit in reducing HIV risk, even if 

reductions in condom use do occur”. 

 

However, few mathematical studies have been undertaken to model Human Immunodeficiency Virus 

mathematically, but they did not considered protected compartment in their studies.  

 

2 Model Description and Formulation 
 

The model divides the total population into six subclasses with respect to their disease status in the system. 

Protected individuals     , is the class of individuals which are protected against the disease over a period of 

time. Susceptible individuals     , is the class of individuals who are healthy but can contract the disease. 

Exposed individuals     , is the class of individuals which are infected but not yet infectious. Asymptomatic 

individuals      , is the class of an infectious without symptoms of disease. Infectious individuals     , is the 

class of an infectious with symptoms of disease and individuals with AIDS     , is the class of individuals with 

AIDS. 
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The model assumes that a fraction of the population has been protected before the disease out break at rate of 

   and        fraction of population susceptible. The susceptible class is increased from protected class by 

losing protection with   rate. Susceptible individuals are exposed to HIV infection with force of infection 

  
       

 
 where   is contact rate and   is transmission coefficient for the asymptomatic. If     then, the 

asymptomatic infect susceptible more likely than infective. If    , then both asymptomatic and infective have 

equal chance to infect the susceptible, but if     then, the infective have good chance to infect susceptible 

than asymptomatic. Exposed individuals progress to infectious class with probability    and to the 

asymptomatic infectious class with probability       , where   is the per capita rate of becoming infectious. 

The asymptomatic individuals can develop disease symptom or can screen them selves and join the infectious 

class with a rate   and others join the AIDS class with rate  . Individuals in infectious class join the AIDS class 

with rate  . All infected individuals   is the disease induced mortality rate due to infection. Also, in all class   

is the natural mortality rate of individuals and all parameters in the model are positive.  
 

 
 

Fig. 1. Schematic diagram of HIV/AIDS model. 
 

Based on the model assumptions and the schematic diagram, the model equations are formulated and given as 

follows:  
 

 
 
 
 
 
 

 
 
 
 
 

     

  
          

     

  
                 

     

  
            

     

  
                   

     

  
                

     

  
             

                                                                                        (1) 

 

With initial condition                                                . 
 

3 Mathematical Analysis of the Model 
 

3.1 Invariant region 
 

In the model equation1 that governs human population; all the variables and parameters used in the model 

equation are non-negative. We consider a biologically-feasible region                     
    

 

 
 . 
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We adhere to the following steps to show the positive invariance of  , that is all the solution of model equation 

1 that initiate in   remains in the region   and is bounded in  . We have the total population  

 

                                   

 

 The rate of change of the total population by adding all the equations considered in model equation1 is given 

by  

 
  

  
                             

 

In the absence of mortality due to disease it becomes  

 
  

  
      

 

Thus, the particular solution can be expressed as  

 

       
 

 
     

 

 
                                                                                                            (2) 

 

As     in equation (2) , the population size   
 

 
 which implies that     

 

 
. 

 

Thus the feasible solution set of the model equation remain in the the region  

 

                   
    

 

 
 . 

 

Therefore, the basic model is wellposed epidemiologically and mathematically. Hence, it is sufficient to study 

the dynamics of the basic model in region   .  

 

3.2 Existence and uniqueness of the solutions of the model 
 

 The validity and authenticity of any mathematical model depends on whether the given system of equations has 

a solution, and if the solution exists then it is unique. We shall use the Lipchitz condition to verify the existence 

and uniqueness of solution for the system of equation 1. 

 

Theorem 1 Let   denote th region      . Then the model equations (1) together with the initial 

conditions                                                    exist in   
  and have a 

unique solution. i.e., the model variables                          and      exist for all   and will remain in 

  
 . 

 

Proof : We have to show that 
   

   
                 are continues and bounded in  . Let the right hand side of 

the system of equation (1) can be expressed as follows:  

 

 
 
 
 

  
 
                         

                                

                           

                                  
                               

                            

                                                              (3)  
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According to Derrick and Groosman theorem, let   denote the region                   
         . 

Then equations (3) have a unique solution if                             are continuous and bounded in  . 

Here,                               and   
 

 
      . 

 

3.3 Positivity of the solution of the model 
 

In this section we aim to obtain the non negative solution when dealing with human populations. Therefore, the 

next discussion below targets on the conditions under which the model being studied has a non negative 

solution. 

 

Theorem 2. Let                    
                                  then the solution 

of               are positive for all    . 

 

Proof: From the system of differential equation(1), let us take the first equation such that. 

 
  

  
          , eliminating the positive terms    we get 

 
  

  
        , using variables separable method we get, 

 
  

 
          integrating both side we can get, 

 

  
  

 
            we obtain:  

 

                    where       is any arbitrary constant. 

 

Then after solving for   we obtain: 

 

              . 

 

Therefore        for all    .  

 

From the system of differential equation(1),let us take the second equation such that. 

 
  

  
                 , eliminating the positive terms           we get 

 
  

  
        , using variables separable method we get, 

 
  

 
          integrating both side we can get, 

 

  
  

 
            we obtain:  

 

                    where       is any arbitrary constant. 

 

Then after solving for   we obtain: 

 

              . 

 

Therefore        for all    . 

 

From the system of differential equation (1),let us take the third equation such that: 
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             , eliminating the positive terms    we get,  

 
  

  
           using variables separable method we get, 

 
  

 
            integrating both side we can get, 

 

  
  

 
              we obtain:  

 

                      where       is any arbitrary constant. 

 

Then after solving for   we obtain: 

 

                . 

 

Therefore       for all    . 

 

From the system of differential equation (1),let us take the fourth equation such that: 

 
  

  
                    , eliminating the positive terms         we get  

 

, 
  

  
             using variables separable method we get, 

 
  

 
              integrating both side we can get, 

 

  
  

 
                we obtain:  

 

                        where       is any arbitrary constant. 

 

Then after solving for   we obtain: 

 

                  . 

 

Therefore        for all    . 

 

From the system of differential equation(1),let us take the fifth equation such that: 

 
  

  
                 ,eliminating the positive terms        we get  

 

, 
  

  
          using variables separable method we get, 

 
  

 
            integrating both side we can get, 

 

  
  

 
              we obtain:  

 

                      where       is any arbitrary constant. 

 

Then after solving for   we obtain: 

 

                . 

 

Therefore        for all     



 

 
 

 

Gurmu et al.; ARJOM, 18(6): 1-29, 2022; Article no.ARJOM.87031 
 

 

 
7 

 

 

From the system of differential equation (1), let us take the sixth equation such that: 

 
  

  
              , eliminating the positive terms       we get  

  

  
         using variables separable method we get, 

 
  

 
          integrating both side we can get, 

 

  
  

 
            we obtain:  

 

                    where       is any arbitrary constant. 

 

Then after solving for   we obtain: 

 

              . 

 

Therefore        for all    . 

 

3.4 Disease free equilibrium points (DFE)  
 

 Disease free equilibrium points are steady state solutions where there is no disease in the population. In the 

absence of disease in the population, implies that                      and        and the 

equilibrium points require that the right hand side of the model equation set equal to zero. We denote disease-

free equilibrium point by   . 

 

These requirements reflect in reducing the model equations (1) as 

 

 
 
 
 

  
 
           

                  

             

                    
                 

              

                                                                                      (4) 

 

Then solving the system of differential equation (4) simultaneously, we obtain  

 

                        
  

     
 

        

          
          . 

 

3.5 The basic reproduction number     
 

“The basic reproduction number denoted by    is the average number of secondary infections caused by an 

infected individual throughout its period of infectivity” (Diekmann et. al) [13]. “The basic reproduction number 

is an important dimensionless quantity in epidemiology because it sets the threshold in the study of disease both 

for predicting its outbreak and for evaluating its control strategies” [13]. Therefore, the persistence or 

disappearance of a disease in a community depends on the value of the reproduction number,   . In addition, 

the stability of the scale point can be analyzed using  . If     every infectious individual will cause more 

than one secondary infection and hence the disease will invade the population. Obtained by taking the largest 

(dominant) eigenvalue (spectral radius) 
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where    be the rate of appearance of new criminal in compartments,    is the transfer of individuals out of the 

compartment by another means,    is the disease free equilibrium point. We compute the basic reproduction 

number using the next generation matrix approch. 

 

Thus the associated matrices F and V for the new infectious terms and the remaining transition terms are 

respectively given by:  

 

   

 
 
 
 
 
        

 
 
 
  

 
 
 
 

     

        
                   

                             
  

 

Thus the jacobian matrix of F and V at the disease free equilibrium point    takes the form respectively as:  

 

       

     

    
    
    

  and       

 
 
 
 
    
          

       

       
 
 
 

 

 

where                                . 

It can be verified that that the matrix       is non-singular as its determinant                   is non-

zero. That is         then it is invertable and the inverse is given by .  

 

       
   

      

      
                                                                                                                     (5) 

 

Then after some algebraic computations the inverse matrix is constructed as follows: 

 

       
   

 
 
 
 
 
 
 
 

 
   

      

  

 

 
  

          

   

  

  

 

 
 

                  

    

     

   

 

  

 

 

 
 
 
 
 
 
 

                                            (6) 

Now,  

 

              
   

 
 
 
 
 
                   

   

  

 
 

  

  

 

 
 

    
    
     

 
 
 
 

                               (7) 

 

Thus the eigenvalues of the matrix in equation (7) are:    
                   

   
                Then 

from             the dominant eigenvalue is    
                   

   
. Therefore the basic reproduction 

number is given by  

 

   
                   

   
. 

 

3.6 Local Stability of disease free equilibrium points (DFE) 
 

Theorem 3: The DFE    of the system (1) is locally asymptotically stable if      and unstable if     . 
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Proof Consider the right hand side expressions of the equations (1) as functions so as to find the Jacobian 

matrix as follows: 

 

Thus, the Jacobian matrix   of model at the disease free equilibrium    is given by  

 

      

 
 
 
 
 
 
           
          
        
            
        
        

 
 
 
 
 

                                                             (8) 

 

The eigenvalues of the jacobian matrix       are required to be found as follows. 

 

 

 

             

            
          
              
          
         

 

 
   

 

The characteristic equation of the Jacobian matrix at the disease free equilibrium point is  

 

                             
            

 

Where                                                    

 

Then,                      . From this the first three eigenvalues          are real, distinct and 

negative, which is stable. To determine the sign of the eigenvalues we use the Routh-Hurwitz criterian for the 

cubic equation;       
           . 

 

According to the Routh-Hurwitz criteria the three roots of a polynomial of order three of type         
   

         , are real distinct and negative if the coefficients satisfy the conditions                

and        . 

 

It is straight forward to verify that this conditions are satisfied and hence the last three eigenvalues are real 

distinct and negative.i.e  

 

     if         

 

     if                         

 

     if      

 

Clearly it can be observed that the first three conditions of the Routh-Hurwitz criteria are satisfied and the 

fourth condition is satisfied provided that :         if                                
         . 

 

Therefore the disease free equilibrium point of the system of ordinary differential equation (1) is locally 

asymptotically stable if     .  

 

3.7 Global stability of the disease free equilibrium point (DFE) 
 

Theorem 4: The disease free equilibrium point    of the model equation (1 is globally asymptotically stable if 

    .  
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proof To establish the global stability of the disease-free equilibrium point, we construct a Lyapunov function. 

let     
  be an open neighborhood of the disease free equilibrium point   . 

 

Then the function       
  defined by:  

 

               
  

 
        

  

 
        

  

 
        

  

 
                                                      (9) 

 

where    , for           are some positive constants to be chosen later. 

 

Then               should satisfies the following properties: 

 

i)   is continuously differentiable. 

ii)             and        ,as                              ,          . 

iii) 
  

  
   in  , then    is stable. 

 

The first two condition holds, as   it is continuously differentiable and    ,         and        . Now 

let we check the third condition 
  

  
   in  . 

 
  

  
   

  

  
   

  

  
   

  

  
   

  

  
 

 

                                                     
 

    
       

 
                                                 at   . 

 

                                                       
 

                                                               

 

                                                                              
      

 

     
              

   
                              

 

Now choosing                            . Then, 

 
  

  
     

                  

   
                                     

 

     
                  

   
     

 

            
 

Therefore 
  

  
              if      which implies that 

  

  
   . Therefore the largest compact 

invariant set in   is singleton set   . Hence LaSalle’s invariant principle implies that    is globally 

asymptotically stable. 

 

3.8 Endemic equilibrium points 
 

The endemic equilibrium point denoted by                        is a steady state solution where the 

disease persists in the population. The endemic equilibrium point is obtained by setting rates of changes of 

variables with respect to time in model equations (1) equal to zero. That is, setting  
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                                                                                  (10) 

 

Then solving they system of differential equation 10 by substitution and after some algebraic simplificaton we 

obtain                        where:  

 

   
  

     
 

 

   
         

      
 

 

   
    

       
 

 

   
        

         
 

 

   
        

       
 

 

   
       

   
.  

 

On substituting the expression for    and    into the force of infection, that is,    
         

 
 obtained as  

 

                   
 

      if               i.e    
 

      
 

 

From this, we see that, there is no endemic equilibrium for this model. Therefore, this condition shows that it is 

not possible for backward bifurcation in the model if     . 

 

Lemma: A unique endemic equilibrium point    exists and positive if     . 

 

3.9 Global stability of endemic equilibrium 
 

Theorem: 5 The endemic equilibrium point of the model equation(1) is globally asymptotically stable 

whenever       
 

Proof: To prove the global stability of the endemic equilibrium we use the method of Lyapunov functions. 

Define 

 

Define:   

                                
 

               
 

                
 

        

        
 

                
 

  
              

 

                                                               (11) 

 

Then by taking the time derivative of                     , we obtain: 
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By substituting the value 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 from model equation1 we obtain 

 
  

  
    

  

 
                

  

 
                       

  

 
         

         
  

 
                         

  

 
           

           
  

 
                

 

                      
  

 
   

  

 
                          

   
  

 
              

  

 
              

  

 
           

           
  

 
                               

  

 

   
  

 
   

  

 
  

 

Now after some simplifications i.e cancelling like terms which is opposite in sign we obtain: 

 
                                                                                                                                   

 

    
  

 
            

  

 
    

  

 
          

  

 
         

  

 
        

  

 
 

                                                           
 

 

 
  

  
     

 

Thus if    , then 
  

  
  . Noting that 

  

  
   if and only if                              . 

Therefore, the largest compact invariant set in                        
  

  
    is the singleton    is the 

endemic equilibrium of the system 1. By LaSalle’s invariant principle (LaSalle’s,1976),it implies that   is 

globally asymptotically stable in   if    .  

 

4 Sensitivity Analysis of Model Parameters 
 

One of the most important concerns about any infectious disease is its ability to invade a population. “The basic 

reproduction number,    is a measure of the potential for disease spread in a population, and is inarguably ’one 

of the foremost and most valuable ideas that mathematical thinking has brought to epidemic theory” [14]. A 

large value of    may indicate the possibility of a major epidemic. We thus, carried out sensitivity analysis of 

the basic reproduction number,    with respect to the model parameters in order to determine the relative 

importance of the different factors responsible for the transmission and prevalence of the disease. “This will 

assist in curtailing the transmission of the disease by using appropriate intervention strategies. There are more 

than a dozen ways of conducting sensitivity analysis, all resulting in a slightly different sensitivity ranking” 

[15]. “Following [14], we used the normalized forward sensitivity index also called elasticity as it is the 

backbone of nearly all other sensitivity analysis techniques [15] and are computationally efficient” [16]. The 

normalized forward sensitivity index of the basic reproduction number,    with respect to a parameter value,   

is given by:  
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                                                                                                                                (12) 

 

The sensitivity indices of the basic reproductive number with respect to main parameters are arranged orderly in 

Table 1. Those parameters that have positive indices show that they have great impact on expanding the disease 

in the community if their values are increasing. Due to the reason that the basic reproduction number increases 

as their values increase, it means that the average number of secondary cases of infection increases in the 

community. Furthermore, those parameters in which their sensitivity indices are negative have an influence of 

minimizing the burden of the disease in the community as their values increase while the others are left 

constant. And also as their values increase, the basic reproduction number decreases, which leads to minimizing 

the endemicity of the disease in the community.  

 

Table 1. Sensitivity indices table 

 

Parameter symbol Sensitivity indices 

   +ve  

   +ve  

  +ve 

   -ve  

   -ve  

   -ve  

  -ve 

  -ve 

  -ve 

 

 
 

Fig. 2. Sensitivity indices of basic reproduction number 

 

5 Formulation of an Optimal Control Problem 
 

The purpose of this section is to extend model equation (1) into an optimal control problem. The controls are 

defined as follows:   

 

1.    is the control variable for prevention of the recruitment to susceptible individuals.  

2.     is the control variable for reduction of the spread/contact of HIV infection.  

3.     is the control variable for screen of the exposed individuals.  

4.     is the control variable for treatment of the asymptomatic and infected individuals 
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After incorporating the controls, the corresponding state system for model equation1 is given as:  
 

 
 
 
 
 
 

 
 
 
 
 

     

  
               

     

  
                            

     

  
                         

     

  
                                  

     

  
                                   

     

  
                         

                                          (13) 

 

With initial condition                                           with a bounded Lebesgue 

measurable control set is represented as  
 

                             
             and         

 

 The aim objective is to minimize the number of infected population while minimizing the rate of interventions 

         and    on a fixed time period  . Therefore, the optimal control problem for the model equation (13) is 

to minimize the objective functional:  
 

       
 

 
             

 

 
                  

 

 
   

       
            (14) 

 

where,          and                 solves equation 13 for the specified control  . 
 

In the intervention of controls the solution                 depends on the controls. The constants 

         and    measures the cost or effort required for the implementation of each of the four control 

measures adopted while          and    measures the relative importance of reducing the associated classes 

on the spread of the disease. Thus, we need to find the optimal controls       
    

    
    

   such that  
 

         
 

                                                                                                                  (15) 

 

Hence, the basic setup of the optimal control problem is to check the existence and uniqueness of the optimal 

controls and to characterize them. 
 

5.1 Existence of an optimal controls 
 

Theorem: 6 Given      subject to system 13 with                                         
 , then there exists an optimal control    and corresponding                    , that minimizes      over  . 

The proof is based on the following assumption and by Fleming and Rishel’s [17] theorem.  
 

1. The set of controls and corresponding state variable is nonempty. 

2. The measurable control set is convex and closed.  

3.  All the right hand sides of equations of the state system is continuous, bounded above by a sum of 

bounded control and state, and can be written as a linear function of   with coefficients depending on 

time and state. 

4. The integrand        of the objective functional is convex.  

5. There exist constants                  and      such that the integrand of the objective functional 

satisfies                
        

        
        

  .  
 

Proof: 
 

1.   is a nonempty set of measurable functions on     with values in real numbers  . The system 13 has 

bounded coefficients and hence any solutions are bounded on [0, T]. The corresponding solutions for the 

system (13) exists. 

2. Assume that               such that                 . Now, let us take any controls         

and        , then              . Additionally, we observe that 
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              and                          . 

 

Then for any        ,  
 

              
 

                 

 

                 

 

           

 

Hence,               , for all         and        . 
 

Therefore, the control space                              
             and  

 

        is convex and closed by definition.  

 

3. By definition, each right hand side of system 13 is continuous. All variables             and   are 

bounded on      . To prove the boundedness we use the method in []. To do so we use the fact the 

super-solutions of system 13 is written as:  

 

 
 
 
 
 
 

 
 
 
 
 

     

  
   

     

  
                

     

  
         

     

  
              

     

  
                   

     

  
                  

                                                                                        (16) 

 

are bounded on a finite time interval. System 17 can be written as;  

 

  

 
 
 
 
 
 
  
  
  
  
  
   

 
 
 
 
 

 

 
 
 
 
 
 
      
            
            
            
                   
                   

 
 
 
 
 

 
 
 
 
 
 
  

 

 

 

 

  
 
 
 
 
 
 

   

 
 
 
 
 
 
  
      
 
 
 
  

 
 
 
 
 

                             (17) 

 

The system is linear in finite time with bounded coefficients, then the super-solutions           and   is 

uniformly bounded. Since the solution to each state equation is bounded, we observe that,  

 

           

 

 

 
 
 
 
 
 
      
            
            
            
                   
                   

 
 
 
 
 

 
 
 
 
 
 
  

 

 

 

 

  
 
 
 
 
 
 

 

 

 
 

 

 
 
 
 
 
 
  
      
 
 
 
  

 
 
 
 
 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
  

  

  

  

  
 
 
 
 
 

 

 

       (18) 

 

             

 

Where   depends on the coefficients of the system. Thus, the assumption holds. 
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4. The integrand in the objective functional, which is a cost function        is an affine function. Recall 

that any affine function is a convex and the sum of a convex function is a convex. Therefore,        is 

convex on  .  

5. Assume that there exists constants                  and      such that        satisfies        
         

        
        

        
 . Thus, the state variables are being bounded. 

 

Let                                   
  

 
    

  

 
    

  

 
    

  

 
 and     then it follows 

that  

 
                

        
        

        
  

 
Thus, this assumption is justified. Therefore, the optimal control   exists.  

 

5.2 Characterization of an Optimal Control 
 
In order to determine the necessary conditions for the optimal control the Pontryagin’s maximum principle [18] 

is used. To apply this we need to convert the optimal control problem into a problem of minimizing point wise a 

Hamiltonian,  , with respect to  . The Hamiltonian associated to our problem is:  

 

                         
    

 

 
 

    
 

 
 

    
 

 
 

    
 

 
                                            (19) 

 
                                                    
 
                                                                    

 
                                                                     

 
Based on [18], if the control   and the corresponding state    are an optimal couple, necessarily there exists a 

non trivial adjoint vector                       satisfying the following equality  

 

 
 
 

 
 

  

  
 

         

  
  

  
  

         

  

         

  
  

                                                                                                                                    (20) 

 
Which gives after derivation  

 

 
 
 

 
   

      
  

   
  

    
          

  

   
  

  
          

  

   
  

                                                                                                       (21) 

 
Now we apply the necessary conditions to the Hamilton function, H. 

 
Theorem: 7 Given an optimal control    and a solution to the corresponding state13,  , then there exist an 

adjoint vector   and this satisfies the following adjoint equation:  
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        is the transversality condition. Moreover, the optimal control    given by  

 

 
  
 

  
   

          
         

  
          

  
          

          

  
          

  
          

                    

  
          

  
          

                             

  
          

                                                          (22) 

 

Proof: The adjoint equation is obtained by differentiating the Hamiltonian equation 19 with respect to   

             . That is 
  

  
  

         

  
. Assuming that the final states                               are 

free we get the transversality conditions       . The optimal controls   are found from the optimality 

conditions and using the property of the control space  . The optimality condition of the Hamiltonian gives 
  

  
  . That is  

 

 
  
 

  
 

  

   
     

  
         

  

  

   
     

  
          

  

  

   
     

  
                    

  

  

   
     

  
                             

  

                                                                          (23) 

 

And using the property of the control space  , the controls are given as  
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5.3 The optimality system 
 

The optimality system consists of the state system (13) with its initial conditions coupled with the adjoint 

system (22) with its transversality conditions together with the characterization of the optimal controls. It is 

written as follows:  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
     

  
               

     

  
                            

     

  
                         

     

  
                                  

     

  
                                   

     

  
                         

   

  
                        

   

  
               

              
 

   

  
                                                    

   

  
              

   

 
           

   

 
                                   

            
   

  
              

  

 
           

  

 
                               

   

  
        

  

 

Where   
       

 
                        (28) 

 

5.4 Uniqueness of the optimality system 
 

In order to successively discuss uniqueness of the optimality system we notice that the adjoint system is also 

linear in    for               with bounded coefficients. Thus, there exists a     such that           for 

              on      . 
 

Theorem 8. [18] For   sufficiently small the solution to the optimality system is unique.  

 

6 Numerical Simulation 
 

In this section, the result obtained by numerically solving the optimality system was presented. In our control 

problem, we have initial conditions for the state variables and terminal conditions for the adjuncts. That is, the 

optimality system is a two-point boundary value problem with separate boundary conditions at times i = 0 and i 

= T. The simulations are consistent for all the scenarios under consideration, varying only in the margins of 

growth and reduction. As a result, we only have the results of the most effective combination. 

 

To conduct the study, a set of physically meaningful values are assigned to the model parameters and  using the 

software MATLAB R2015b with ODE45 solver. These values are either taken from literature or assumed on 

the basis of reality. Using the parameter values given in Table 2 and the initial conditions               
                           and         a simulation study is conducted and the results are given 

in the following Figures.  
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Table 2. Parameter values 
 

Parameter Value Source 

  0.007 Assumed 

  0.004 [19] 

  0.067 Assumed 

  0.054 [19] 

  0.015 Assumed 

  0.16 [19] 

  0.012 Assumed 

  0.06 Assumed 

  0.0001 [19] 

  0.04 [19] 

  0.03 Assumed 

  0.01 Assumed 

 

A. Control strategy with prevention only 

 

We simulated the optimality control system by incorporating prevention intervention only. Figs. 3, 4 and 5 

shows that the decrease of all infectious individuals in the specified time but they did not go to zero over the 

period of implementation of this intervention strategy. The reason is that due to lack of prevention susceptible 

individuals still get infected. Therefore, we conclude that applying optimized prevention only as control 

intervention decreases the burden of the disease but it is not eradicate HIV from the community. 

 

B. Control strategy with treatment only 

 

We applied treatment only as intervention that is treating individuals who develop disease symptom. Figs. 6, 7 

and 8 clearly show that all infectious individuals have gone to zero at the end of the implementation period. 

Therefore, we conclude that this strategy is effective in eradicating the HIV from the community in a specified 

period of time. 

 

 
 

Fig. 3. Simulations of exposed individuals with prevention only 
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Fig. 4. Simulations of asymptomatic individuals with prevention only 
 

 
 

Fig. 5. Simulations of symptomatic individuals with prevention only 
 

 
 

Fig. 6. Simulations of exposed individuals with treatment only 
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Fig. 7. Simulations of asymptomatic individuals with treatment only 

 

 
 

Fig. 8. Simulations of symptomatic individuals with treatment only 

 

C. Control strategy with prevention and Screening only 

 

In this strategy, we applied prevention and screening as intervention to control HIV. Figs. 9, 10 and 11 shows 

that infectious individuals did goes to zero over the period of implementation of this intervention strategy.  

Therefore, control with prevention and screening reduces the burden to some extent but it is not eradicate HPV 

totally from the community. 
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Fig. 9. Simulations of exposed individuals with prevention and screening only 
 

 
 

Fig. 10. Simulations of asymptomatic individuals with prevention and screening only 
 

 
 

Fig. 11. Simulations of symptomatic individuals with prevention and screening only 
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D. Control strategy with prevention and treatment only 

 

We simulate the model using a combination of prevention and treatment as intervention strategy for control of 

HIV in the community. Figs. 12, 13 and 14 shows that an infectious individual goes to zero over the period of 

implementation of this intervention strategy.  Therefore, this strategy is effective in eradicating the HIV in the 

specified period of time. 

 

E. Control strategy with prevention, screening and treatment 

 

In this strategy, we implemented all the three controls (prevention, screening and treatment) as intervention to 

eradicate HIV from the community. Figs. 15, 16 and 17 shows that an infectious individual goes to zero at the 

end of the implementation period. Therefore, applying this strategy is effective in eradicating HIV from the 

community in a specified period of time. 

 

 

 
 

Fig. 12. Simulations of exposed individuals with prevention and treatment only 

 

 
 

Fig. 13. Simulations of asymptomatic individuals with prevention and treatment only 
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Fig. 14. Simulations of symptomatic individuals with prevention and treatment only 
 

 
 

Fig. 15. Simulations of exposed individuals with prevention, screening and treatment 
 

 
 

Fig. 16. Simulations of asymptomatic individuals with prevention, screening and treatment 
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Fig. 17. Simulations of symptomatic individuals with prevention, screening and treatment 

 

7 Cost Effective Analysis 
 

Cost-effectiveness analysis is directly linked to the financial and scientific implications of different control 

interventions. We evaluate the cost using the incremental cost-effectiveness ratio (ICER) which is used to 

compare the differences between the costs and health outcomes of the two competing intervention strategies. 

“Each intervention is compared with the next less effective alternative” [9]. The infection averted is calculated 

by taking the difference between the total number of individuals of species without control and the total number 

of individuals of species  with control. The control strategies are ranked in order of increasing infection averted 

as presented in Table 3. 

 

Table 3. Total number of infection averted and total cost with their ICER 

 

Strategies Total infectious averted Total Cost ICER 

Strategy A  15.87 100 6.30 

Strategy B  133.86 99.9939 -0.00005169   

Strategy D 149.11 200 6.55777   

Strategy C 475.53 199.4593 -0.001656 

Strategy E 605.88 298.7859 0.761999 

 

The comparison between ICER (A) and ICER (B) shows a cost saving of $0.00005169 for strategy B over 

strategy A. There is an additional $6.3 per infection averted as we move from strategy A to B. The small value 

ICER for strategy B indicates the strategy A is "strongly dominated". That is, strategy A is more costly and less 

effective than strategy B. Therefore, strategy A, the strongly dominated is excluded. Exclude strategy A, we 

now compare strategy B with D, C and E. From the numerical results we get as follows in Table 4. 

 

Table 4. Total number of infection averted and total cost with their ICER 

 

Strategies Total infectious averted Total Cost ICER 

Strategy B  133.86 99.9939  0.747 

Strategy D 149.11 200 6.55777   

Strategy C 475.53 199.4593 -0.001656 

Strategy E 605.88 298.7859 0.761999 
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The comparison between ICER (B) and ICER (D) shows a cost saving of $0.747 for strategy B over strategy D. 

The small ICER for strategy B indicates the strategy D is "strongly dominated". That is, strategy D is more 

costly and less effective than strategy B. Therefore, strategy D, the strongly dominated is excluded from the set 

of alternatives so it does not consume limited resources. We exclude strategy D and compare strategy B with D, 

C and E. From the numerical results we get as follows in Table 5. 

 

Table 5. Total number of infection averted and total cost with their ICER 

 

Strategies Total infectious averted Total Cost ICER 

Strategy B  133.86 99.9939  0.747 

Strategy C 475.53 199.4593 0.291 

Strategy E 605.88 298.7859 0.761999 

 

The comparison between ICER (B) and ICER (C) shows a cost saving of $0.29111 for strategy B over strategy 

C. There is an additional $0.747 per infection averted as we move from strategy B to C. The small value ICER 

for strategy C indicates the strategy B is "strongly dominated". That is, strategy B is more costly and less 

effective than strategy C. Therefore, strategy B, the strongly dominated is excluded. Exclude strategy B, we 

now compare strategy C with E. From the numerical results we get as follows in Table 6. 

 

Table 6. Total number of infection averted and total cost with their ICER 

 

Strategies Total infectious averted Total Cost ICER 

Strategy C 475.53 199.4593 0.41944 

Strategy E 605.88 298.7859 0.761999 

 

The comparison between ICER (C) and ICER (E) shows a cost saving of $0.41944 for strategy C over strategy 

E. There is an additional $0.761999 per infection averted as we move from strategy C to E. Similarly, the small 

value ICER for strategy C indicates the strategy E is "strongly dominated". That is, strategy E is more costly 

and less effective than strategy C. Therefore, strategy E, the strongly dominated is excluded. 

 

With this result therefore, it is found that strategy C (combination of prevention with screening is most cost-

effective of all the strategies for HIV disease control. This result agrees with the results obtained in Fig. 20. 

 

 
 

Fig. 18. Total infectious averted plots indicating the effect of control strategies A, B, C, D and E 
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Fig. 19. The objective functional plots indicating the effect of control strategies a, B, C, D and E 

 

 
 

Fig. 20. Incremental cost effective ration (ICER) plots indicating the effect of control strategies A, B, C, D 

and E 

 

8 Conclusion 
 

In this chapter, a mathematical model of HIV/AIDS with an optimal control strategy was formulated and 

analyzed using the stability theory of differential equations. First, we analyzed the invariant region and the 

positivity solution of the model. The basic reproduction number representing the epidemic indicator is obtained 

using the next generation matrix. Both local and global stability of the disease-free equilibrium and endemic 

equilibrium point of the model equation was established. The results show that, if the basic reproduction 

number is less than one, then the solution converges to the disease-free steady-state, and the disease-free 

equilibrium is asymptotically stable.  Sensitivity analysis of the model equation was performed on the key 

parameters in order to determine their impact on the disease transmission dynamics. Second, we apply optimal 

control theory to describe the model that incorporates three controls, namely using prevention of HIV/AIDS, 

screening of asymptomatic populations, and treatment of infected populations.  Pontraygin’s maximum 
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principle is introduced to obtain the necessary condition for the optimal control problem. Finally, the simulation 

result of optimal control problem and analysis of cost-effectiveness show that a combination of using 

prevention and screening is the most effective and least-cost strategy to prevent the HIV/AIDS disease. 

 

9 Recommendation and Future Work 
 

We recommend policy makers, health care workers and individuals, creating awareness to decrease contact rate 

and increasing recovery rate with proper treatment effectively control HIV/AIDS disease. Also we recommend 

that the each developed model did not consider fractional derivative, which can be extended for future work. 
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