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Abstract 

 

Euler function ( )n  and generalized Euler function ( )e n  are two important functions in number theory. 

Using the idea of classified discussion and determination of prime types, we study the solutions of odd 

number of generalized Euler function equations ( ) ( 1)e en n    and obtain all the values satisfying the 

corresponding conditions, where 2,3,4,6e  . 

 

 

Keywords: Euler function; generalized Euler function; odd. 

 

1 Introduction 
 

Euler function ( )n
 
is a relatively important in number theory, and it is also studied by the majority of 

researchers. Euler function ( )n
 
is defined as the number of positive integers not greater than n  and relatively 

prime to n . If 1n ， let standard factorization of n  be 1 2

1 2 ... krr r

kn p p p ，where 1 2, ,..., kp p p
 
are 

different primes， )1(1 kiri  ，then 
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1 2

1 1 1
( ) (1 )(1 ) (1 )

k

n n
p p p

      . 

 

Generalized Euler function ( )e n  is defined as   

                         

1
( , ) 1

( ) 1

n

e

e

i
i n

n

 
 
 




  .  

 

where     is the greatest integer not greater than  ，and ( , )i n denotes the greatest common divisor of i  and n . 

If 1e ，the generalized Euler function is just Euler function. 

 

Cai [1,2] studied the parity of ( )e n  when 2,3,4,6e  , and gives the conditions that both ( )e n  and 

( 1)e n   are odd numbers，Liang [3], Cao [4] studied the solutions to the equations involving Euler function，

Zhang [5-7] investigated the solutions to two equations involving Euler function ( )n  and generalized Euler 

function 2 ( )n , Jiang [8] investigated the solutions of generalized Euler function 3( )n . 

 

On page 138 of [9], proposing whether there are infinitely many pairs of consecutive integer pairs n  and +1n  

such that )1()(  nn  . Jud McGranie found 1267 values of )1()(  nn 
 
with 

1010n  , and the 

largest of which is ，9985705185n  )1()(  nn  11.732 511   We find the following theorems on 

the basics of the fact that the articles [1] and [2] and obtain the solutions of the equation ( ) ( 1)e en n  

under the condition that both ( )e n  and ( 1)e n   are odd numbers. 

 

Theorem 1.1  Both )(2 n
 
and )1(2 n  are odd and equal if and only if 2n or 3. 

 

Theorem 1.2  Both 3( )n
 
and 3( 1)n 

 
are odd and equal if and only if 3n   or 4 or 5 or 15. 

 

Theorem 1.3  Both 4 ( )n
 
and 4 ( 1)n 

 
are odd and equal if and only if 4n   or 5 or 6 or 7. 

 

2 Preliminaries  
 

Lemma 
[1]2.1  Except for 2,3,242n  ，both 2 ( )n

 
and 2 ( 1)n 

 
are odd if and only if 2n p ，

where 1, 3(mod4)p   ，both 2 1p 
 
and p

 
are primes. 

 

Lemma 
[1]2.2   2 (1) 0  ， 2 (2) 1  ；when 3n  , 2

1
( ) ( )

2
n n   . 

 

Lemma 
[1]2.3  Except for 3,15,24n  ，both 3( )n

 
and 3( 1)n 

 
are odd if and only if 

1) 
21 2 1( 1)

m

n m   
 
is prime；or 

 

2) 
2 , 5(mod6),qn q 

 both 
q

 
and 

2 1

3

q 

 

 are primes, where 
2 , 5(mod6),qn q 

 
or  
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3) 
3 2 1( 1)n     

 is prime. 

 

    Lemma 
[1]2.4  If 3n  ，

1
3 ,( ,3) 1,1i

k aa

i ii
n p p i k


    ，then 

 
( ) ( ) 1

3

1 ( 1) 2
( ) , 0 or 1, 2(mod3),1

3 3( )
1

( ) otherwise
3

n n a

in a p i k

n

n









   
    

 



，

， ，

 

 

where ( )n  is the number of prime factors of n (counting repetitions) and ( )n is the number of distinct 

prime factors of n . 

 

Lemma 
[10]2.5  For any positive integer ,m n  ，we have 

 

( , ) ( ) ( )
( ) ,

(( , ))

m n m n
mn

m n

 





 
 

where ( , )m n
 
represents the greatest common divisor of m  and n . In particular，when ( , ) 1m n  ，we have 

( ) ( ) ( )mn m n   .  

 

Lemma 2.6  The value of n  such that both 4 ( )n  and 4 ( 1)n   are odd are listed in Table 1 [2]. 

 

Table 1. The value of n  such that both 4 ( )n  and 4 ( 1)n 
 
are odd 

 

n   1n   conditions 

4 5  

 

 

7(mod8), 5(mod8)p q   are primes 

2 1 5(mod8), 3(mod8)q q     are primes，and   is prime 

2 1 7(mod8), 3(mod8)q q     are primes，and   is prime 

2 1
5(mod8), 5(mod8)

2

p
p


   are primes 

5 1
3(mod 4)

4

 
 is a prime 

4 1, 3(mod 4)q q    are primes， 1   

7 

57121 
2p

 

2 1q 
 

2q

 
2p

 
 

5 1   

4q

 

8 

57122 
22q

 

2q

 

2 1q 
 

2 1p 
 

 

5

 

4 1q 
 

 

Lemma 2.7   If 4n  ，
1

2 ,( ,2) 1, 0,1i
k aa

i ii
n p p a i k


     ，then [2] 

 
( ) ( )

4

1 ( 1) 2
( ) , 0 or 1, 3(mod 4),1

4 4( )
1

( ) otherwise
4

n n a

in a p i k

n

n









  
    

 



，

， .
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3 Proof of the Theorems 
 

3.1 Proof of Theorem 1.1 
 

We have 2 2 2(2) (3) (4) 1      by definition of the generalized Euler function 2 ( )n , and 

2 2(242) 55, (243) 81  
 
by Lemma 2.2.

 
 

By Lemma 2.1，except for 2,3,242n  ， both 2 ( )n
 
and 2 ( 1)n 

 
are odd if and only if 2n p ，

where 1, 3(mod4)p   ， both 2 1p 
 
and p

 
are primes. By Lemma 2.2, when 

2

1
3, ( ) ( )

2
n n n   ，and 

2

1
( 1) ( +1).

2
n n    Then for the equation ( ) ( 1)e en n   , we just 

need to solve the equation 

 

     
( ) ( 1)n n   .                                                                                  (1) 

 

Put 2n p ， 1 2 1n p    in (1)，since 1 2 1n p    is prime，then ( 1)n n   .  We just need 

to solve the equation 

 

( )n n  , 

 

and it has only a solution 1n , but the solution is not satisfied with the form 2n p  , so there is no 

solution.
 

 

Hence both )(2 n
 
and )1(2 n  are odd and equal if and only if 2n  or  3. 

 

3.2  Proof of Theorem 1.2 
 

By the definition of 3( )n , We have 

 

3 3 3 3 3 3(3) 1, (4) 1, (15) 3, (16) 3, (24) 3, (25) 7,          
 

 

hence 3 3 3 3(3) (4), (15) (16)     . Except 3,15,24n 
 
，we discuss the solutions in 3 cases by 

Lemma 2.3. 

 

Case 1 When 
22

m

n  ，
21 2 1( 1)

m

n m    ， and 
21 2 1( 1)

m

n m   
 
is prime. For n ， in 

Lemma2.4，we have 0a  ， 2(mod3)p  ， ( ) 2mn  ， ( ) 1n  ，then by Lemma 2.4, we have  

 

3

1 1
( ) ( )

3 3
n n   . 

 

Since 
21 2 1

m

n    is prime and 1 2(mod3)n  , we have 

 

3

1 1
( 1) ( 1) .

3 3
n n    
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If ，)1()( 33  nn 
 
then 

 

1 1 1 1
( ) ( 1)

3 3 3 3
n n     . 

 

Simplify it，we obtain ，1212 212  mm

thus we have ，1m
 

4.n   
 

Case 2  When 2 , 2 1q qn n   ，and both )6(mod5q , 
2 1

3

q 
 are primes, by Lemma 2.4, we have

 

3

1 1
( ) ( )

3 3
n n   . 

 

Since 
2 1

3

q 
 is prime , )6(mod5q

 
and 6)9(  , we have 

 

，)9(mod331212 5 q

 
 

thus  .)3(mod211
3

12


q

 

2 +1
1 3

3

q

n   ，then by Lemma 2.4, we obtain  

 

.
3

1

3

)1(
)1(3 




n
n


  

 

If ，)1()( 33  nn 
 
then ( )= ( +1) 2n n   ，namely 

 

1 2 1
2 (1 ) 2 ( 1) 2

2 3

q
q 
      ， 

 

simplified to 2 4q   ，we have no solutions in this case. 

 

Case 3 When 3 2 1n    ， 1 3 2n    ，and 3 2 1( 1)n       is prime, by Lemma 2.4，we have 

3

1 1
( ) ( )

3 3
n n   , 

 

meanwhile， 

 
1 ( ) 1 1

3

1 ( 1) 2 1 ( 1)
( 1) ( 1) ( 1)

3 3 3 3

n a

n n n
  

  
    

       . 

 

If 2 , 0k k  
  

 

1 1 1 1
( ) ( 1)

3 3 3 3
n n     ， 
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simplified to ( )= ( +1)n n  . Since 3 2 1( 1)n     
 
is prime，then 

 

1 1
3 2 2 3 2 (1 ) (1 )

2 3

         ， 

 

We get 0  , this is contradicted with the condition 1  . If 2 1, 0k k    ， 

 

1 1 1 1
( ) ( 1)

3 3 3 3
n n     ， 

 

simplified to ( )= ( +1) 2n n   ，then 

 

1 1
3 2 2 3 2 (1 ) (1 ) 2

2 3

          ， 

 

We have 1  ，then 3 2 1 5n     . 

 

Hence，both 3( )n
 
and 3( 1)n 

 
are odd and equal if and only if 3n   or 4 or  

5 or 15. 

 

3.3  Proof of Theorem 1.3 
 

By Lemma 2.7, we have 4 4(4) 1, (5) 1    ， 4 4(7) 1, (8) 1   and 

 

4(57121) 14221,  4(57122) 6591  , 

 

hence 4 4 4 4(4) (5), (7) (8).    
 
Then we discuss the solutions in 6 cases by Lemma 2.6. 

 

Case 1 When
2 2, 1 2n p n q   , and both 7(mod8), 5(mod8)p q 

 
are primes. By Lemma 2.7, we 

have 
4

1 1
( ) ( )+

4 2
n n  . Since 1(mod 4)q  ，then 4

1
( 1) ( 1),

4
n n   

 
namely  

 

1 1 1
( )+ ( 1).

4 2 4
n n    

 

Simplified to ( ) 2= ( +1),n n  namely 

 

2 21 1 1
(1 )+2 2 (1 ) (1 ).

2
p q

p q
         

 

Then ( 1) ( 1) 2,q q p p       by 
22 21 qp  , we have .12  qqp Then 

,236)()1( 2222222 qqqqqqp 
 

 

which is contradicted with the condition 
22 21 qp  ，no solution. 
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Case 2 When 2 1, 1 2n q n q     , and both 2 1 5(mod8),q  
 

3(mod8)q   are primes, where 

  is an odd. By Lemma 2.7, we have 
4

1 1
( 1) ( 1)+ .

4 2
n n     

 

Since 2 1 1(mod 4)q   ，we have 
4

1
( ) ( ),

4
n n  namely 

 

1 1 1
( ) ( 1)+ .

4 4 2
n n    

 

Simplified to ( )= ( +1)+2,n n  namely 

 

1 1
(2 1) 1 2 (1 ) (1 ) 2.

2
q q

q

          

 

Then 
1( 1) 4,q q    since both q

 
and 1q 

 
are positive integers，and 3(mod8)q  ，so 1 4q  ，

then 3, 1q   ，we have 2 3 1 5n      such that 4 4( ) ( 1)n n    only in this case. 

 

Case 3 When 2 , 1 2 +1n q n q    , and both 2 1 7(mod8),q  
 

3(mod8)q   are primes，where 

  is an odd. By Lemma 2.7, we have 4

1 1
( ) ( )+

4 2
n n 

 

and 

4

1 1
( 1) ( 1) ,

4 2
n n      

 

Then 

 

1 1 1 1
( )+ ( 1) .

4 2 4 2
n n     

 

Simplified to ( ) 4= ( +1),n n  namely 

 

1 1
2 (1 ) (1 ) 4 2 .

2
q q

q

        

 

Then 
1( 1) 4,q q    since q

 
and 1q 

 
both are positive integers，and 3(mod8)q  ，so 1 4q  ，

then 3, 1,q   we have 2 3 6n     such that 4 4( ) ( 1)n n  
 
only in this case.  

 

Case 4 When 
2 2, 1 +1n p n p   , and both 5(mod8),p 

 

2 1
5(mod8)

2

p 
  are primes. By Lemma 

2.7, we have 4

1
( ) ( )

4
n n 

 

and 

 

4

1
( 1) ( 1).

4
n n   
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When ，)1()( 44  nn   we have 

 

1 1
( ) ( 1).

4 4
n n    

 

Simplified to  

 
2

2 1 1
p (1 ) 1,

2

p

p


     

 

then 1.p   Which contradicts 5(mod8)p  . 

 

Case 5 When 5 1, 1 5n n     , and 
5 1

3(mod 4)
4

 


 

is a prime，then 
25 1 5 1

4 2
4 4

n
  

    . 

By Lemma 2.7, we have 4

1
( ) ( )

4
n n 

 

and 

 

4

1
( 1) ( 1),

4
n n   

 
 

namely 
1 1

( ) ( 1),
4 4

n n   simplified to ( )= ( 1),n n   i.e.,
5 1 4

2 ( 1) 5 ,
4 5

a
a

   
 

 

Then 
25

5
3

a   , which is impossible. 

 

Case 6  When 4 , 1 4 +1n q n q    , and both 4 1, 3(mod 4)q q  
 
are primes，where 1  .  

 

By Lemma 2.7, we have 4

1
( ) ( )

4
n n 

 

and

 
4

1
( 1) ( 1),

4
n n    namely  

 

1 1
( ) ( 1).

4 4
n n    

 

Simplified to ( )= ( 1),n n  
 
namely 

 

1 1
4 (1 ) (1 ) 4 .

2
q q

q

       

 

Then 1.q   Which contradicts the condition that
 

3(mod 4)q   is prime. 

 

Hence，both 4 ( )n
 
and 4 ( 1)n 

 
are odd and equal if and only if 4n   or 5 or 6 or 7. 
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4 Conclusion 
 

Euler function ( )n
 
and generalized Euler function ( )e n

 
are two  important functions in number theory. 

which this article has studied is the odd values of generalized Euler function equation 

( ) ( 1)e en n   ,where 2,3,4e  . Similarly, for 6e  , we obtain that both 6 ( )n
 
and 6 ( 1)n 

 
are 

odd and equal if and only if 6n   or 7 or 8 or 9 or 10 or 11.  
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