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To produce a usual hot mix asphalt, significant amount of energy is used, which causes air pollution. As a result, warm mix asphalt
(WMA) is introduced to reduce the mixing and compaction temperature of the mixture. On the one hand, accumulation of waste
oil in the ground occupies a large space in the Earth. After the process of frying the oil, if the by-product is not controlled properly,
it leads to the pollution of the environment. Hence, utilization of this waste oil can be considered as a sustainable path to dealing
with the risk. The main goal of the current research is to evaluate the possibility of exploiting soybean oil to reduce the mixing and
compaction temperature of mixtures and produce warm mix asphalt (WMA). Moreover, the rheological and performance
properties of mixtures containing soybean are evaluated in this study. The AC-60/70 and 85/100 binders are modified by soybean
oil (0%, 1.5%, 2.5%, and 3.5% by weight of binder). Several binder tests are used to measure the physical and rheological behaviors
of binders, such as penetration grade, softening point, temperature susceptibility, rotational viscosity (RV), Multiple Stress Creep
Recovery (MSCR), and Linear Amplitude Sweep (LAS) tests. Besides, several mixture tests are used to evaluate the performance of
the mixture, including four-point bending beam fatigue (FPB), resilient modulus (Mr), indirect tensile strength (ITS), dynamic
creep, and wheel track tests. Through MSCR test results, at two stress levels, the Jnr parameter increases as the soybean oil is added
to the binder. The results of the LAS test revealed that the fatigue life of binders increases by addition of soybean oil. There is no
significant difference between the results of new and waste oil. This in turn makes possible reducing soybean oil production and
consumption, and instead frying oil (waste) is reused, which displays no significant difference in terms of chemical and physical
properties. Also, the performance test of mixtures indicated that as the soybean oil is added to the mixture, the rutting per-
formance decreases and fatigue performance increases. Based on the results, it is recommended to use 1.5% soybean oil in asphalt
mixtures without compromising the performance of the mixture. ANOVA results showed that the warm additive had meaningful
effects on MR, ITS, and FE; the same was true for the effects of the warm additive-binder type interaction.

1. Introduction

Rutting and fatigue cracking are two primary distresses of
asphalt pavements. Recently, numerous pavement re-
searchers have tried to improve the asphalt mixtures’ per-
formance characteristics at high- and low-performance
temperatures. Moreover, several investigations have been
implemented to suggest an appropriate rheological factor to
capture the bitumen’s intermediate- and high-temperature
properties precisely. The performance grading system in-
troduces the rutting and fatigue factors to examine the high-

temperature and intermediate-temperature characteristics
of modified and unmodified mixtures, respectively. Various
studies have proved that these factors cannot calculate the
bitumen’s performance at rutting and its fatigue properties.
These parameters exhibit a weak relation with mixture
performance. Pavement researchers introduced advanced
tests, such as MSCR and LAS tests, for a more precise
evaluation of modified binders’ rutting and fatigue behavior
[1, 2]. Several studies [1-10] concluded that it is crucial to
improve binders with additives to better the mixtures’
strength against mentioned distresses. A large number of
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additives involving crumb rubber (CR) [3, 4], styrene-bu-
tadiene rubber (SBR) [8], styrene-butadiene-styrene (SBS)
[5], polypropylene (PP) [7], polyethylene (PE) [9], polyolefin
elastomer (POE) [6], and nanomaterials [10] including
nanocarbon fiber [11] and nanoclay were employed for
enhancing bitumen’s performance. Nevertheless, selecting
an appropriate type of additive can differ from one country
to another country because of countries’ various geo-
graphical situations and existent capacities. When paving,
specialists should consider factors beyond binders’ proper
performance, such as environmental compatibility, eco-
nomic issues, and modifier production [12].

To produce a usual hot mix asphalt, a lot of energy is used
and consequently air pollution can occur. The procedure to
produce hot mix asphalts leads to the emission of several
greenhouse gases, which in turn reduces the quality of air
[13-18]. Warm mix asphalt (WMA) is introduced to reduce
mixing compaction temperature of mixtures, which not only
brings about a reduction of greenhouse gases and emissions
but also decreases energy consumption by reducing mixing
and compaction temperature by 30-50°C. Based on the
existing literatures [19-28], different types of technologies
(chemical and organic additives) are used to make WMA.
Several types of chemical additives were used to produce
WMA additives such as emulsification agents, surfactants,
antistripping additives, and aggregate coating enhancers.
Utilization of oil is a very valuable choice among organic
additives. In a study performed by Souza [29], utilization of
mamona oil to produce WMA was evaluated. The research
used 2-9% oil by weight of binder, which resulted in re-
duction of the mixing and compaction temperature by about
8°C. In another study, 0-3% of mamona oil by weight of
binder was used, and mixing and compaction was decreased
by 5°C.

Soybean is a grain type, which contains a lot of protein
and is utilized by animals and humans. Soybean consists of
17-21% oil and 46% protein [30, 31]. Accumulation of waste
oil in the ground occupies a large space in the Earth. If after
the frying process of soybean the by-product is not con-
trolled properly, it leads to the pollution of the environment.
Therefore, utilization of this waste oil can be adopted as a
sustainable path to dealing with the risk. Several researches
have previously been conducted to evaluate the effect of
waste kitchen oil in reclaimed asphalt pavement. Addi-
tionally, several researches have been implemented where
bio binders were used [32-34].

In a study performed by Zhang and Li [35], the effect of
three warm mix agents on performance of binder with and
without SBS was evaluated. Results revealed the softening
point of binders containing SBS and three warm agents were
higher than SBS modified binders. Based on results, the
warm agent stiffens the SBS modified binder, and, as a result,
the high temperature stability of specimens enhanced.
Addition of zeolite leads to decrease in the resistance of SBS
modified binders against low temperature. Hou et al. [36]
evaluated the dynamic properties of warm foam modified
mixtures in low-temperature areas. Results revealed that
rising temperature and lowering temperature lead to in-
crease in the dynamic modulus of warm foam modified
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binders. Shi et al. [37] evaluated the feasibility of utilization
of warm additives to reduce the viscosity of high viscosity
asphalt mixture. Surfactant warm additive was used in the
current study. Results revealed that warm additive leads to
decrease in the viscosity and softening point of binder while
increasing the penetration degree and ductility of binder.
Mixture containing 1.5% warm additive has the best low-
temperature resistance. Tan et al. [38] evaluated the mi-
crostructural mechanical behavior of warm-mix reclaimed
asphalt mixture. Results indicated that maximum com-
pressive stress of virgin and RAP aggregate and cement
mortar with interface is higher. Irfan et al. [39] investigated
the fatigue and rutting performance of SMA mixture con-
taining fiber. Results indicated that the mixture containing
NMAS of 12.5mm and 5.3% binder content has the best
fatigue behavior.

The present study aims to assess the way new and waste
soybean oil (0%, 1.5%, 2.5%, and 3.5% by weight of binder)
play a role in reducing mixing and compaction tempera-
tures. Moreover, binders rheological characteristics as well
as SMA mixture mechanical characteristics were investi-
gated. The modified binders’ performance was assessed
through implementing the physical tests (penetration grade,
softening point) as well as rheological tests (rotational vis-
cosity, DSR, MSCR, and LAS tests). Two-factor analysis of
variance (ANOVA) was applied to analyze the data. Fur-
thermore, asphalt mixtures’ properties were investigated
using (ITS), dynamic creep, resilient modulus (Mr), and FPB
tests. Figure 1 indicates the research flowchart of the present
study.

2. Materials and Methods
2.1. Materials

2.1.1. Aggregates. Telo quarry, in the north of Tehran
Province, Iran, was defined as an aggregate source for this
research. The aggregates’ properties (physical as well as
chemical) are presented in Tables 1 and 2, respectively.
Nominal maximum aggregate size was 12.5mm. Figure 2
represents aggregate gradation used for fabricating different
mixtures.

2.1.2. Bitumen. Two kinds of a virgin AC-60/70 and AC-85/
100 binder have been applied. Physical properties of
modified binders were investigated, and binder test out-
comes are presented in Table 3.

2.1.3. Fiber. Usually, fiber is added to diminish binder drain
down. The National Cooperative Highway Research Pro-
gram (NCHRP) Report No. 425 was used to define the
optimum content of asphalt binder [40]. The present paper
proposes using 0.3% cellulose fiber to diminish the binder
drain down as a better way. Table 4 depicts the fiber physical
traits.

2.1.4. Soybean Oil. Soybean oil needed for the study was
purchased from market. To gain waste oil, the new oil is fried
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FiGURE 1: Flowchart of the research approach.

TaBLE 1: Physical properties of aggregates.

Aggregate tests Test method Result
Bulk specific gravity ASTM C127 2.493
Absorption coarse aggregate (%) ASTM C127 23
Absorption fine aggregate (%) ASTM C128 4.1
Los Angeles abrasion loss (%) AASHTO T96 22.3
Two fractured faces (%) ASTM D5821 93

TaBLE 2: Chemical properties of aggregates.

Oxide content (%)

Type .

SIOZ CaO A1203 Fe203 MgO K20 Na20 MnO
Lime 175 43 21 095 074 067 009 0.047
aggregate

and after that, the fried oil is collected. Then, the oil is
decantated and filtered using paper filter. Table 5 shows
chemical and physical properties of soybean oil.

Results indicated that acidic index of waste oil is 193%
higher than new oil. The literature suggests that water fol-
lowing through the frying process brings about a hydrolytic
reaction, and, as a result, the free fatty acids and diglycerides
are produced, and hence the acidic index increases. As such,
the stiffness of bitumen increases, and the consistency of
asphalt binder improves.

2.2. Sample Preparation. First, 600 gr of the base bitumen
was heated to 170°C. In order to prepare modified binders
containing new oil, the new oil was obtained from a store in
Tehran. The waste oil was produced through a frying process

Percent Passing (%)

03 0.60.75 1.18 2.36 4.75 7.59.512.5 19
Sieve Size (mm)

—— Upper limit

—=— Middle limit

Lower limit

FIGURE 2: Aggregate gradation with NMAS of 12.5 mm.

of several times of utilization and after that collected and
used for research. To prepare a homogeneous modified
binder, soybean oil (1.5%, 2.5%, and 3.5%) was gradually
added to the binder and stirred for 20 minutes in a high
shear mixer at 500 rpm. The mixing procedure was per-
formed according to the existing literature [41, 42]. Several
specimen containing differing amount of soybean oil (1.5%,
2.5%, and 3.5%) were produced. In the current study, the
“Nsoy” and “Wsoy” stand for “new soybean” and “waste
soybean,” respectively. The NCHRP Report No. 425 was
used for the outline of the mixture [43]. According to the
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TaBLE 3: Properties of the binder.

Test (unit) Method Results 60-70 Results 85-100

Penetration at 25°C, 100 gr (0.1 mm) ASTM D5 66.5 95

Softening point (°C) ASTM D36 46.6 45

Ductility at 25°C (cm) ASTM D113 100 +100

Flash point (°C) ASTM D92 302 270

Fire point ("C) ASTM D70 320 -

Specific gravity at 25°C (gr/cm’) ASTM D70 1.043 1.0142
TaBLE 4: Fibers’ characteristics. [45]. The following equation was used for calculating dif-

ferent binders’ fatigue life:

Properties Value 5

Cellulose fiber Nf=A(ymax)". (1)

Cellulose content (%) 80 . .

Bulk density (g/cm3) 05 Here, the constants A and B are determined regarding

pH value (5g/100 ml) 75 the viscoelastic continuum damage theory (VECD).

Average fiber length (mm) 1.1

Average fiber thickness (mm) 0.045

TaBLE 5: Soybean oil’s physical and chemical behavior.

Characteristics New soybean oil Waste soybean oil
Acidic index (mg KOH/g) 0.73 2.19
TIodine index (mg 12/100 g) 55.45 60.45
Peroxide index (meq/kg) 22.84 20.88
Refraction index (26°C) 74.37 73.5
Viscosity (40°C) 57.16 71.36

mixture outline, an optimum binder achieved 7.5% binder
content. For each of the unmodified and modified mixture
types, three replicates were produced.

3. Experimental Program

3.1. Bitumen Tests. Softening point and penetration tests
were performed for evaluating unmodified and modified
binders’ physical behavior. In addition, RV, BBR, and DSR
tests were utilized for assessing various binders’ rheological
behavior [43].

3.1.1. MSCR Test. MSCR test was conducted for investi-
gating modified asphalt mixtures rutting behavior according
to AASHTO TP 70 “Multiple Stress Creep Recovery (MSCR)
Test using a Dynamic Shear Rheometer (DSR)” [44]. Anton
Paar DSR with its parallel-plate geometry loading device and
a control and data acquisition system were utilized for
conducting the MSCR test in the present study. Specimens
were tested in replicates using a 25 mm disc and with 1 mm
gap setting at temperature of 64°C and at a stress of 100 and
3200 Pa and aged through RTFO process. The tests were
performed at the selected temperatures using a constant
stress creep of 1-second duration and a relaxation period of 9
seconds, for ten cycles at each stress level.

3.1.2. LAS. LAS test was used for estimating unmodified and
modified asphalt mixtures fatigue properties. The LAS test
was performed on PAV aged samples. It was conducted in
accordance with AASHTO TP 101-14 standards at 25°C

3.2. Asphalt Mixture Tests

3.2.1. ITS Test. ITS test was used to assess the samples’
moisture susceptibility according to the ASTM D6931-12
standard. Samples’ ITS is calculated through the following
[46-50]:

Pmax

2
ITS =

=Dt @

Here, ITS stands for mixture’s indirect tensile strength
(kPa), D is the diameter of samples (mm), Py,,, represents
the maximum load (kN), and ¢ represents the thickness of
specimens (mm).

One of the outcomes of ITS is FE, which can be cal-
culated from the area under the load-deflection curve to
failure load through the following [51]:

[0 P (8)d ()
o 22

(3)

fracture energy =

Here, fracture energy is the total energy required to
failure (J/m?), P is the applied load (N), V shows the sample
volume, and d indicates deformation (mm).

3.2.2. Mr Test. ASTM D 4123 standard was conducted to
carry out the Mr test. The following equation is used to
calculate the samples’ resilient modulus [52]:

P(v+0.2734)

M=

(4)

Here, Mr stands for resilient modulus (MPa), t stands for
specimen thickness (mm), P indicates load (N), and ¢ in-
dicates the horizontal deformation, which is recovered
(mm).

3.2.3. Dynamic Creep Test. In this research, mixture sam-
ples’ rutting resistance was examined regarding the
US.NCHRP 9-19 at 50°C on specimen that we precondi-
tioned in room temperature. 450 kPa stress level with 0.1s
loading and 0.9 s was applied to unmodified and modified
mixtures samples.
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3.2.4. Wheel Tracking Test. The mixtures’ resistance against
rut depth was examined by the wheel track test at 60°C
temperature according to AASHTO standard T-324 [53].
Specimens—which were mixed with the determined asphalt
contents from mix design and fabricated by the rolling
machine—were of dimensions 300 mm O 300 mm in cross-
sectional area and 50 mm in height at an air void ratio of
about 7%, according to AASHTO-T324 [53]. The wheel
tracking test was performed using 5.5 kg/cm2 wheel pressure
at 60°C temperature under dry condition. The wheel shall
make 22 passes across the specimen per minute. Rut depth of
asphalt mixtures was measured for 20,000 passes of 5.5kg/
cm” loaded wheels at 60°C.

3.2.5. FPB Test. For measuring mixtures’ fatigue life, FPB
test was applied regarding AASHTO T321-07 [54]. In the
present paper, a constant strain test was applied to examine
the samples’ fatigue properties. The compacted slabs were
cut to create fabricated beams with a 380%63.5+%50 mm
dimension according to AASHTO T321-07 standard.
Figure 3 indicates the configuration of the test setup.
Specimens’ flexural stiffness was calculated utilizing the
following [55-57]:

. 120hx 10° (5)
3(G; - 4G;)
G,P
0=—>, (6)
BK
5 10000 7
&

Here, ¢ and § represent maximum microstrain and
maximum deformation in the center of the sample (mm),
respectively. G, shows the gauge’s inner length (118.5 mm),
h indicates the gauge’s outer length (355.5 mm), / depicts the
length of the sample (mm), P represents maximum tensile
stress (kPa), B represents beam width (mm), P stands for the
maximum load (kN), and S is flexural stiffness (MPa).

The following equation is used to obtain the sample’s
fatigue life:

Nf =ae?. (8)

Here, N and ¢ are specimen’s fatigue life and micro-
strain level, respectively. a and b are constants.

4. Results and Discussion
4.1. Binder Tests’ Results

4.1.1. Physical and Rheological Test Results. Figures 4 and 5
represent the physical bitumen tests’ results for original and
soybean modified bitumens. According to the outcomes,
adding soybean decreases the softening point and increases
the penetration. An increase in soybean percentage leads to
an in increase in samples’ penetration up to 2.5%, while the
softening point of the samples decreases. Several researches,

which added vegetable oil to base binder, revealed that by
addition of vegetable oil, the ratio of asphaltenes to maltenes
decreases, which leads to an increase in the penetration degree
of the binder [18]. By increasing the percentage of oil, the
softening point of the binder decreases, which results in
decreasing the consistency of the binder. It can be concluded
that by the addition of oil to the binder, the binder’s sensitivity
to temperature increases. Based on the softening point results,
among modified binders, binders containing 1.5% waste
soybean oil performed the best and hence can be used in the
field. This is because it keeps the temperature within the
average 50°, which is higher than the average temperature of
Iran. Based on previous research results, the acidic index of
waste soybean oil is approximately two times greater than the
new soybean oil. By increasing the acid, the hydrolytic re-
actions improve and lead to the production of free fatty acids
and diglycerides based on the presence of water and elevated
temperatures while frying [58]. Increment in acid leads to the
breaking of the triglyceride’s chains, the chief ingredient of oil
is freed, and the oxidation of oil will occur [58]. The men-
tioned reaction leads to a change in the rheological behavior
of bitumen and enhances the stiffness of the binder. Con-
sequently, the rutting performance of bitumen is enhanced.
As aresult, the penetration results of binder modified by waste
oil are lower than new oil.

As Figure 6 shows, adding soybean decreases the original
binder’s viscosity. Regarding viscosity test results, it was
observed that viscosity decreases by adding soybean per-
centage. The viscosity results of binders modified by waste
oil did not show any significant difference in contrast with
binders containing new oil, which indicates that the waste oil
can be used instead of new oil in modification. It can be
inferred from the results that by increasing the percentage of
oil, the mixing and compaction temperatures decrease.
Based on the results, an addition of 3.5% oil leads to a
decrease of the mixing and compaction temperature down to
about 8.1°C for mixtures containing new oil and to 7.2°C for
mixtures containing waste oil. Table 6 shows the mixing and
compaction temperature of mixtures.

Viscosity-temperature curves are usually obtained for
evaluating the susceptibility of temperature as well as mea-
suring the mixtures’ mixing temperature. Figure 7 represents
the outcomes of viscosity variations versus temperature for
new and waste soybean oil modified bitumens. The test
outcomes showed a decrease in binders’ viscosity when uti-
lizing oil, which leads to a decrease in the stiffness of binders.
In addition, according to the outcomes, adding waste oil to
original binder decreases the viscosity. Moreover, to inves-
tigate the susceptibility of binder versus temperature, the
Viscosity Temperature Susceptibility (VTS) values were ob-
tained. The findings presented in Table 7 show a reduction in
the VTS amount of base bitumen when using soybean oil.
Furthermore, the VTS results presented in Table 7 indicate a
reduction in the VTS at 90-160°C by soybean oil application.

4.1.2. MSCR Test Results. Rutting behaviors of the binder
were evaluated through the MSCR test. Two of the MSCR
test results include Jnr factor, and percent recovery (%R) was
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FIGURE 3: Schematic of the FPB fatigue test.
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FIGURE 4: Penetration results of unmodified and modified asphalt mixtures.
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F1GURE 5: Softening point of unmodified and modified asphalt mixtures.
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TABLE 6: Mixing and compaction temperatures of mixtures.

. Mixin Compaction
Binder type temperatire tempzrature

P 158.1 138.1

1.5% Nsoy 150 131

2.5% Nsoy 149 130

60-70 3.5% Nsoy 147 129

1.5% Wsoy 150.9 131.9

2.5% Wsoy 149.5 132

3.5% Wsoy 148.6 131.6

P 153 135

1.5% Nsoy 145 128

2.5% Nsoy 143.5 127

85-100 3.5% Nsoy 142.4 126

1.5% Wsoy 146 129.5

2.5% Wsoy 144.5 129

3.5% Wsoy 143 128.6

calculated at 100 and 3200 Pa stress levels at 64°C. The
binders’ Jnr and %R results at 64°C are demonstrated in
Table 8, respectively. In general, the results revealed
that—ignoring the levels of stress—using soybean oil in-
creases the value of pure binder Jnr, indicating the pro-
duction of a binder that enjoys lower rutting resistance with
soybean oil modification. When the amount of soybean oil
goes higher, the rutting performance worsens. The results
suggest that the utilization of soybean decreases the rigidity
of binders, and, as a result, the elasticity of binders increases.
This can help the binder to resist against fatigue cracking.
The highest rutting resistance belongs to binders modified
with 3.5% oil. Additionally, the 2.5% soybean modified
binder has the highest Jnr as compared to other modified
binders. In general, the results revealed that regardless of the
levels of stress, adding soybean to bitumen increases the
value of pure binder Jnr indicating lower rutting resistance

of binders modified with additives. The Jnr results of binders
containing waste oil do not show any significant difference
compared to binders with new oil. These results are in
consistence with the penetration, softening, and viscosity of
binders. Based on previous research results, the acidic index
of waste soybean oil is approximately two times greater than
the new soybean oil. By increasing the acid, the hydrolytic
reactions improve and lead to producing free fatty acids and
diglycerides based on the presence of water and elevated
temperatures while frying [48]. Increment in acid leads to
the breaking of the triglycerides chains, and the chief in-
gredient of oil is freed and the oxidation of oil will occur
[49]. The mentioned reaction leads to a change in the
rheological behavior of bitumen and enhances the stiffness
of binders. Consequently, the rutting performance of bi-
tumen is enhanced.

As the results of %R show, the %R of binders containing
1.5% and 2.5% of soybean oil for new and waste types is
higher than 3.5% in binders modified by 3.5% new oil, while
the results of %R are lower than in the waste oil type. Binders
having lower values of %R show lower resistance against
fatigue cracking and rutting.

The percentage of difference in nonrecoverable creep
compliance (Jnr-diff) was proposed to examine the bitu-
mens’ sensitivity against changes of binders™ stress levels
when increasing from 100Pa to 3200Pa. The (Jnr-diff)
parameter was constrained to 75%. If the (Jnr-diff) goes
higher than 75%, it indicates the stress sensitivity of the
binder. According to the findings presented in Table 8, the
(Jnr-diff) value of modified bitumens is less than 75%.

4.1.3. LAS Results. Tables 9 and 10 present LAS test results.
Results indicate that binders’ modification using additives
reduces the high-stress levels” shear stress. Table 9 indicates
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the bitumen fatigue life. The bitumen’s fatigue life at one low
as well as one high strain levels is presented in Table 9. The
results demonstrated that adding soybean oil up to 2.5%
enhances the pure binder fatigue life at low strain levels
probably because of an enhancement in the flexibility of
binder due to the utilization of soybean. Based on the results,
fatigue life of binders containing 1.5% and 2.5% new soybean
oil has higher values than original binders, and the sample
containing 3.5% soybean has lower fatigue life. It can be
inferred from the results that samples containing waste oil
have lower fatigue life than samples containing new oil
except by 3.5% one. By increasing the temperature and
percentages of oil, the rigidity of mixtures decreases. The

shows greater fatigue life compared to modified bitumens
having greater viscosity [51, 52].

4.2. Mixture Test Results

4.2.1. Results of Mr Test. Figure 8 exhibits asphalt mixtures
specimens’ Mr values. As presented in Figure 8, soybean oil
decreases the mixtures’ resilient modulus. Utilizing 3.5% oil
modified mixtures decreases Mr value about 15%, probably
because of decreasing the specimens’ stiffness by adding
soybean oil. This can be due to the decrease in the rigidity of
the mixture via increasing the oil. The waste oil modified
mixtures have higher rigidity than the new ones, and the Mr
of mentioned mixtures are higher. Furthermore, mixtures
containing waste soybean oil have lower Mr values than
mixtures containing new oil. Mixtures with 2.5% oil have 5%
lower MR value than the unmodified sample. Based on the
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TaBLE 8: MSCR outcomes of unmodified and modified binders.
Binder type Jnr @100 Pa Recovery 100 Pa Jnr @ 3200 Pa Recovery 3200 Pa Inr-diff
P 1.5 28 2.4 2 37.5
1.5% Nsoy 2.63 12 3.419 0.7 27
2.5% Nsoy 2.67 18 3.471 0.5 34
60-70 3.5% Nsoy 2.3 10 2.99 2 20
1.5% Wsoy 2.53 9 3.289 3 16
2.5% Wsoy 291 15 3.9 4.1 24
3.5% Wsoy 2.1 19 2.34 1.3 34
P 2.68 41 3.484 3 32
1.5% Nsoy 2.86 23 3.718 0.98 36
2.5% Nsoy 2.97 30 3.861 0.7 41
85-100 3.5% Nsoy 2.63 18 3.419 3.87 30
1.5% Wsoy 2.74 15 3.562 4 16
2.5% Wsoy 3.2 19 4.16 52 12
3.5% Wsoy 2 25 2.6 2.4 25

TaBLE 9: Fatigue lives of unmodified and modified binders.

Binder type 2.5% Nf 5% Nf
P 2450 1000
1.5% Nsoy 2600 1045
2.5% Nsoy 2890 1200
60-70 3.5% Nsoy 2400 934
1.5% Wsoy 2300 840
2.5% Wsoy 2450 750
3.5% Wsoy 2500 1054
P 3185 1300
1.5% Nsoy 3380 1358.5
2.5% Nsoy 3757 1560
85-100 3.5% Nsoy 3120 1214.2
1.5% Wsoy 2990 1092
2.5% Wsoy 3185 975
3.5% Wsoy 3250 1370.2
TaBLE 10: VECD coefficients.
Binder type Co C, C,
P 1 0.09960012 0.46049347
1.5% Nsoy 1 0.08554175 0.44672221
2.5% Nsoy 1 0.08745118 0.45950058
60-70 3.5% Nsoy 1 0.06196276 0.55619817
1.5% Wsoy 1 0.069 0.546
2.5% Wsoy 1 0.06296276 0.55719817
3.5% Wsoy 1 0.0638743 0.5584329
P 1 0.10458013 0.48351814
1.5% Nsoy 1 0.08981884 0.46905832
2.5% Nsoy 1 0.09182374 0.48247561
85-100 3.5% Nsoy 1 0.06506089 0.58400807
1.5% Wsoy 1 0.07245 0.5733
2.5% Wsoy 1 0.06611089 0.58505807
3.5% Wsoy 1 0.06706802 0.58635455

results, mixtures containing 85/100 bitumen have lower Mr
in comparison with mixtures containing 60/70 binder.

4.2.2. ITS Test. Figure 9 presents specimens’ ITS values. The
results showed that soybean oil modified mixtures possess
lower ITS compared to unmodified samples. Findings show

a decrease in the ITS values when increasing the oil content.
Moreover, mixtures containing waste oil have lower ITS
values than mixtures containing new oil. This can be at-
tributed to the decrease in the rigidity of mixtures due to
increasing oil. The waste oil modified mixtures have higher
rigidity than new ones; the ITS of mentioned mixtures are
higher. Regarding the findings, adding 1.5% oil to un-
modified mixture decreases the value of ITS by around 6%,
while adding 3.5% oil results in a decrease in the ITS value by
around 10%. Based on the results, mixtures containing 85/
100 bitumen have lower ITS in comparison with mixtures
containing 60/70 binder.

4.2.3. FN Results. The specimens FN are presented in Fig-
ure 10. Greater values of FN indicate higher rutting resis-
tance. According to the results presented in Figure 10,
applying soybean oil increases the samples’ permanent
deformation because the stiffness of the mixture decreases,
and this in turn decreases the strength of mixture versus
permanent deformation. Moreover, adding oil contents
decreases the samples’ FN. The results demonstrate that the
permanent deformation resistance improves when rising the
percentage of oil. Besides, using soybean oil decreases the
specimens’ viscosity and stiffness, and this in turn decreases
the rutting resistance. Results revealed that 1.5% oil modified
mixtures possess FN 1.7 times lower than the virgin sample,
whereas adding 3.5% oil leads to decrease in the mixture
modified with FN by 8%. In addition, mixtures containing
60-70 bitumen have higher FN values than mixtures fab-
ricated by 85/100 binder.

4.2.4. Outcomes of the Wheel Tracking Test. Figure 11
represents specimens’ rut depth. Results show that soy-
bean oil increases specimens’ rut depth. Soybean oil de-
creases the mixtures’ stiffness. Additionally, using soybean
oil decreases sample mixtures’ rutting behavior, since as the
soybean amount increases, the permanent deformation
properties increase. The results also indicated a 2.4% in-
crease in samples’ permanent deformation when adding
1.5% soybean oil, while the use of 3.5% soybean oil leads to a
1.4% improvement in the mixture RD. Also, using soybean
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oil decreases the specimens’ viscosity and stiffness, and that
in turn decreases the rutting resistance. Moreover, mixtures
containing waste oil have higher RD than mixtures con-
taining new oil. This is while mixtures fabricated with 85/100
binder have higher RD than mixtures containing 60/70
binder.

4.2.5. FPB Test Result. Figure 12 depicts the mixtures’ fa-
tigue life. Regarding the findings, adding soybean oil im-
proves the mixtures’ intermediate temperature
performance. As the oil contents increase to up to 1.5%,
samples’ fatigue lives increase and then decrease. The
density values of mixtures’ fracture energy (FE) are
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indicated in Figure 13. As presented in this figure, adding
soybean oil enhances the FE probably because using soy-
bean oil enhances the samples’ flexibility. Thus, the spec-
imens’ resistance is improved against cracking. Using
soybean oil also enhances the FE of mixtures. The outcomes
revealed that the FE results increases up to 1.5% and then
decreases by increasing the oil content. Through increasing
the temperature and percentages of oil, the rigidity of
mixtures decreases. The 2.5% oil has the highest decrease.

Based on literature, binders with lower stiffness have better
fatigue life, which is due to lower thermal stress of bitumen
[59, 60].

4.2.6. Data Analysis Method. To analyze the data, this study
made use of the two-factor (additive content and binder
type) analysis of variance (ANOVA) (Tables 11 -15), con-
sidering MR, ITS, flow number, and rut depth as dependent
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TaBLE 11: Two-way ANOVA : ITS versus additive and binder type.

Source DF Adj.SS Adj. MS F value P value
ITS

Additive content 7 63179902 21059967 5484.68  0.000
Binder type 2 3562852 1781426  463.94 0.000
Interaction 14 203194 33866 8.82 0.000
Error 24 92155 3840

Total 38 67038102

TaBLE 12: Two-way ANOVA: Mr versus additive and binder type.

Source DF Adj.SS Adj. MS F value P value
Additive content 7 95769233 31923078 4014.23  0.000
Binder type 2 4214721 2107361  264.99 0.000
Interaction 14 1786681 297780 37.44 0.000
Error 24 190859 7952

Total 38 101961494

DF, degrees of freedom; MS, mean square; SS, sum of the squares.

TaBLE 13: Two-way ANOVA: flow number versus additive and
binder type.

Source DF Adj.SS Adj. MS Fvalue P value
Additive content 7 63179902 21059967 5484.68  0.000
Binder type 2 3562852 1781426  463.94  0.000
Interaction 14 203194 33866 8.82 0.000
Error 24 92155 3840

Total 38 67038102

DF, degrees of freedom; MS, mean square; SS, sum of the squares.

TaBLE 14: Two-way ANOVA: rut depth versus additive and binder
type.

Source DF Adj.SS Adj. MS Fvalue P value
Additive content 7 38.7395 12.9132  409.73 0.000
Binder type 2 1.2293 0.6146 19.5 0.000
Interaction 14 0.1917 0.0319 1.01 0.440
Error 24 0.7564 0.0315

Total 38 409169

DF, degrees of freedom; MS, mean square; SS, sum of the squares.

TaBLE 15: Two-way ANOVA: fatigue life versus additive and binder
type.

Source DF Adj.SS Adj. MS F value P value
Additive content 7 56179848 31052349 7492.02 0.000
Binder type 2 2562765 1381412  263.23 0.000
Interaction 14 203192 28866 9.12 0.000
Error 24 92155 3840

Total 38 63038253

DF, degrees of freedom; MS, mean square; SS, sum of the squares.

variables that were highly affected by different warm-ad-
ditive contents and warm additive-binder type interactions.
Results showed that the warm additive had meaningful
effects on MR, ITS, and FE; the same was true with the
effects of the warm additive-binder type interaction.

13

5. Conclusion

This study aimed to produce WMA by using soybean cooking
oil, which can be an environmentally and economically
sustainable alternative. To assess the effect of soybean oil on
the performance of SMA mixtures, some experiments, such as
dynamic creep, ITS, Mr, wheel tracking, and FPB tests, were
conducted. In addition, DSR, MSCR, and LAS tests were
carried out for assessing the binders’ rheological properties.
Based on the findings, we can conclude the following:

(i) Addition of 3.5% oil leads to a decrease in the
mixing and compaction temperature by about
8.1°C for mixtures containing new oil and 7.2°C for
mixtures containing waste oil.

(ii) MSCR test results demonstrated a decrease in the
rutting resistance when adding more percentages
of soybean oil.

(iii) LAS test results showed that applying soybean
enhances the virgin bitumen intermediate tem-
perature performance. LAS test outcomes showed
better performance of soybean oil at lower levels of
strain.

(iv) Based on ITS test outcomes, the tensile strengths of
soybean oil-modified binders were lower than the
unmodified sample. This can be attributed to the
decrease in the rigidity of the mixture through
increasing oil. The waste oil modified mixtures
have higher rigidity than the new ones, and the ITS
of mentioned mixtures are higher.

(v) Mr test results show that using soybean oil causes
Mr to decrease. It can be due to the decrease in the
rigidity of the mixture via an increase of oil. The
waste oil modified mixtures have higher rigidity
than new ones, and the MR of mentioned mixtures
are higher.

(vi) Adding soybean oil decreases the samples’ per-
manent deformation resistance regarding the FN
values of samples. The findings also indicated a
decrement of the samples’ stiffness and viscosity in
the presence of oil, which in turn decreases the
resistance of the samples against permanent
deformation.

(vii) The outcomes of the wheel track test demonstrated
soybean oil increases specimens’ rut depth. This
can be due to the decrease in the rigidity of the
mixture by increasing the oil. The waste oil
modified mixtures have higher rigidity than the
new ones, and the MR of mentioned mixtures are
higher.

(viii) The results of fatigue test demonstrated an im-
provement in the samples’ intermediate temper-
ature performance when adding 1.5% soybean oil.

(ix) There is no significant difference between the re-
sults of new and waste oil. This phenomenon
makes it possible to reduce soybean oil production
and consumption and instead reuse of frying oil
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(waste), which does not have any significant dif-
ference as compared to the results of chemical and
physical properties.

(x) Based on the results, it can be suggested to use 1.5%
soybean oil in asphalt mixtures without compro-
mising the performance of the mixture.

Data Availability

The data can be made available upon request to the cor-
responding author through email.
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