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ABSTRACT 
 

Cancer is a disease caused by defective cells that have an uncontrollable ability to proliferate 
without regard for the physiological organ. Cancer is a complicated multi-factorial, multi-staged, and 
multi-mechanistic disease. Within the initiation and course of manifestation, it comprises the 
interaction of environmental and host elements. Inherited genetic dispositions have a significant 
role in 5-10% of breast cancer cases and 5- 13% of colon cancer cases. Viral infections cause 
about 7% of cancer fatalities in developed countries; 4% are due to occupational hazards; 2% are 
due to sunlight; 2% are due to pollution of air, water, and soil; and less than 1% are due to food 
components and business products. 
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1. INTRODUCTION 
 

When fed persistently, several chemical and 
physical cancer agents can cause one or more of 

a variety of mutations in cells [1]. A desired array 
of cancer-causing chemical substances is man-
made, pesticides, pharmaceutical chemicals, or 
food additives [2]. Carcinogens are a broad 
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category that includes both natural and 
manmade products [3]. Surprisingly, all chemical 
carcinogens are electrophiles that combine with 
electron-rich atoms like RNA, DNA and protein 
[4]. Lung and prostate cancers can be improved 
by metals such as arsenic and arsenic 
compounds, chromium, nickel, cadmium, and 
beryllium [5]. Physical carcinogens, such as X-
rays and UV rays, can cause the development of 
pyrimidine dimers and apurinic web sites in DNA, 
as well as the generation of free radicals, which 
cause DNA damage and somatic mutations [6]. 
In animals, a large variety of DNA and RNA 
viruses have been found to be carcinogenic, but 
only a few viruses have been linked to human 
cancer [7]. Metastasis is the most life-threatening 
feature of the oncogenic process [8]. Even 
although the clinical significance of such 
expression of the malignant phenotype has been 
well appreciated, advances in know-how the 
molecular mechanisms involved in metastasis 
have lagged in the back of different trends within 
the cancer subject [Fig. 1] [9]. 
 

2. MATRIX METALLOPROTEINASES 
 
MMPs (matrix metalloproteinases) are a group of 
zinc metallo endopeptidases that have a role in 
the turnover of extracellular matrix components 
[10]. These enzymes are involved in various 
disorders such as arthritis, cancer, periodontitis, 
glomerulonephritis, encephalomyelitis, 
atherosclerosis, and tissue ulceration, as well as 
normal embryogenesis and tissue remodelling 
[11]. The main physiologic inhibitors of MMPs are 
tissue inhibitors of metalloproteinases (TIMPs) 
[12]. TIMPS are secreted proteins that form 

complexes with human MMPs and regulate their 
activity [13]. MMPs and TIMPs form a 
sophisticated organic device that tightly controls 
extracellular matrix breakdown [14]. MMPs and 
TIMPs play a large role in tumour invasion and 
metastasis, not only through their direct role in 
degrading extracellular matrix, but also through 
interactions with other biological structures 
involved in tumour invasion, such as cell 
adhesion molecules, cytoskeletal proteins, and 
boom elements [15]. 
 

3. TIMP-1 AND 2 
 
TIMP-l mRNA expression is up-regulated in a 
variety of human cancers and is associated with 
a worse clinical outcome in a few cases, such as 
colorectal carcinoma, non-small cell lung 
carcinoma, and breast carcinoma [16]. TIMP-1 
has been shown to have proneoplastic and 
antineoplastic effects at various stages in the 
progression of primary and metastatic tumours in 
experimental mice models [17]. TIMP-2 is a 
multifunctional angiogenesis, tumour growth, and 
tumour invasion inhibitor [18]. These methods 
entail not only the manipulation of tumour cells, 
but also the manipulation of intricate tumor-host 
relationships [19]. Because the host response to 
the tumour microenvironment can help or hinder 
tumour invasion and dissemination, regulating 
those host reaction aspects has been a major 
focus of new anticancer research [20]. TIMP-2 
can impede MMPs' activities, but it can also rely 
on MMP-independent pathways to control tumor-
host interactions [21]. TIMP-2 plays an 
immediate role in modulating the activation of 
tyrosine kinase-type growth issue receptors [22]. 

 

 
 
Fig. 1. Tumors induce blood vessel growth in promoting angiogenesis, Image courtesy of the 

National Cancer Institute, Cancer Information and Support Network 
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4. ANGIOGENESIS 
 

Angiogenesis, or the generation of new 
capillaries, is a fundamental event in a variety of 
harmful pathologic processes, such as tumour 
growth, metastasis, arthritis, and so on, as well 
as physiologic processes like as organ growth 
and development, wound healing, and 
reproduction [23]. Blood vessels are the 
embryo's first organ and the body's largest 
network, but they're also the most dangerous 
[24]. The development of new blood vessels 
contributes to severe neoplastic, ischemic, 
inflammatory, infectious, and immunological 
illnesses when it is dysregulated [25]. Molecular 
insights into these procedures are being 
developed at an unexpectedly fast rate, resulting 
in new treatment possibilities that are currently 
being investigated [26].  
 

5. TUMOR GROWTH AND METASTASIS 
 

Angiogenesis is required for invasive tumour 
growth and metastasis, and it is a critical 
component of cancer management [27]. Tumors 
must perform an angiogenic flip by disrupting the 
local stability of proangiogenic and 
antiangiogenic factors in order to broaden in 
length and reach metastatic potential [28]. 
Increased levels of proangiogenic proteins, such 
as vascular endothelial growth factor (VEGF) and 
simple fibroblast boom factor (bFGF), are 
typically found in neovascularized tumours [29]. 
Many factors can trigger the production of 

proangiogenic proteins, including hypoxia, 
oncogene activation, and tumour suppressor 
gene inactivation [30]. Antiangiogenic 
components are downregulated in some cancers, 
resulting in angiogenic transfer [31]. The stability 
of proangiogenic and antiangiogenic signals 
favours vasculature in most mature tissues [32]. 
However, in some cases, proangiogenic activities 
win out, resulting in tumour vascularization and 
metastatic spread [33]. In the creation of 
antiangiogenic agents, two general strategies 
have been used: inhibition of proangiogenic 
problem and therapy with endogenous 
angiogenesis inhibitors [34]. 
 

6. VASCULAR ENDOTHELIAL GROWTH 
ELEMENT 

 
Cancer and stromal cells, the extracellular matrix 
(ECM), and the vasculature are the three primary 
compartments in solid tumours [35]. The volumes 
of these components differ depending on the 
tumor's foundation and length, as well as the 
organ in which the main tumour originates [36]. 
Tumors require vasculature to gain access to 
oxygen and other nutrients, allowing them to 
grow and spread [37]. One of the most potent 
angiogenic agents produced by tumour cells has 
been identified as VEGF (vascular endothelial 
growth factor) [38]. It binds to endothelial cell 
surface receptors and activates a variety of 
mobile activities, including angiogenesis [39] Fig. 
2 [40]. 

 

 
 

Fig. 2. Role of MMPs in tumor growth and progression to angiogenesis [41] 
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7. ROLE OF HYPOXIA 
 

After a certain distance, simple oxygen transport 
to metabolising tissues becomes insufficient [42]. 
To fulfil the demands of the expanding quantity of 
cells, the increased rate of cell division in cancer 
involves metabolic pathways. [43]. Many cancers 
create a dangerously hypoxic milieu and release 
angiogenesis-stimulating factors such platelet-
derived growth factor (PDGF) and VEGF [44]. 
VEGF expression is increased in tumour zones 
around necrotic foci, suggesting a mechanism 
through which a hypoxic microenvironment can 
promote tumour angiogenesis [45]. The hypoxia-
inducible aspect (HIF) gene family, which codes 
for heterodimeric fundamental helix-loop-helix 
proteins made up of and D subunits, is activated. 
HIF-1s: is synthesised in the cytoplasm of cells 
but rapidly destroyed under normoxia; 
nevertheless, after a decrease in oxygen anxiety, 
the intracellular concentration of HIF-l increases 
immediately [46]. HIF-1 is a transcription factor 
that mediates hypoxia-induced reactions [Fig. 3], 
including apoptosis and the expression of the 
VEGF gene [47]. As a result, the availability of 
oxygen is a critical regulator of tumour 
angiogenesis [48]. 
 

8. T-LYMPHOCYTES 
 

In the host, CTLs provide efficient anticancer 
immunity. CTLs can also perform a surveillance 
function by identifying and eliminating potentially 
malignant cells that express peptides derived 
from mutant mobile or oncogenic viral proteins 
that are displayed in conjunction with class I 
MHC molecules [49]. The role of NK cells and 
macrophages NK cells can be triggered by direct 
tumour identification or by cytokines released by 
tumor-specific T lymphocytes [50]. The ability of 
NK cells to recognise tumour cells is not limited 
by MCH [51]. Fc receptors on NK cells can 
connect to antibody-covered tumour cells in 
some situations, resulting in antibody dependent 
mobile cytotoxicity (ADCC) [52]. Activated 
macrophages play a key role in immune 
responses to malignancies by releasing 
lysosomal enzymes or reactive oxygen 
metabolites [53]. Macrophages also have Fc 
receptors, which allows them to mediate ADCC 
[54]. TNF-a is produced by activated 
macrophages and has anticancer properties [55]. 
Immune Surveillance and the Role of Immune 
Devices in Tumor Improvement Host allows for 

both humoral and cellular immune responses to 
tumour antigens, and has been shown to be 
effective in tumour immune elimination [56]. 
CTLs (cytotoxic T lymphocytes) with tumor-
specific characteristics have been found in a 
variety of malignancies [57]. Natural killer cells, 
macrophages, and tumor-specific antibodies are 
all important effectors [58]. CTLs (cytotoxic T 
lymphocytes) produce potent anti-tumor 
immunity in the host [59]. CTLs can also 
undertake surveillance by detecting and 
destroying potentially cancerous cells that 
include peptides derived from mutant cell or 
oncogenic viral proteins that are expressed in 
combination with class I MHC molecules [60]. 

 
9. ROLE OF NK CELLS AND 

MACROPHAGES 
 
NK cells can be triggered either by tumour direct 
popularity or by cytokines generated by tumor-
specific T-lymphocytes [61]. MCH isn't required 
for NK cells to recognise tumour cells [62]. Fc 
receptors on NK cells can attach to antibody-
coated tumour cells in some cases, resulting in 
antibody-based cellular cytotoxicity [63]. 
Activated macrophages may also play a role in 
immunological responses to malignancies by 
releasing lysosomal enzymes, reactive oxygen 
metabolites, or generating TNF-a, according to 
numerous observations [64]. Macrophages have 
Fc receptors that allow them to mediate ADCC 
[65]. TNF-a is produced by activated 
macrophages and has anticancer properties [66]. 

 
10. ADCC 
 
Antibody Dependent Cell Cytotoxicity (ADCC) is 
a technique in which tumour cells that have been 
coated with IgG antibodies are selectively 
destroyed by killer cells, a type of 
lymphomonocytic cytotoxicity [67]. Several 
distinct leukocyte populations, including 
neutrophils, eosinophils, mononuclear 
phagocytes, and natural killer cells (NK cells), 
are capable of lysing target cells [68]. FcyRIII, 
also known as CD16, is a low affinity Fcy 
receptor on the leukocyte that recognises certain 
antibodies [69]. The antibody molecule sends out 
a specific popularity signal, whilst the nonspecific 
effector cells are directed to the target cells to 
deliver the cytotoxic impact [70]. 
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Fig. 3. Role of hypoxia in cancer, Image adopted from Trends in Cancer; Rankin EB et.al, 2016 

[48] 
 

 
 
Fig. 4. Role of immune cells in promotion and inhibition of cancer, Image adopted from Le QV 

et.al., 2019 [71] 
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11. TUMOR ESCAPE MECHANISM 
 
Although immunosurveillance may limit the 
outgrowth of some malignancies [Fig. 4], it is 
clear that the immunological gadget rarely saves 
the incidence of human fatal cancers [71]. It 
could be because a tumor's rapid development 
and dissemination overwhelms the immune 
system's effector mechanisms [72]. The host's 
inability to expand an efficient immune response 
has also been demonstrated in numerous 
classes [73]. The way a tumour spreads can be 
caused by a variety of causes, as listed below 
[74]. A) Tumor cells can have their Class I MHC 
expression reduced, which is essential for CTL 
identification [75]. B) Tumor products (e.g., TGF-
P) may decrease antitumor immune responses 
[76, 77]. C) Loss of tumour antigen expression 
[78]. D) Antigens on the surface of tumours can 
be masked from the immune system [79]. 
 

12. CYTOKINES 
 
Small secreted proteins called cytokines mediate 
and control immunity, infection, and 
hematopoiesis [80]. They are tiny structural 
proteins that range in molecular weight from 8 to 
40 KD [81]. They work by attaching to specific 
membrane receptors, which then sign the cells 
via second messengers, such as tyrosine 
kinases, to control its behaviour (gene 
expression) [82]. Growing or decreasing the 
expression of membrane proteins (together with 
cytokine receptors), proliferation, and release of 
effector molecules are all responses to cytokines 
[83]. Endogenous immunostimulatory proteins 
are known as cytokines [84]. Cytokines are 
important players in tumour metastasis [85]. 
Some cytokines may also reduce tumour growth 
by interfering with host tumour dating, for 
example, by reducing tumour angiogenesis and 
modulating the larger cellular matrix [86].  
 

13. CONCLUSION 
 
Apoptosis, rather than necrosis, is the most 
common mode of physiological cellular death. 
Abnormalities in this approach have been linked 
to a range of diseases as a cause or contributing 
factor. Inhibition of apoptosis can accelerate 
neoplastic transformation, especially when 
combined with a disrupted cellular cycle, and 
may affect tumour cells' response to anti-cancer 
therapy. Caspase regulators, including activators 
and inhibitors of mobile loss of life proteases, 
have also been discovered. In multicellular 

organisms, it is a key procedure for maintaining 
tissue homeostasis. Apoptosis may be                 
caused with the aid of a variety of stimuli 
together with ionizing radiations, gluco-corticoids 
chemotherapeutic dealers, lymphokines 
deprivation and diverse oxidants. Although the 
stimuli which set off apoptosis range markedly, 
the morphological functions of the manner are 
but conserved in special mobile sorts. It includes 
chromatin condensation, nuclear fragmentation, 
Plasma membrane blebbing, mobile shrinkage 
and formation of apoptotic bodies.  
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