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Abstract

p-adic analysis and their applications is used p-adic distributions, p-adic measure, p-adic
integrals, p-adic L-function and other generalized functions. In addition, among the many ways
to investigate and construct generating functions for special polynomials and numbers, one
of the most important techniques is the p-adic Fermionic integral over Zp. In this paper, we
introduce new numbers and polynomials arising from the Fermionic p-adic integral on Zp. First,
we introduce new numbers and polynomials as one of generalizations of Changhee numbers
and polynomials of order r (r ∈ N), which are called the generalized Changhee numbers and
polynomials. We explore some interesting identities and explicit formulas of these numbers
and polynomials. Second, we define new numbers and polynomials as one of generalizations of
Catalan numbers and polynomials of order r (r ∈ N), which are called the generalized Catalan
numbers and polynomials. We also study some combinatorial identities and explicit formulas of
these numbers and polynomials.
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1 Introduction

Initiated by Kurt Hensel (1861-1941) at the end of the 19th century, the p-adic numbers have
recently been applied in physics, mathematics, and engineering in other parts of the natural sciences.
In particular, the p-adic analysis and their applications utilize p-adic distributions and p-adic
measure, p-adic integrals, p-adic L-function, and other generalized functions. Among these, the
p-adic integral and its applications are very important in finding solutions to special (differential)
equations, real problems in both physics and engineering ([1-20]). In addition, There are many
methods and techniques for investigating and constructing generating functions for special polynomials
and numbers ([1-3, 5, 11-13, 17, 21-30]). One of the most important techniques is the p-adic
Fermionic integral on Zp. In [9], Kim constructed the p-adic q-Volkenborn integration. When
q = −1, it is called the p-adic Fermionic integral on Zp ([10]). In this paper, we introduce
two new numbers and polynomials which derived from the Fermionic p-adic integral on Zp. For

p ≡ 1(mod 2), t ∈ Cp with |t|p < p
− 1

p−1 , a ∈ Q+, b ∈ Q − {0} with (a, p) = (b, p) = 1, we

first introduce new numbers A
(r)
n (a, b) and polynomials A

(r)
n (a, b|x) of a generalization of Changhee

numbers and polynomials of order r (r ∈ N), respectively. We explore some interesting identities

and explicit formulas of these numbers and polynomials. Second, we define new numbers W
(r)
n (a, b)

and polynomials W
(r)
n (a, b|x), respectively, for one of generalizations of Catalan numbers and

polynomials of order r (r ∈ N). We also invesgete some interesting properties and explicit formulas
of these numbers and polynomials.

Let p be a prime number with p ≡ 1 (mod 2). Throughout this paper, Zp, Qp and Cp will denote the
ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure
of Qp. Let| · |p be the p-adic norm with |p|p = 1

p
.

For a Cp-valued continuous function f on Zp, Kim [9, 10] introduced the p-adic fermionic integral
on Zp as follows:

I−1(f) =

∫
Zp

f(x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

f(x)µ−1(x+ pNZp)

= lim
N→∞

pN−1∑
x=0

f(x)(−1)x, (see [4, 10, 11, 18]).

(1.1)

Let fn(x) = f(x+ n) for n ∈ N. From (1.5), we observe that

I−1(fn) + (−1)n−1I−1(f) = 2

n−1∑
l=0

(−1)n−1−lf(l), (see [4, 10, 11, 18]). (1.2)

In (1.2), when n = 1, we have

I−1(f1) + I−1(f) = 2f(0). (1.3)

From (1.3), for r ∈ N, Kim-Kim introduced the Changhee numbers Ch
(r)
n and polynomials Ch

(r)
n (x)

of the first kind of order r, respectively, as follows:∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr)ndµ−1(x1) · · · dµ−1(xr) = Ch(r)
n , (see [7]), (1.4)
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∫
Zp

· · ·
∫
Zp

(1 + t)x1+···+xr+xdµ−1(x1) · · · dµ−1(xr)

=

(
2

2 + t

)r

(1 + t)x =

∞∑
n=0

Ch(r)
n (x)

tn

n!
, (see [7]).

(1.5)

When x = 0, Ch
(r)
n = Chn(0), which are called the Changhee numbers of order r.

When r = 1, Chn = Ch
(1)
n and Chn(x) = Ch

(1)
n (x), which are called the Changhee numbers and

Changhee polynomials, respectively.

For t ∈ Cp with |t|p < p
− 1

p−1 , from (1.3), we have the Catalan numbers Cn given by the generating
function ∫

Zp

(1− 4t)
x
2 dµ−1(x) =

2√
1− 4t+ 1

=
∞∑

n=0

Cnt
n, (see [11]), (1.6)

and the Catalan number C
(r)
n of order r (r ∈ N) given by the generating function∫

Zp

· · ·
∫
Zp

(1− 4t)
1
2
(x1+x2+···+xr)dµ−1(x1)dµ−1(x2) · · · dµ−1(xr)

=

(
2√

1− 4t+ 1

)r

=
∞∑

n=0

C(r)
n tn.

(1.7)

The p-adic logarithm and exponential function are given by the following infinite series:

log(1 + t) = −
∞∑

n=1

(−t)n

n
, (s ∈ Cp, |t|p < 1),

and

et =
∞∑

n=1

tn

n!
, (s ∈ Cp, |t|p < p

p
p−1 ).

From (1.3), the Euler polynomials are given by∫
Zp

et(y+x) dµ−1(y) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, (see [5, 8, 10]). (1.8)

When x = 0, En = En(0), which are called the Euler numbers.

From (1.3), we get∫
Zp

xn dµ−1(y) = En and

∫
Zp

(y + x)n dµ−1(y) = En(x), (see [5, 8, 10]). (1.9)

Let Tp be the p-adic locally constant space defined by Tp =
∪

n≥1 = limn→∞ Cpn , (n ∈ N),
where Cpn = {µ | µpn = 1}. For µ ∈ Tp and t ∈ Cp, the Apostol-Euler polynomials En(x;µ) were
introduced by

2ext

µet + 1
=

∞∑
n=0

En(x;µ)
tn

n!
, (see [3, 15, 18]), (1.10)
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when x = 0, En(µ) = 2nEn(
1
2
;µ), which are called the Apostrol-Euler numbers.

Obviously, when µ = 1, En(x; 1) = En(x).

The Euler polynomials of order r (r ∈ N) are given by the generating function(
2

et + 1

)r

ext =

∞∑
n=0

E(r)
n (x)

tn

n!
, (1.11)

when x = 0, E
(r)
n = E

(r)
n (0), which are called the Euler numbers of order r.

For n ≥ 0, the Stirling numbers of second kind are defined by

(x)n =
n∑

l=0

S1(n, l)x
l, and

1

k!
(log(1 + t))k =

∞∑
n=k

S1(n, k)
tn

n!
, (see [1, 2]). (1.12)

and

xn =
n∑

l=0

S2(n, l)(x)l, and
1

k!
(et − 1)k =

∞∑
n=k

S2(n, k)
tn

n!
, (see [1, 2]), (1.13)

where (x)n = x(x− 1)(x− 2) · · · (x− n+ 1) and (x)0 = 1.

2 The Generalized Changhee Numbers and Polynomials
Arising from the Fermionic p-adic Integral on Zp

In this section, we study new numbers of polynomials as one generalization of Changhee numbers
and polynomials which derived from the Fermionic p-adic integral on Zp, called the generalized
Changhee numbers and polynomials. We derive many properties of them.

Throughout this paper, assume that p ≡ 1(mod 2), t ∈ Cp with |t|p < p
− 1

p−1 , a ∈ Q+, b∈ Q− {0}
with (a, p) = 1 = (b, p) and (b, t) = 1, where (m,n) is the greatest common divisor of m and n.

Let f(x) = a+ bt. From (1.3), we observe that∫
Zp

(a+ bt)xdµ−1(x) =
2

(a+ 1) + bt
=

∞∑
n=0

An(a, b)t
n. (2.1)

In particular, when a = 1, b = 1, the generating function of Changhee numbers of the first kind are
given by ∫

Zp

(1 + t)xdµ−1(x) =
2

2 + t
and n!An(1, 1) = Chn. (2.2)

When a = 1, b = −1, we get

∫
Zp

(1− t)xdµ−1(x) =
2

2− t
and n!An(1,−1) = (−1)nChn. (2.3)
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Theorem 1. For a ∈ Q+, b ∈ Q− {0} with (a, p) = 1 = (b, p) and (b, t) = 1, we have

An(a, b) =
bn

n!an

∫
Zp

(x)na
x dµ−1(x) and,

and ∫
Zp

(x)na
x dµ−1(x) =

2(−1)n

n!an(a+ 1)n+1
.

Proof. From (1.3), we observe that∫
Zp

(a+ bt)xdµ−1(x) =

∞∑
n=0

∫
Zp

(
x

n

)
ax−nbn dµ−1(x)t

n

=

∞∑
n=0

1

n!an

∫
Zp

(x)na
xbn dµ−1(x)t

n.

(2.4)

On the other hand, we get

2

(a+ 1) + bt
=

2

(a+ 1)(1 + b
a+1

t)
=

2

a+ 1

∞∑
n=0

(
− b

a+ 1

)n

tn. (2.5)

By comparing the coefficients of (2.4) and (2.5), we get the desired result.

Remark. By (1.1), we observe that∫
Zp

(−1)xxkdµ−1(x) = lim
N→∞

∫
∪pN−1

x=0 (x+pNZp)

(−1)xxk dµ−1(x)

= lim
N→∞

pN−1∑
x=0

(−1)xxkµ−1(x+ pNZp) = lim
N→∞

pN−1∑
x=0

xk = 0.

(2.6)

When a = −1, combining (1.1) with (2.6), we have∫
Zp

(−1 + bt)xdµ−1(x) =

∫
Zp

ex log(1−bt)(−1)x dµ−1(x)

=

∞∑
l=0

∫
Zp

(−1)xxl dµ−1(x)
1

l!
(log(1− bt))l

=

∞∑
n=0

n∑
l=0

(−1)nbn

n!
S1(n, l)

∫
Zp

(−1)xxk dµ−1(x)t
n = 0,

Theorem 2. For a = 1, b ∈ Q− {0} with (b, p) = 1 and (b, t) = 1, we have

An(1, b) =
bn

n!

n∑
l=0

S1(n, l)El,

where En are the Euler numbers.
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Proof. From (1.12) and (2.1), we observe that

∞∑
n=0

An(1, b)t
n =

∫
Zp

(1 + bt)xdµ−1(x)

=

∞∑
l=0

∫
Zp

xl 1

l!
(log(1 + bt))ldµ−1(x)

=

∞∑
l=0

∫
Zp

xl
∞∑
n=l

S1(n, l)
bn

n!
tldµ−1(x)

=

∞∑
n=0

n∑
l=0

S1(n, l)b
n

n!

∫
Zp

xldµ−1(x)t
n.

(2.7)

By comparing the coefficients of both sides of (2.7), we get the desired result.

Theorem 3. For b ∈ Q+ with (b, p) = 1 and (b, t) = 1, we have,

n∑
m=0

m!Am(b, b)S2(n,m) = En(b),

where En(b) are the Apostrol-Euler numbers.

Proof. Let

∞∑
n=0

An(b, b)t
n =

∫
Zp

(b+ bt)xdµ−1(x). (2.8)

Replacing t by et − 1 in (2.8), from (1.3) and (1.10), the left-hand side of (2.8) is∫
Zp

(b+ b(et − 1))xdµ−1(x) =

∫
Zp

(bet)xdµ−1(x) =
2

bet + 1
=

∞∑
n=0

En(b)
tn

n!
. (2.9)

By (1.13), the right-hand side of (2.8) is

∞∑
m=0

Am(b, b)(et − 1)m =

∞∑
m=0

m!Am(b, b)
(et − 1)m

m!

=
∞∑

m=0

m!Am(b, b)
∞∑

n=m

S2(n,m)
tn

n!

=

∞∑
n=0

n∑
m=0

m!Am(b, b)S2(n,m)
tn

n!
.

(2.10)

By comparing the coefficients of (2.9) and (2.10), we get the desired identity.

For a ∈ Q+, b ∈ Q− {0} with (a, p) = 1 = (b, p) and (b, t) = 1, we consider the generating function
of An(a, b|x) which are derived from the Fermionic p-adic integral on Zp as follows:

∫
Zp

(a+ bt)y+x dµ−1(y) =

∞∑
n=0

An(a, b|x)tn. (2.11)
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When x = 0, An(a, b) = An(a, b|0). From (1.3), we have

∞∑
n=0

An(a, b|x)tn =
2

(a+ 1) + bt
(a+ bt)x. (2.12)

We note that n!An(1, 1|x) = Chn(x) and An(1,−1|x) = (−1)n

n!
Chn(x).

Theorem 4. For a ∈ Q+, b ∈ Q− {0} with (a, p) = 1 = (b, p) and (b, t) = 1, we have

An(a, b|x) =
bn

n!an
ax

∫
Zp

(y + x)na
y dµ−1(y).

In addition, we have ∫
Zp

(y + x)na
y dµ−1(y) =

n∑
m=0

n!(−1)n−mAm(a, 1).

Proof. We observe that∫
Zp

(a+ bt)y+x dµ−1(y) =
∞∑

n=0

∫
Zp

(
y + x

n

)
ay+x−nbn dµ−1(y)t

n

=

∞∑
n=0

∫
Zp

(y + x)na
y a

xbn

n!an
dµ−1(y)t

n.

(2.13)

By comparing the coefficients of (2.11) and (2.13), we have the first identity.

In particular, when b = 1, we observe that∫
Zp

(1 + t)y+xay dµ−1(y) =

∞∑
n=0

∫
Zp

(
y + x

n

)
aytn dµ−1(y)

=

∞∑
n=0

∫
Zp

(y + x)na
y dµ−1(y)

tn

n!
.

(2.14)

On the other hand, from (1.3), we get∫
Zp

(1 + t)y+xay dµ−1(y) =
2

(a+ 1) + t
(1 + t)x =

∞∑
m=0

Am(a, 1)tm
∞∑
l=0

(−1)ltl

=

∞∑
n=0

n∑
m=0

n!(−1)n−mAm(a, 1)
tn

n!
.

(2.15)

By comparing the coefficients of (2.14) and (2.15), we have the second identity.

In the same way as Theorem 2 and 3, we have the following theorem.

Theorem 5. For b ∈ Q− {0} with (b, p) = 1 and (b, t) = 1, we have

An(1, b|x) =
bn

n!

n∑
l=0

S1(n, l)El(x)
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and

n∑
m=0

m!Am(b, b|x)S2(n,m) = En(b|x),

where En(x) and En(b|x) are the Euler polynomials and the Apostrol-Euler polynomials.

Theorem 6. For b ∈ Q− {0}, we have

An(1, b|x) =
n∑

l=0

l∑
j=0

(−1)n−lbn

l!2n−l
xj .

Proof. From (1.12), we observe that

(1 + bt)x =

∞∑
j=0

xj 1

j!
(log(1 + bt))j

=

∞∑
j=0

xj
∞∑
l=j

S1(l, j)
bltl

l!
=

∞∑
l=0

( l∑
j=0

S1(l, j)
bl

l!
xj

)
tl.

(2.16)

On the other hand, we have

2

2 + bt
(1 + bt)x =

∞∑
i=0

(
− b

2

)i

ti
∞∑
l=0

( l∑
j=0

bl

l!
xj

)
tl

=

∞∑
n=0

( n∑
l=0

l∑
j=0

(−1)n−lbn

l!2n−l
xj

)
tn.

(2.17)

By comparing the coefficients of (2.16) and (2.17), we get the desired result.

For r ∈ N, a ∈ Q+, and b ∈ Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1, we consider the generating

functions of A
(r)
n (a, b) and A

(r)
n (a, b|x) of order r, which are derived from the multivariate Fermionic

p-adic integral on Zp, respectively as follows:

∫
Zp

· · ·
∫
Zp

(a+ bt)x1+x2+···+xr dµ−1(x1)dµ−1(x2) · · · dµ−1(xr)

=

(
2

(a+ 1) + bt

)r

=

∞∑
n=0

A(r)
n (a, b)tn,

(2.18)

and

∫
Zp

· · ·
∫
Zp

(a+ bt)x1+x2+···+xr+x dµ−1(x1)dµ−1(x2) · · · dµ−1(xr)

=

(
2

(a+ 1) + bt

)r

(a+ bt)x =

∞∑
n=0

A(r)
n (a, b|x)tn.

(2.19)

It easy to see that n!A
(r)
n (1, 1) = Ch

(r)
n and n!A

(r)
n (1, 1|x) = Ch

(r)
n (x).
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Theorem 7. For a ∈ Q+ and b ∈ Q− {0} with (a, p) = (b, p) = 1 and (b, t) = 1, we have

A(r)
n (a, b|x) =

(
b

a

)n ∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)na
x1+···+xr+x dµ−1(x1) · · · dµ−1(xr).

In particular, when x = 0, we have

A(r)
n (a, b) =

(
b

a

)n ∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr)na
x1+···+xr dµ−1(x1) · · · dµ−1(xr).

Proof. We observe that∫
Zp

· · ·
∫
Zp

(a+ bt)x1+···+xr+x dµ−1(x1) · · · dµ−1(xr)

=

∞∑
n=0

∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xr + x

n

)
ax1+···+xr−n dµ−1(x1) · · · dµ−1(xr)b

ntn

=
bn

an

∞∑
n=0

∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)na
x1+···+xr dµ−1(x1) · · · dµ−1(xr)t

n.

(2.20)

Combining (2.19) with (2.20), we get the desired result.

Theorem 8. For r ∈ N, a ∈ Q+, and b ∈ Q− {0} with (a, p) = 1 = (b, p) and (b, t) = 1, we have

A(r)
n (a, b) =

∑
j1+j2+···+jr=n

(
n

j1j2 · · · jr

)
Aj1(a, b)Aj2(a, b) · · ·Ajr (a, b).

Proof. We observe that(
2

(a+ 1) + bt

)r

=

∞∑
n=0

( ∑
j1+j2+···+jr=n

(
n

j1j2 · · · jr

)
Aj1(a, b)Aj2(a, b) · · ·Ajr (a, b)

)
tn

n!
. (2.21)

From (2.21), we ge the desired identity.

Theorem 9. For r ∈ N, b ∈ Q− {0} with (b, p) = 1 and (b, t) = 1, we have

A(r)
n (1, b|x) =

n∑
l=0

l∑
j=0

bl

l!
S1(l, j)A

(r)
n−l(1, b)x

j .

In addition, when x = 0, we have

A(r)
n (1, b) =

n∑
l=0

bl

l!
A

(r)
n−l(1, b)x

j .

Proof. From (1.12) and (2.19), we observe that

∞∑
n=0

A(r)
n (1, b|x)tn =

(
2

2 + bt

)r

(1 + bt)x =
∞∑

m=0

A(r)
m (1, b)tm

∞∑
l=0

( l∑
j=0

S1(l, j)
bl

l!
xj

)
tl

=

∞∑
n=0

( n∑
l=0

l∑
j=0

bl

l!
S1(l, j)A

(r)
n−l(1, b)x

j

)
tn.

(2.22)
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By comparing the coefficients of both sides of (2.22), we get the desired result.

3 The Generalized Catalan Numbers and Polynomials
Arising from the Fermionic p-adic Integral on Zp

In this section, we study new numbers of polynomials as one generalization of Catalan numbers and
polynomials which derived from the Fermionic p-adic integral on Zp, called the generalized Catalan
numbers and polynomials. We also explore interesting properties.

For t ∈ Cp with |t|p < p
− 1

p−1 , a ∈ Q+, and b ∈ Q − {0} with (a, p) = 1 = (b, p) and (b, t) = 1, let
f(x) = a+ bt.

From (1.3), we observe that∫
Zp

(a+ bt)
x
2 dµ−1(x) =

2√
a+ bt+ 1

=

∞∑
n=0

Wn(a, b)t
n. (3.1)

In particular, when a = 1, b = −4, we get the generating function of Catalan numbers as follows:∫
Zp

(1− 4t)
x
2 dµ−1(x) =

2√
1− 4t+ 1

and Wn(1,−4) = Cn. (3.2)

When a = 1, b = 4, we get

∫
Zp

(1 + 4t)
x
2 dµ−1(x) =

2√
1 + 4t+ 1

and Wn(1, 4) = (−1)nCn. (3.3)

To proof of next theorem, we observe that

√
1 + bt =

∞∑
n=0

(
1
2

n

)
tn =

∞∑
n=0

(
1

2

)
n

1

n!
bntn

=

∞∑
n=0

1
2
( 1
2
− 1)( 1

2
− 2) · · · ( 1

2
− n+ 1)

n!
bntn

=

∞∑
n=0

(−1)n−11 · 3 · 5 · · · (2n− 3)

n!2n
bntn

=

∞∑
n=0

(−1)n−11 · 2 · 3 · 4 · · · (2n− 2)(2n− 3)(2n− 1)(2n)

n!2n2 · 4 · 6 · · · (2n− 2)(2n− 1)(2n)
bntn

=
∞∑

n=0

(−1)n−1(2n)!

n!4n(2n− 1)(n!)
tn =

∞∑
n=0

(−1)n−1

4n(2n− 1)

(
2n

n

)
bntn.

(3.4)

Theorem 10. For b ∈ Q− {0} with (b, p) = 1 and (b, t) = 1, we have

n!Wn(1, b) = bn
∫
Zp

(
x

2

)
n

dµ−1(x),

and
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∫
Zp

(
x

2

)
n

dµ−1(x) =
2(−1)n+1

4n+1(2n+ 1)

(
2(n+ 1)

n+ 1

)
.

Proof. First, we observe that∫
Zp

(1 + bt)
x
2 dµ−1(x) =

∞∑
n=0

∫
Zp

(
x
2

n

)
bndµ−1(x)t

n

=

∞∑
n=0

bn

n!

∫
Zp

(
x

2

)
n

dµ−1(x)t
n.

(3.5)

Combining (3.1) and (3.5), we get the first identity.

From (3.4), we get

2

1 +
√
1 + bt

=
2(1−

√
1 + bt)

bt
=

2

bt

∞∑
n=1

bn(−1)n

4n(2n− 1)

(
2n

n

)
tn

= 2

∞∑
n=0

bn(−1)n+1

4n+1(2n+ 1)

(
2(n+ 1)

n+ 1

)
tn.

(3.6)

By comparing the coefficients of (3.5) and (3.6), we get the second identity.

Theorem 11. For b ∈ Q− {0} with (b, p) = 1 and (b, t) = 1, we have

Wn(1, b) =
n∑

l=0

bn

n!2l
S1(n, l)El,

where En are the Euler numbers.

Proof. From (1.9) and (1.12), we observe that

∞∑
n=0

Wn(1, b)t
n =

∫
Zp

(1 + bt)
x
2 dµ−1(x)

=

∫
Zp

e
x
2

log(1+bt) dµ−1(x)

=
∞∑
l=0

∫
Zp

(
x

2

)l
1

l!
(log(1 + bt))l dµ−1(x)

=

∞∑
l=0

∞∑
n=l

S1(n, l)
bn

n!

∫
Zp

(
x

2

)l

dµ−1(x)t
n

=

∞∑
n=0

n∑
l=0

bn

n!2l
S1(n, l)Elt

n.

(3.7)

By comparing the coefficients of both sides of (3.7), we get the desired result.

The next theorem is the inverse formula of Theorem 11.
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Theorem 12. For b ∈ Q− {0} with (b, p) = 1 and (b, t) = 1, we have

n∑
m=0

m!2n

bm
S2(n,m)Wm(1, b) = En,

where En are the ordinary Euler numbers.

Proof. Let

2√
1 + bt+ 1

=

∞∑
n=0

Wn(1, b)t
n. (3.8)

By replacing t by 1
b
(e2t − 1) in (3.8), by (1.9), the left-hand side of (3.8) is

2

et + 1
=

∞∑
n=0

En
tn

n!
. (3.9)

On the other hand, from (1.13), the right-hand side of (3.8) is

∞∑
m=0

Wm(1, b)

(
1

b
(e2t − 1)

)m

=

∞∑
m=0

m!

bm
Wm(1, b)

∞∑
n=m

S2(n,m)
2ntn

n!

=

∞∑
n=0

( n∑
m=0

m!2n

bm
S2(n,m)Wm(1, b)

)
tn

n!
.

(3.10)

By comparing the coefficients of (3.9) and (3.10), we have the desired result.

For a ∈ Q+ and b ∈ Q = {0}, we consider the generating function of Wn(a, b|x) which are derived
from the multivariate Fermionic p-adic integral on Zp as follows:

∫
Zp

(a+ bt)
y+x
2 dµ−1(y) =

∞∑
n=0

Wn(a, b|x)tn. (3.11)

When x = 0, Wn(a, b) = Wn(a, b|0). From (1.3), we have

∞∑
n=0

Wn(a, b|x)tn =
2√

a+ bt+ 1
(a+ bt)

x
2 . (3.12)

We note that Wn(1,−4|x) = Cn(x) and Wn(1, 4|x) = (−1)nCn(x).

Theorem 13. For a ∈ Q+, and b ∈ Q− {0} with (a, p) = 1 = (b, p) and (b, t) = 1,

Wn(a, b|x) =
bn

n!an
a

x
2

∫
Zp

(
y + x

2

)
n

a
y
2 dµ−1(y),

and

Wn(a, b|x) =
n∑

k=0

bn

n!an2k
a

x
2 S1(n, k)Ek(x; a

1
2 ),

where Ek(x;µ) are the Apostrol-Euler polynomials.
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Proof. From (1.10) and (1.12), we observe that∫
Zp

(a+ bt)
y+x
2 dµ−1(y) =

∞∑
n=0

∫
Zp

(
y+x
2

n

)
a

y+x
2

−nbntn dµ−1(y)

=
∞∑

n=0

bn

n!an
a

x
2

∫
Zp

(
y + x

2

)
n

a
y
2 dµ−1(y)t

n

=

∞∑
n=0

bn

n!an
a

x
2

n∑
k=0

S1(n, k)
1

2k

∫
Zp

(y + x)ka
y
2 dµ−1(y)t

n

=
∞∑

n=0

n∑
k=0

bn

n!an2k
a

x
2 S1(n, k)Ek(x; a

1
2 )tn.

(3.13)

Combining (3.11) with (3.13), we attain the desired result.

For r ∈ N, we consider the generating functions of W (a, b) and W (a, b|x) of order r, which are
derived from the multivariate Fermionic p-adic integral on Zp, respectively as follows:

∫
Zp

· · ·
∫
Zp

(a+ bt)
x1+x2+···+xr

2 dµ−1(x1)dµ−1(x2) · · · dµ−1(xr)

=

(
2√

a+ bt+ 1

)r

=

∞∑
n=0

W (r)
n (a, b)tn,

(3.14)

and

∫
Zp

· · ·
∫
Zp

(a+ bt)
x1+x2+···+xr+x

2 dµ−1(x1)dµ−1(x2) · · · dµ−1(xr)

=

(
2√

a+ bt+ 1

)r

(a+ bt)
x
2 =

∞∑
n=0

W (r)
n (a, b|x)tn.

(3.15)

From (1.7), we note that W
(r)
n (1,−4) = C

(r)
n and W

(r)
n (1,−4) = C

(r)
n (x).

The following theorem can be obtained in the same way as in Theorem 7.

Theorem 14. For a ∈ Q+ and b ∈ Q− {0} with (a, p) = (b, p) = 1 and (b, t) = 1, we have

W (r)
n (a, b|x) =

(
b

a

)n ∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xr + x

2

)
n

a
x1+···+xr+x

2 dµ−1(x1) · · · dµ−1(xr).

In particular, when x = 0, we have

W (r)
n (a, b) =

(
b

a

)n ∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xr + x

2

)
n

a
x1+···+xr

2 dµ−1(x1) · · · dµ−1(xr).

Theorem 15. For r ∈ N, a ∈ Q+, and b ∈ Q− {0} with (a, p) = 1 = (b, p) and (b, t) = 1, we have

W (r)
n (a, b) =

∑
j1+j2+···+jr=n

(
n

j1j2 · · · jr

)
Wj1(a, b)Wj2(a, b) · · ·Wjr (a, b).
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Proof. We observe that(
2√

a+ bt+ 1

)r

=

∞∑
n=0

( ∑
j1+j2+···+jr=n

(
n

j1j2 · · · jr

)
Wj1(a, b)Wj2(a, b) · · ·Wjr (a, b)

)
tn. (3.16)

Combining (3.14) with (3.16), we ge the desired identity.

Theorem 16. For r ∈ N, b ∈ Q− {0} with (b, p) = 1 and (b, t) = 1, we have

W (r)
n (1, b|x) =

n∑
l=0

l∑
j=0

(−1)n−jbn−j+l

l!22n−j
Cn−jS1(l, j)x

j ,

where Cn are the Catalan numbers.

Proof. From (1.12), we observe that

(1 + bt)
x
2 =

∞∑
j=0

(
x

2

)j
1

j!
(log(1 + bt))j

=

∞∑
j=0

(
x

2

)j ∞∑
l=j

S1(l, j)
bltl

l!
=

∞∑
l=0

( l∑
j=0

S1(l, j)
bl

2j l!
xj

)
tl.

(3.17)

By (1.6) and (3.17), we have(
2

1 +
√
1 + bt

)r

(1 + bt)
x
2 =

(
2

1 +
√

1− 4(− b
4
t)

)r

(1 + bt)
x
2

=

∞∑
m=0

Cm

(
− b

4

)m

tm
∞∑
l=0

( l∑
j=0

S1(l, j)
bl

2j l!
xj

)
tl

=
∞∑

n=0

( n∑
l=0

l∑
j=0

(−1)n−jbn−j+l

l!22n−j
Cn−jS1(l, j)x

j

)
tn.

(3.18)

By comparing the coefficients of (3.15) and (3.18), we get the desired result.

Theorem 17. For r ∈ N, b ∈ Q− {0} with (b, p) = 1 and (b, t) = 1, we have

W (r)
n (1, b|x) =

n∑
l=0

l∑
j=0

bl

l!2j
S1(l, j)W

(r)
n−l(1, b)x

j .

Proof. From (1.12) and (3.15), we observe that

∞∑
n=0

W (r)
n (1, b|x)tn =

∞∑
m=0

W (r)
m (1, b)tm

∞∑
l=0

( l∑
j=0

S1(l, j)
bl

2j l!
xj

)
tl

=

∞∑
n=0

( n∑
l=0

l∑
j=0

bl

l!2j
S1(l, j)W

(r)
n−l(1, b)x

j

)
tn.

(3.19)

By comparing the coefficients of both sides of (3.19), we get the desired result.
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4 Conclusion

In this paper, we introduced two new numbers and polynomials derived from the (multivariate)
Fermionic p-adic integral on Zp. One is the generalized Changhee numbers and polynomials

A
(r)
n (a, b|x) of order r (r ∈ N) and the other is the generalized Catalan numbers and polynomials

W
(r)
n (a, b|x) of order r (r ∈ N). In particular, we found that we could not generalize to two new

numbers and polynomials derived from the Fermionic p-adic integral on Zp (Section 2: Remark)

when a ∈ Q− (Section 2: Remark). From our definitions, we observed that n!A
(r)
n (1, 1|x) = Ch

(r)
n (x)

and W
(r)
n (1,−4|x) = C

(r)
n (x), where Ch

(r)
n (x) and C

(r)
n are the Changhee polynomials of order r

and the Catalan polynomials of order r, respectively. In Section 2, we obtained relations of between
the generalized Changhee polynomials (numbers) of order r and the Euler polynomials (numbers)
of order r in Theorem 2 and 5. In particular, the Apostrol-Euler polynomials was expressed by the
finite some of the Stirling numbers of the second kind and An(b, b|x) in Theorem 5. In Section 3, we
showed relations of between the generalized Catalan numbers and the Euler numbers in Theorem
11 and 12. In Theorem 13, the generalized Catalan polynomials was expressed by the finite sum of
the Stirling numbers of the first kind and the Apostrol-Euler polynomials. In addition, we obtained
various different explicit formulas. As is well known, the catalan numbers have many combinatorial
applications. As a follow-up to this paper, some symmetric identities for these new numbers and
polynomials are an example of good applications of these new numbers. We expect that there will
be many applications by appropriately adjusting the variables a, b of these generalized new numbers.
As a result, for future projects, we would like to conduct research into some potential applications
of the numbers and polynomials derived in this paper.
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