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ABSTRACT 
 

Low available phosphorus (P) remains a major limitation to maize (Zea mays L.) productivity across 
the world. Selection for P efficiency is key as part of strategies to achieving agricultural 
sustainability. The objectives of this study were to: (i) determine the phenotypic and genetic 
relationships among P-efficiency traits in maize under low P soils and (ii) determine the heritability of 
some of these traits under similar conditions. A total of 32 experimental maize hybrids were 
evaluated for tolerance to low P in a replicated trial at four locations for one season. The experiment 
was laid out in a split plot arrangement in RCBD replicated 3 times across two P levels (36 kgP/ha 
and 6 KgP/ha). Grain yield had the highest correlation (r= 0.44-0.95) with most P- efficiency traits at 
both P conditions. It also exhibited high positive and significant correlations with plant height (rg = 
0.72**) ear height (rg = 0.54*), cob Length (rg =0.81**) and stover yield (rg = 0.61**) while it was 
negatively correlated with days to anthesis and silking. The correlation between grain and shoot P 
concentration and grain P content with majority of the P efficiency indices (P acquisition &Utilization 
efficiencies &P efficiency) at both P levels was low & tended to be negative and non-significant 
indicating that seed P reserve, and stover P concentration, had minimal contribution to differential P 
efficiency. However, the relationship between shoot P content with P-efficiency traits was significant 
(r= 0.51-0.95), suggesting that shoot P content is a useful parameter in selecting for P efficiency in 
maize. Moderate to high heritability (0.50-0.95) was observed for the various traits showing that a 
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large proportion of the observed variations were due to genetic differences among the hybrids. This 
study has determined genetic and phenotypic associations among P selection parameters that can 
help in flexing the selection methodologies to suite unique circumstances and environments. 
 

 
Keywords: Genetic correlation; heritability; maize; phosphorus efficiency; grain yield. 
 

1. INTRODUCTION 
 
Nearly 50% of the tropical soils are classified 
either Oxisols or Ultisols which characteristically 
over 95% of them have low P as a major yield 
constraint [1]. Phosphorus (P) is essential to 
plants and animal nutrition and is the second 
most limiting nutrient after nitrogen (N) for plant 
growth and crop production in many agricultural 
lands in the tropics [2-4]. Deficiency in P is 
known to reduce growth and delay maturity in 
many crops [5-6]. Phosphorus exists in various 
mineral forms in the soil including phosphate 
rock (PR), which is partially made of apatite (an 
impure tri-calcium phosphate mineral) [7]. 
Approximately 90% of the entire PR that is mined 
is used for food production, fertilizers, feed and 
food additives and it can either be used as raw 
materials in the industrial manufacture of water-
soluble phosphate (WSP) fertilizers or as P 
sources for direct application in agriculture [8]. 
The non-renewable phosphate reserves in the 
world will be exhausted in the near future hence 
possible inorganic P fertilize crisis [9-10]. Plant 
roots acquire P from the rhizosphere solution as 
phosphate (Pi), whose concentration in the soil 
solution is often low (2–10 µM). Consequently, 
the supply of Pi to the root surface by diffusion is 
slow hence hardly available [11-12]. The problem 
of low available P in western Kenya is due to soil 
acidity hence the formation of poorly soluble P 
complexes as a result of P fixation by aluminium 
and iron [13-14], the inherent low P content of 
parent rock material and insufficient 
replenishment of P removed through crop 
harvests [15].In these soils, the level of available 
P is very low (2 -5 mg P/kg soil) and below 
optimal range (10-15 mg P/kg soil) hence cannot 
sustain crop productivity. [15-16]. The results are 
evident in low maize and sorghum productivity (< 
2 t/ha) in this region [17-18]. 
 

The use inorganic fertilizers to maintain soil 
fertility and yields in low P soils is very popular in 
Kenya since they are readily available due to 
many government initiatives of subsidising farm 
inputs [19]. However accessibility to subsidized 
fertilizers is still challenging for majority of the 
farmers in western Kenya because of poorly 
developed infrastructures and inefficient supply 

chains. Moreover many small holder farmers 
especially in sub-Saharan Africa have limited 
resources and unable to afford recommended 
quantities for soil replenishment [20,17] 
Overreliance on inorganic fertilizers is 
unsustainable due to geopolitical conflicts which 
are likely to hinder its use across the globe since 
P reserves are heavily concentrated in certain 
parts of the world with Morocco holding about 
75% of the global share, followed by China 6%, 
Algeria 3% and the rest in the USA, Near East 
and other African Countries [21]. Other factors 
challenging the use of inorganic fertilizers include 
the poor fertilizer recovery rate by most crops, 
fixation to the soil colloids, leaching and 
depletion of the world's rock P reserves due to 
over exploitation [22,10]. 
  
The integration of P efficient genotypes and 
micro-dosing can potentially offer sustainable 
crop production in the low P acid soils. Research 
strategies aimed at selecting P efficient cultivars 
therefore remain very relevant in achieving 
sustainable agricultural production systems. 
Breeding and selection for phosphorus efficiency 
is therefore key as part of synergies to enhancing 
agricultural sustainability in low P soils. Further, 
utilization of crops that acquire and/or use P 
more efficiently can greatly improve 
environmental health by reducing the use of Pi 
fertilizers in agricultural systems. Part of the 
information required for the development of 
breeding strategies to increase P use efficiency 
in tropical maize include: An understanding of 
correlations among phosphorus efficiency traits; 
identification of appropriate selection criteria; 
determination of the relationship among the 
selection criteria in both low and high P soils and 
variation in heritability of these traits in low and 
high P environments.  

 
Majority of previous research work have 
examined correlation among maize yield and its 
components with a biased focus on few 
commonly easy to measure traits such as plant 
height, Ear height, biomass, number of leaves 
and days to Anthesis [23-26] [1] [27-28]. 
Moreover such experiments have been 
conducted in soils of high fertility or experimental 
stations with optimized conditions and therefore 
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some of the recommendations from majority of 
these studies may not be applicable under low P 
soils. It is important to note that variation in yield 
and yield components could vary depending on 
the ecological conditions under which the 
experiment is conducted [29]. Additionally there 
are few studies that have focused on determining 
genetic relationships under P limiting conditions 
where the commonly measured traits may not be 
achievable. Therefore this study was conducted 
to partly address this challenge. Several authors 
have proposed several criteria for selecting P 
efficient genotypes including grain yield (GY) 
under low P conditions, agronomic P use 
efficiency (AE), P acquisition efficiency (PAE), P 
utilization efficiency (PUE), P efficiency (PE) 
[30,31,13,12,32,33,2]. The use of GY under low 
P has prevailed as the most reliable criteria for 
selecting cultivars for better performance in low P 
soils [33,2;34,16]. However, due to enormous 
environmental challenges experienced during 
maize screening in low P environments where 
certain genotypes often fail to produce grain 
yield, alternative parameters are of necessity 
under such circumstances. Heritability is the 
measure of the correspondence between 
breeding values and phenotypic values [35]. 
Thus, heritability plays a predictive role in 
breeding, expressing the reliability of phenotype 
as a guide to its breeding value [36]. Further, it 
determines the response to selection [37]. 
According to this author response to selection 
under low input conditions is often considered 
less efficient due to low heritability as a result of 
higher experimental error and lower genetic 
correlations expected. However contrary results 
have been reported for this assumption. Further 
studies by [38] reported higher genetic variation 
under highly stressed environments especially 
with the inclusion of locally adapted lines in the 
trial. These authors concluded that heritability 
under low input conditions can be comparable to 
high input conditions or even higher if 
appropriate genetic materials are included in the 
study and if experimental error is of similar 
magnitude. Knowledge of heritability of the P-
efficiency parameters in both high and low P 
conditions is therefore key for successful 
breeding. Additionally, information on phenotypic 
and genetic relationships between P-efficiency 
parameters is still inadequate yet such 
information is critical for flexing the selection 
methodologies to suite unique circumstances 
and environments. The objectives of this study 
were to: (i) determine the phenotypic and genetic 
relationships among P-efficiency traits commonly 
used in screening maize for adaptation to low P 

using experimental hybrids and (ii) determine the 
heritability of some of the traits under similar 
conditions. 

 
2. MATERIALS AND METHODS 
 
2.1 Plant Material and Experimental 

Conditions 
 
A total of 32 experimental maize hybrids 
comprising 9 three way cross hybrids, 5 double 
cross hybrids, 9 back crosses, 5 single crosses 
and 4 standard checks (efficient and inefficient) 
were evaluated for tolerance to low P in a 
replicated trial at four locations (Sega, 
Chepkoilel, Migori and Koyonzo) for one season. 
Chepkoilel site is located at 0o34′37.24″N; 
35o15′10.04″E, 2143 m above sea level (a.s.l), 
and has average annual rainfall of 1300 mm with 
average temperature range of 220C. The soils 
are chromic ferralsols characterized by low pH 
4.8, with P levels of 4.4 mg P kg-1 of soil [16]. 
Sega site is located at 0o15′N and 34o20′E. It has 
an elevation of between 1,140 and 1400 m (a.s.l) 
with a bimodal annual rainfall pattern with an 
average of 1000 mm. The mean temperature is 
25 oC. The soils are Orthic Acrisols characterized 
by low pH 4.5 low P of 2.2 mg P kg-1 of soil. 
Migori site is located at 1 o 03′S and 34o24′E. It 
has an elevation of 1381 m (a.s.l) with a bimodal 
annual rainfall pattern with an average of 1200 
mm. The mean temperature is 23 oC. The soils 
are humic ferralsols characterized by low pH 5.5 
low P of 3 mg P kg-1 of soil. Koyonzo site is 
located at 0 o 25′N and 34o25′E. It has an 
elevation of 1310 m (a.s.l) with a bimodal annual 
rainfall pattern with an average of 1400 mm. The 
mean temperature is 23 oC. The soils are 
Luvisols characterized by low pH 5.7 low P of 6 
mg P kg-1 of soil [16]. 

 
2.2 Experimental Design  
 
The experiment was laid out in a split plot 
arrangement in RCBD replicated three times. 
Main plot contained 2 levels of P (6 KgP/ha and 
36 KgP/ha supplied as TSP) while the genotypes 
were randomized in the sub-plot. Each genotype 
was planted in a two row plot measuring three 
meters long with inter and intra-row spacing of 
0.75 m x 0.30 m respectively. Two seeds were 
sown per hill and later thinned to one per hill. 
GenStat version 18 software was used to 
generate randomization design and field layout. 
All the plots were side-dressed using Calcium 
Ammonium Nitrate (CAN) at the rate of 75 Kg 
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N/ha. All standard agronomic practices were 
followed. 
 

2.3 Data collection 
 
Data was collected at anthesis and at maturity. 
During anthesis, destructive sampling was done 
on 6 randomly selected plants according to [39]. 
Root sampling was done using the root box 
technique as described by [40-41] in order to 
determine root length per unit of soil volume (root 
length density). Root length density 
measurement were based on methods described 
by [42-43]. At maturity, data was collected on 
grain yield, (GYLD-t/ha), plant height (PHT-cm), 
Stover yield (STV= leaves, stalks, ear husks and 
cobs- t/ha), ear height (EHT-cm), internode 
length (INL-cm), grain P concentration (GPC %), 
grain P content (GPcnt Kg/ha), days to 50% 
silking (DASLK) and days to 50% anthesis 
(DANTH). All the cobs in a row for each entry 
were harvested and adjusted to 13% moisture 
content while assuming an 80% shelling 
percentage. The moisture content was then 
determined from a sample of 7 randomly 
selected cobs. PHT was recorded in 10 
competitive plants per plot, from the soil surface 
to the tip of the highest tassel branch, and the 
plot means used for analysis. Stover samples 
were collected from 6 plants and a sample of 
200g of grain obtained from each plot. These 
samples were oven dried at 80oC to a constant 
weight and grain and stover dry matter 
determined. Grain and stover samples were 
ground and analyzed for P concentration using 
the vanadomolybdate method [44]. Based on 
grain and stover dry matter yields, and on P 
concentration in these plant components, the 
phosphorus content in the grain and in the stover 
were determined. The P efficiency parameters 
were then obtained on a plot basis following the 
procedures of [30, 32, and 2] as follows: 
 

a. Agronomic P use efficiency (AE) =Yhigh–
Ylow)/DPapp (kg/Kg Pf) 

 
b.  P uptake efficiency (PAE) = [(Phigh xYhigh)–

(PlowxYlow)]/DPapp (KgP/kgPf) 
 
c. P utilization efficiency (PUE) = (Yhigh–

Ylow)/[(PhighxYhigh)–(Plow xYlow)] (kg/ kg)  
 
d.  P efficiency ratio (PER) = Yhigh/(PhighxYhigh) 

or Ylow/(PlowxYlow) kg/kg 
 
e. Phosphorus Efficiency (PE) = Ylow/ Yhigh x 

100% 

Where: Y high - is the yield on a high P or fertilized 
soil; Ylow - is the yield on a low P/unfertilized soil; 
Phigh – is the tissue P concentration on a high P 
or fertilized soil; Plow - tissue P concentration on a 
low P or unfertilized soil; DPapp - difference in 
amount of P applied as fertilizer between high 
and low P treatments; Pf- P fertilizer. 
 

2.4 Statistical Analysis 
 
All means computation and variance analysis 
(ANOVA) were done using Genstat Version 21, 
[45] and means separated using protected 
DMRT. ANOVA was done by fitting the split plot 
model for the data: 
Where Yijkm is the observation on the ijkmth plot,  

𝜇 − the general mean,  
 

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝑆𝑖 + 𝐵𝑘(𝑖) + 𝑃𝑗 + 𝑆𝑃𝑖𝑗 + ὲ𝑖𝑗𝑘 + 𝐺𝑘𝑚

+ 𝑆𝐺𝑖𝑘𝑚 + 𝑆𝑃𝐺𝑖𝑗𝑚 + ὲ𝑖𝑗𝑘𝑚 
 

Where Yijkm is the observation on the ijkmth plot, 

𝜇 − the general mean, Si -the effect due to the ith 
location, Bk(i) the effect due to the kth replication in 
ith location, Pj -effect due to the jth phosphorus 
level, SPij-effects due the interaction of the jth 
phosphorus level with the ith location, ὲijkl-is the 
residual effect due to ijkl th whole plot, Gm is the 
effect due to the mth genotype in the kth replicate 
, SGim is the effect due to the mth genotype in the 
kth replicate in the ith location, SPGijm is the effect 
due to the mth genotype in jth level of phosphorus 
in the kth replicate in the ith location ὲijkm is the 
residual effect due to subplot. 
 

2.5 Estimation of Heritability 
 

Broad sense heritability (H2) was estimated by 
variance components using linear mixed models 
(REML) of Genstat version 21. It was calculated 
as follows: 
 

H2 = 2
g / {(2

g + ge
2
+ (error

2/r)} 
 

Where H2 is broad sense heritability, 

2
g is the generic variance; ge

2 is the variance 
due to Genotype x environment interactions, 

error
2 is the error variance, r is the number of 

replicates per genotype [46,47]. 

 
2.6 Genetic Correlations 
 
Data from 10 different pairs of traits (GYLD, PHT, 
EHT, Cob L, INTL, STV, STVP (%), GPC(%), 
GPCNT and STPCNT) measured at both high 
and low P levels at each location was used for 
genetic correlation studies. The genetic 
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coefficient of correlation (rg) of traits X and Y was 
calculated according to [48] as follows: 
 

●  rg=xy / sqrt (2x * 2y) 

●  xy = covariance between x and y while 

2x and 2y the variances of traits x and y, 
respectively 

 

3. RESULTS 
  

3.1 Phenotypic Correlation among P-
efficiency Traits 

  
Under both P conditions (36 KgP/ha & 6 
KgP/ha), genotypes showed both positive and 
negative phenotypic correlation indices for the 
various traits measured. Grain yield (GY) had the 
highest phenotypic correlation (0.44-0.95) with 
both P- efficiency traits (AE, PER, PAE, PE and 
PUE) and other agronomic traits at both high and 
low P supplies (Table 1a & b). The correlation 
between GY with stover yields (STV) and stover 
P content (STPCNT) was higher under low P (r = 
0.71, 0.55) compared to high P (r = 0.60, 0.53). 
Further, for stover P concentration, grain P 
content, the phenotypic correlations with grain 
yield followed a similar trend and were generally 
low at high P compared to low P conditions. 
However for grain P concentration (GPC) the 
correlations with grain yield were higher at high P 
(r = 0.18) compared to low P (r = 0.085) although 
both were insignificant. (Table 1a & b). The 
phenotypic correlation between grain yield and 
P- efficiency traits among the genotypes were of 
higher magnitude at high P supply compared to 
low P except for PE where the result was reverse 
(PE & GYLD r = 0.55 vs 0.68, AE & GYLD r= 
0.69 vs 0.62, PAE & GYLD, r=0.60 vs 0.56 and 
PUE & GYLD r= 0.64 vs 0.54) (Table 1a & b). 
There was no significant correlation between P 
acquisition efficiency (PAE) and P utilization 
efficiency (PUE) or between PAE and grain P 
concentration (GPC) in both low and high P 
conditions (Table 1a & b).The phenotypic 
correlation between Stover P concentration 
(SPC) and the P efficiency indices was also low 
and tended to be negative under both P 
conditions. 
 

3.2 Heritability for Grain Yield and Other 
Agronomic Traits under Low and 
High P Conditions 

 

Low, medium and high estimates of heritability 
(H2) were measured for different plant traits 
(Table 2). For grain yield under high P, the 

highest heritability was attained at Koyonzo 
(0.94) while the lowest was at Chepkoilel 
(0.89).Under low P, the highest H2 was realized 
at Chepkoilel (0.91) and was lowest at Migori 
(0.89). Overall, moderate values for H2 were 
measured for internode Length, days to 50% 
anthesis and days to 50% silking. 
 

3.3 Genetic Correlation between Grain 
Yield and Other Agronomic Traits 

 
Genetic correlations between trait pairs were 
significantly different among the tested maize 
experimental hybrids under the 2 P conditions. 
Under Low P, grain yield (GYD) was highly 
correlated with plant height (rg = 0.72**) ear 
height (rg = 0.54*), internode Length (rg = 0.73**), 
cob Length (rg =0.81***) and stover yield (rg = 
0.61**) (Table 3). However grain yield was 
negatively correlated with days to anthesis and 
silking. GYD also exhibited high positive 
correlation with grain P content (rg = 0.90***). 
Under high P conditions greater magnitudes of 
the genetic correlation coefficient (rg) were 
observed for PHT (0.74**), EHT (0.56*) and Cob 
L (0.56*) while the rg values were lesser in 
magnitude for STV (0.54*), days to anthesis (-
0.16) and days to silking (-0.15) (Table 4). GYD 
was low and positively correlated with Root 
Length Density (RLD) at both P levels although 
the correlations were higher at high P (rg= 0.37) 
compared to low P (rg=0.34) (Fig. 1a & b).  
  

4. DISCUSSIONS 
 
Results showed that, genotypes showing higher 
P efficiency traits (PE, PAE, PUE, AE, PER) had 
higher grain yield production under low P supply. 
Consequently, their correlation with the grain 
yields at low P supply were significant. (PE & 

GYLD r = 0.68∗∗, AE & GYLD r= 0.62**, PAE & 
GYLD, r=0.56* and PUE & GYLD r= 0.54*). 
These correlations were equally significant at 
high P level. Further correlations between plant 
height (rg = 0.72**) ear height (rg = 0.54*), 
internode Length (rg = 0.73**), cob Length (rg 

=0.81***) and stover yield (rg = 0.61**) was high 
and significant which is an indication that these 
components may have a direct effect on maize 
grain yield and hence selection for one, improves 
the other trait. These results further suggests 
that, grain yield under P deficiency is one of the 
most reliable parameter for screening genotypes 
for P efficiency which compare well with those of 
[18,2]. The lack of significant correlation between 



 
 
 
 

Ouma; CJAST, 40(11): 83-96, 2021; Article no.CJAST.68931 
 

 

 
88 

 

Table 1a. Correlation between Grain yield and other agronomic traits of maize hybrids across four locations under high P 
 

 PHT STV GYLD GPC STPC GPCNT STPCNT AE PER PAE PE PUE 

 (cm) (t/ha) (t/ha) (%) (%) kg/ha kg/ha Kg/Kg Kg/Kg KgP/kgf (%) Kg/Kg 

PHT  -            
STV 0.7  -           
GYLD 0.82*** 0.60**  -          
GPC 0.33 0.33 0.18  -         
STPC 0.37 0.34 0.22 0.35  -        
GPCNT -0.27 -0.21 -0.031 0.087 -0.32  -       
STPCNT 0.26 0.1 0.53* 0.29 0.76*** 0.053  -      
AE 0.35 0.44* 0.69*** 0.34 0.36 0.00031 0.076  -     
PER 0.71*** 0.49* 0.58* 0.26 0.50* 0.77*** 0.21 0.27  -    
PAE 0.3 0.21 0.60** 0.039 0.6 -0.05 0.69 0.37 0.25  -   
PE 0.41* 0.045 0.55* 0.051 -0.018 -0.023 0.51 0.52* 0.25 -0.22  -  
PUE 0.29 0.37 0.64** 0.11 0.27 -0.33 -0.045 0.80*** 0.39 0.045 0.43*  - 

 

Table 1b. Correlation between Grain yield and other P-efficiency traits of maize hybrids across four locations under low P 
 

 PHT STV GYLD GPC STPC GPCNT STPCNT AE PER PAE PE PUE 

 (cm) (t/ha) (t/ha) (%) (%) kg/ha kg/ha Kg/Kg Kg/Kg KgP/kgf (%) Kg/Kg 

PHT  -            
STV 0.78***  -           
GYLD 0.77*** 0.71***  -          
GPC 0.09 0.13 0.085  -         
STPC 0.17 0.32 0.25 0.043  -        
GPCNT -0.32 -0.26 -0.095 0.073 -0.084  -       
STPCNT -0.1 -0.064 0.55* 0.076 0.56* 0.48*  -      
AE 0.37 0.3 0.62** 0.22 -0.036 -0.13 -0.22  -     
PER 0.61** 0.57* 0.57* 0.077 0.37 0.80*** -0.176 0.23  -    
PAE 0.24 0.27 0.56* -0.13 -0.17 -0.3 -0.038 0.38 0.27  -   
PE 0.41* 0.27 0.68*** 0.073 0.30 0.041 0.66 0.52* 0.25 -0.22  -  
PUE 0.3 0.32 0.54* 0.35 -0.1 -0.24 -0.34 0.80*** 0.39 0.05 0.43*  - 

Note: *, **, ***stand for? .PHT-plant height, STV-stover yield, GYLD-grain yield, GPC- grain P concentration, STPC-stover P concentration, GPCNT-grain P content, 
STVPCNT- stover P content, AE-agronomic efficiency, PER- phosphorus efficiency ratio, PAE- P acquisition efficiency, PE-phosphorus efficiency, PUE- phosphorus utilization 

efficiency 
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Table 1. Heritability of maize hybrids in 4 locations 
 

Location Phosphorus PHT EHT INT STV DANTH DASLK GYLD GPCNT 

  level Cm cm cm t/ha days days t/ha Kg/ha  
Chepkoilel 36 kgP/ha 0.88 0.84 0.63 0.95 0.90 0.78 0.89 0.59 
 6 kgP/ha 0.95 0.96 0.69 0.95 0.95 0.80 0.91 0.70 
Migori 36 kgP/ha 0.87 0.91 0.53 0.92 0.75 0.72 0.92 0.781 
 6 kgP/ha 0.88 0.88 0.71 0.9 0.77 0.76 0.890 0.696 
Koyonzo 36 kgP/ha 0.88 0.83 0.24 0.71 0.82 0.76 0.94 0.89 
 6 kgP/ha 0.77 0.74 0.18 0.87 0.20 0.38 0.90 0.79 
Sega 36 kgP/ha 0.90 0.87 0.82 0.88 0.62 0.49 0.92 0.83 
  6 kgP/ha 0.91 0.85 0.78 0.88 0.20 0.38 0.90 0.78 

GYLD-grain yield, PHT-plant height, STV-stover yield, DANTH-days to 50% anthesis, DSLK-Days to 50% silking, 
GPCNT-grain P content 

 

 
 

Fig. 1a. Genetic correlation between GYLD and RLD of maize hybrids in high P 
 

 
 

Fig. 1b. Genetic correlation between GYLD and RLD of maize hybrids tested in low P 
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Table 3. Genetic correlations between grain yield and agronomic traits of maize hybrids in four locations under low P 
 

 PLHT EHT INTL CobL SYLD DANTH DSLK GYD GPCNT 

 (cm) (cm) (cm) (cm) (t/ha) (days) (days) (t/ha) (Kg/ha) 

PLHT (cm)  -         
EHT (cm)  0.85  -        
INTL (cm)  0.88  0.78  -       
CobL (cm)  0.74  0.63  0.71  -      
SYLD (t/ha)  0.77  0.80  0.72  0.65  -     
DANTH (days)  –0.23  –0.01  –0.33  –0.31  0.006  -    
DSLK (days)  –0.27  –0.05  –0.40  –0.40  –0.03  0.95  -   
GYD (t/ha)  0.72  0.54  0.73  0.81  0.61  –0.36  –0.44  -  
GPCNT (Kg/ha)  0.48  0.57  0.41  0.45  0.67  –0.39  –0.45 0.37  - 
STPCNT(Kg/ha)  0.72  0.62  0.73  0.75  0.87  0.26  0.24 0.90  0.41 

 
Table 4. Genetic correlations between grain yield and agronomic traits of maize hybrids across four locations under high P 

 

 PLHT EHT INTL CobL SYLD DANTH DSLK GYD GPCNT 

 (cm) (cm) (cm) (cm) (t/ha) (days) (days) (t/ha) (Kg/ha) 

PLHT (cm)  -                 
EHT (cm)  0.80  -        
INTL (cm)  0.78  0.54  -       
CobL (cm)  0.77  0.79  0.65  -      
SYLD (t/ha)  0.71  0.75  0.50  0.62  -     
DANTH (days)  –0.11  0.069  –0.22  –0.034  0.21  -    
DSLK (days)  –0.086  0.15  –0.20  0.046  0.21  0.93  -   
GYD (t/ha)  0.74  0.56  0.65  0.81  0.54  –0.16  –0.15  -  
GPCNT (Kg/ha)  0.25  0.39  0.45  0.20  0.47  –0.10  –0.12 0.25  - 
STPCNT(Kg/ha)  0.69  0.52  0.65  0.79  0.72  0.45  0.45  0.95  0.037 
Note. PHT-plant height, EHT-Ear height, INTL-Internode length, Cob L-Cob length, STV-stover yield, DANTH-days to 50% anthesis, DSLK-Days to 50% silking, GYLD-grain 

yield, GPCNT-grain P content, STPCNT- stover P content 
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grain P concentration, grain yield and other P 
efficiency parameters has also been reported in 
maize [2]. Additionally, the correlation between 
Stover P concentration (SPC) and the P 
efficiency indices was also low and tended to be 
negative which suggest that GPC and SPC may 
not be suitable criteria for determining P 
efficiency in maize. Earlier studies by [49] also 
reported a lack of correlation between plant P 
concentration and P efficiency in wheat cultivars. 
Other studies such as [50] have suggested that 
Seed P concentration can greatly affect plant 
performance under low P supply especially at 
early growth stages. Further, suggestions by [51] 
indicated that higher seed size and higher P 
concentration of seed can contribute to higher P 
efficiency in larger crops like bean, and therefore, 
should be considered in evaluation of genotypes 
for P efficiency. In contrast, this study did not find 
significant correlation between grain P 
concentration and P efficiency parameters 
studied indicating that genotypic variation for P 
efficiency found in the present study is inherent 
and not related to seed P concentration. 
However grain yield at both low P (r= 0.55*) and 
high P supply (r= 0.53*) significantly correlated 
with Stover P content while the correlation with 
grain P content was negative and non-significant 
at both P levels. Seemingly, grain P content, like 
grain P concentration, had a minimal contribution 
to differential P efficiency in all genotypes. These 
results imply no or very low contribution of seed 
P reserves to the presented variation in P 
efficiency observed in maize. The results of this 
study further compares well with those of [42; 51, 
and 43] who also reported minimal contribution of 
seed P reserve to P tolerance variation in Wheat, 
maize, Barley and Oat genotypes. The better 
relationship between stover P content and P 
efficiency traits of genotypes may indicate a 
contribution of enhanced P uptake in expression 
of high P efficiency in studies where the total 
amount of P per shoot or per plant (shoot or 
stover P content) is considered as ‘P uptake’, 
[49]. 
 

4.1 Heritability for Grain Yield and Other 
Agronomic Traits under Low and High 
P Conditions 

 
Low, medium and high estimates of heritability 
(H2) were measured for different plant traits 
(Table 2). This may be an indicator of the 
modifying effects of the various locations and the 
presence of genotype by environment 
interactions (GXE) in determining H2

. For grain 
yield under high P, the highest heritability was 

attained at Koyonzo (0.94) while the lowest was 
at Chepkoilel (0.89). Under low P, the highest H2 
was realized at Chepkoilel (0.91) and was lowest 
at Migori (0.89). These results compare well with 
results from other researchers [1]. Similar studies 
by [52] reported highest estimated H2 in grain 
yield (0.99) and plant height (0.90) of rice among 
the traits under study. Overall, moderate values 
for H2 were measured for internode Length, days 
to 50% anthesis and days to 50% silking. Studies 
by [53,45] also reported moderate heritability for 
these traits in maize hybrids. Moderate to high 
estimate of broad sense heritability of the various 
traits reported in this study showed that a large 
proportion of the observed variations were 
transmissible to the subsequent generations and 
indicated the potential for developing high 
yielding varieties through selection. Broad sense 
heritability was generally higher under low P 
compared to high P conditions across the four 
locations although this was not consistent for all 
the traits. This is an indication that selection for 
tolerance to low phosphorus is more feasible 
under low P compared to high P conditions. 
Under low P, Ear height exhibited the highest 
heritability (0.87) followed by grain yield (0.85) 
while the lowest heritability was recorded in grain 
and stover P concentration. This shows that 
grain and stover P concentration was greatly 
affected by the confounding environmental 
variations. This observation was expected due to 
the variations in soil available P among the 
locations. The implication is that the duo traits 
may not be suitable P efficiency selections 
criteria under P deficient soils. 
 

4.2 Genetic Correlation between Grain 
Yield and Other Agronomic Traits 

 
Genetic correlations between trait pairs were 
significantly different among the tested maize 
experimental hybrids under the 2 P conditions. 
These findings also agree well with those of [1, 
27,54] who reported significant genetic 
correlation between GYD in maize and other 
agronomic attributes such as plant height, ear 
height and days to 50% flowering. The high 
positive correlation between plant height, ear 
height and grain yield may be an indication that 
these components have a direct effect on maize 
grain yield and hence selection for one, improves 
the other trait. However the negative correlation 
between grain yield and days to anthesis and 
silking was due to the longer duration of growth 
facilitating the synthesis of more photosynthates 
that contributed to higher yields especially in the 
late maturing genotypes. This finding did not 
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agree with earlier studies of [55] who reported 
positive and non-significant association between 
grain yield and days to silking. This is probably 
because modern bred varieties may produce 
high yield despite early flowering. Gyd also 
exhibited high positive correlation with stover P 
content (rg = 0.90-0.95). The better relationship 
between stover P content and grain yield may 
indicate a contribution of enhanced P uptake in 
expression of high P efficiency [49]. Under both 
low and high P conditions, there was no genetic 
correlation between GYD and both grain P and 
stover P concentration implying that both grain 
and stover P concentration are not suitable 
indices for selecting maize for tolerance to low P. 
GYD was also positively correlated with Root 
Length Density (RLD) at both P levels although 
the correlations were generally low at both P 
levels but with higher magnitude at high P 
compared to low P. These results agree with 
those of [56] who reported positive correlation 
between GYD and RLD in wheat and implies that 
root length density could probably have positive 
contribution to yield increase under both P 
conditions. These authors also reported higher 
correlation under high P compared to low P 
conditions. According to [57], genetic correlation 
is the heritable association between two 
variables and facilitates reliance on other 
parameters while selecting for others. The extent 
of reliability in such a selection depends on the 
degree of the genetic correlation between the 
traits in question. From this study therefore 
selection for any of the tested traits which are 
significantly correlated with GYD will lead to 
indirect selection for GYD under high and low P 
conditions. 
 

5. CONCLUSIONS AND RECOMMEN- 
DATIONS  

 
This study has determined both genetic and 
phenotypic correlation among selected P-
efficiency traits. The magnitude of genetic 
correlation coefficients was higher under low P 
supply compared to high P for majority of the 
traits tested .Broad sense heritability was also 
generally higher under low P compared to high P 
conditions across the four locations although this 
was not consistent for all the traits. These are 
indications that selection for tolerance to low 
phosphorus is more feasible under low P 
compared to high P conditions. The correlation 
between grain and stover P concentration, grain 
P content with majority of the P efficiency indices 
(PAE, PE, PUE) at both high and low P supply 
was always low or tended to be negative and 

non-significant implying that seed P reserve, and 
stover P concentration, had minimal or no 
contribution to differential P efficiency observed 
in all genotypes and may not be suitable criteria 
for determining P efficiency in maize. Grain yield 
at low P had strong positive genetic and 
phenotypic correlation with most of the traits 
studied indicating that it’s a suitable index for 
selecting maize for tolerance to low P. Further 
both genotypic and phenotypic correlations are 
suitable models for selection and yield 
improvement in maize under low P soils. The 
natural genetic variation observed between the 
maize genotypes demonstrates the potential for 
breeding cultivars with improved phosphorus 
efficiency. The study recommends further testing 
of these hybrids for consideration for release in 
Kenya. 
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