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Abstract 

 
Across different sections of life, physical and chemical sciences, differential equations which could be 

ordinary differential equations (ODEs) or partial differential equations (PDEs) are used to model the various 

systems as observed. Some types of ODEs, and a few PDEs are solvable by analytical methods with much 

difficulties. However, the great majority of ODEs, especially the non-linear ones and those that involve large 

sets of simultaneous differential equations, do not have analytical solutions but require the application of 

numerical techniques.  This work focused on exemplifying numerical approximations (Adams-Bashforth-

Moulton, Bogacki-Shampine, Euler) of ODEs Initial value Problem in its simplest approach using a case 

study of gluconic acid frementation by Psuedonomas Ovalis. The performance of the methods was checked 

by comparing their accuracy.  The accuracy was detrermined by the size of the discretization error estimated 

from the difference between analytical solution and numerical approximations. The results obtained are in 

good agreement with the exact solution. This work affirms that numerical methods give approximate 

solutions with less rigorous work and time as there is room for flexibility in terms of using different step sizes 

with the Euler solver as most accurate.  

Original Research Article 



 

 
 

 

Ihoeghian and John; JAMCS, 36(6): 11-23, 2021; Article no.JAMCS.69889 
 

 

 
12 

 

Keywords: Adams-Bashforth-Moulton; Bogacki-Shampine; Euler; numerical simulation. 

 

1 Introduction 

 
All system undergone change can be described by differential equations, which can either be ordinary 

differential equations (ODEs) and partial differential equations (PDEs) (Constantinides and Mostoufi, 2000). 

Many mathematicians have studied the nature of these equations and many complicated systems can be 

described quite precisely with compact mathematical expressions.  However, many systems involving 

differential equations are so complex. It is in these complex systems where computer simulations and numerical 

approximations are useful. The techniques for solving differential equations based on numerical approximations 

were developed before programmable computers existed. The problem of solving ODEs is classified into initial 

value and boundary value problems, depending on the conditions specified at the end points of the domain [1,2]. 

There are several excellent and exhaustive textbooks on this subject that may be consulted [3,4,5,6]. A variety of 

methods, exact, approximate, and purely numerical are available for the solution of systems of differential 

equations. Most of these methods are computationally intensive because they are trial-and-error in nature, or 

need complicated symbolic computations [7]. Ihoeghian et al. [8] used Runge Kutta Lower order, Runge Kutta 

Higher Order and Adams-Bash Forth -Moulton to simulate non-isothermal plug flow reactor. From their 

findings, the solver accurately approximated the simulation. The non-isothermal viscoelastic flows at high 

Weissenberg numbers using a finite volume method on general unstructured meshes has been simulated 

numerically. They demonstrated the stability of the finite volume method in the experimentally relevant range of 

high Weissenberg numbers.their findings shows it was in good agreement with experimental data [9]. In this 

work numerical approximations to ODEs Initial value Problem using some selected methods [10] to solve a case 

study of gluconic acid frementation by Psuedonomas Ovalis has been presented to validate the adoption of 

numerical approximations for complex scientific systems studies. 

 

2 Numerical Methods  

 
Numerical methods become very important in any attempt to solve initial value problems in ODEs, particularly 

when the solution is not in closed form [1]. Here, three numerical methods are presented namely, Euler, 

Bogacki-Shampine and Adams-Bashforth-Moulton to generate numerical and approximate solutions to the 

initial value problem 

 

                                                                                                                                                                                                               (1) 

         

2.1 Euler’s Method 

 
In mathematics and computational science, the Euler method is a first-order numerical procedure for solving 

ODEs with a given initial value. It is the most basic explicit method for numerical integration of ODEs, and it is 

the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who treated it in his book 

Institutionum calculi integralis (published 1768–70). Euler’s method is a numerical technique to solve ODEs of 

the form. 

 
  

  
                                                                                                                                                                 

        

So only first order ODEs can be solved by using Euler’s method [11]. Euler’s method commonly called tangent 

line method, is the simplest numerical method for solving initial value problem in ODEs. It is particularly 

suitable for quick programming as originated by Leonhard Euler in 1768. This method is subdivided into three 

namely, Forward Euler’s method, Improved Euler’s method, Backward Euler’s method [1].  

 

2.1.1 Derivation of Euler’s method 

 

Derivation of Euler’s method for generating, numerically, approximate solutions to the initial value problem in 

(1) is presented below, where x0 and y0 are initial values for x and y respectively. This is with an aim to 
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determine (approximately) the unknown function y(x) for x  x0. Given the value of      , as y0, using equation 

(1), the instantaneous rate of change of y at point x0 can be determine thus 

 

                                                                                                                                           (3)

  

Supposing the rate of change of y(x) remains f (x0, y0) for all point x, then y(x) would exactly equal    
              . The rate of change of y(x) does not remain          for all x, however, it can be expected to 

approximate f (x0, y0) for x close to x0. When this is true, , then the value of y(x) will remain close to    
               for x close to x0, for small number h, we have; 

 

                                                                                                                                                                       (4) 

 

                             

  

    =                                                                                                                                                              
 

Where 

 

       and is called the step size. 

 

By the above argument, 

 

                                                                                                                                                                           

 

Repeating the above process, we have at point x1 as follows 

 

                                                                                                                                                                       
  

                                                                                                                                
  

 

We have                                                                                                                                                           

   

Then define for n  0,1,2,3,4,5,...,  

 

we have                                                                                                                                                                                                        

 

Suppose that, for some value of n , we are already computed an approximate value yn for y(xn) . Then, the rate of 

change of y(x) for x to xn is f (x, y(x))  f (xn, y(xn ))  f (xn, yn) 

 

where                         
 

Thus, 

 

                                                                                                                                             

 

Hence, 

 

                                                                                                                                                          

 

Equation (12) is called Euler’s method. 

 

From (12), we have 
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2.1.2 Truncation Errors for Euler’s 

 

There are two types of errors arise in numerical methods namely truncation error which arises primarily from a 

discretization process and round off error which arises from the finiteness of number representations in the 

computer. Refining a mesh to reduce the truncation error often causes the round off error to increase. To 

estimate the truncation error for Euler’s method, we first recall Taylor’s theorem with remainder, which states 

that a function f (x) can be expanded in a series about the point x  a 

 

                    
           

  
   

           

  
 

               

      
                                     (14) 

 

The last term of (13) is referred to as the remainder term. Where x    a 

 

In (13), let 
1n

x x


  and x a , in which 

 

                                                                                                                                       (15) 

 

Since y satisfies the ordinary differential equation in (1), which can be written as 

 

                ))                                                                                                                           (16) 

 

Hence, 

 

                           
 

 
                                                                                                    

  

So, when we consider (17) to Euler’s approximation in (12), it becomes obvious that Euler’s method is obtained 

by omitting the remainder term 
2

1 / 2 ' ( )'
n

h y   in the Taylor expansion of 
1

( )
n

y x


 at the point 
n

x . For each 

step, the truncation error in Euler’s method is accounted for by the omitted term. 

 

2.1.3 Convergence of Euler’s Method 

 

The necessary and sufficient conditions for a numerical method to be convergent are stability and consistency. 

Stability deals with growth or decay of error as numerical computation progresses. Now we state the following 

theorem to discuss the convergence of Euler’s method. 

 

Theorem: If f (x, y) satisfies a Lipschitz condition in y and is continuous in x for       and defined a 

sequence yn, where n  1,2,...,k and if        , then         as n   uniformly in x where y(x) is the 

solution of the initial value problem (1) 

 

Proof: we shall start the proof of the above theorem by deriving a bound for the error 

 

                                                                                                                                                                           
 

where; 

 

n
y  and  n

y x  are called numerical and exact values respectively. We shall also show that this bound can be 

made arbitrarily small. If a bound for the error depends only on the knowledge of the problem but not on its 

solution y(x), it is called an a priori bound. If, on the other hand, knowledge of the properties of the solution is 

required, its error bound is referred to as an a posteriori bound. 

 

To get an a priori bound, let us write 

 

                                                                                                                                                (19) 
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Where tn is called the local truncation error. It is the amount by which the solution fails to satisfy the difference 

method. Subtracting (18) from (11), we get 

 

                                                                                                                                   
 

Let us write 

 

                                               (21) 

 

Substituting (19) into (20), then 

 

                                     (22) 

 

This is the difference equation for en. The error e0 is known, so it can be solved if we know Mn and tn. We have a 

bound of the Lipschitz constant M for Mn. Suppose we also have T   tn .Then we have 

 

                                     (23) 

 

To proceed further, we need the following lemma. 

 

Lemma: If en satisfies (22) and       , then  

 

      
         

  
             

 

  
                                (24) 

 

Lemma: The first inequality of (23) follows by induction. It is trivially true for n  0. Assuming that it is true for 

n = 0, we have from (21) 

 

        
         

  
                        

 

  
                   

  
           

 

  
                   

  
                 (25) 

 

Hence (24) is true for n 1 and thus for all n .The second inequality in (24) follows from the fact that      

and for                 so that                 , proving the lemma. 

 

To continue the proof of the theorem, we need to investigate T, the bound on the local truncation error. From 

(19), we have                                 

 

By the Mean value theorem, we get for      , 

 

                                                                            

                                                                         (25b) 

 

The last term can be treated by the mean value theorem to get a bound                   , where   

           , the inequality exists because of the continuity of y and f in a closed region. The treatment of the 

first term in (25) depends on our hypothesis. If we are prepared to assume that f (x, y) also satisfies a Lipschitz 

condition in x, we can bound the first term in (25b) by L h
2
, where L is the Lipschitz constant for f (x). 

 

Consequently,                  and so from (23), we get 
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                        (26) 

 

Thus the numerical solution converges as     , if           
 

2.2 Bogacki-Shampine method  

 
This solver is designed for solving non-stiff problems. It is a method that is based on second and third order 

Runge-Kutta pair called the Bogacki-Shampine method. Bogacki-Shampine method is less expensive than 

ode45 in that it requires less computation steps than ode45. But it is of a lower order, although it may be more 

efficient at crude tolerance and in the presence of mild stiffness. Bogacki-Shampine method is one-step solver. 

The Bogacki-Shampine method is a Runge-Kutta method of order 3 with four stages proposed by Pzemyslaw 

Bogsacki and Lawrence F. shampine in I989. It uses three function evaluations per step. It has embedded second 

order method which is used to implement adaptive step size for the method. 

 

2.5.1 Derivation of Bogsacki-Shampine method 

 

The Butcher tableau for the Bogacki-Shampine is: 
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Following the standard notation in (1), the differential equation to be solved is  

 

                    

 

Furthermore, ny denotes the numerical solution at time tn and hn is the step size, defined by  

 

                     (27) 

 

Then, one step of the Bogacki-shampine   method is given by: 

 

        
 

 
      

 

 
    )        (28) 

  

        
 

 
      

 

 
     

 

        
 

 
     

 

 
     

 

 
           (29) 

 

        
 

 
     

 

 
     

 

 
           (30) 

 

                         (31) 
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Here,     is a second-order approximation to the exact solution. The method for calculating      is due to 

Ralston (1965). On the other hand,     is a third-order approximation, so the difference between      and      

can be used to adapt the step size. The FSAL-first same as last-property is that the stage value k4 in one step 

equals k1 in the next step; thus only function evaluations are needed per step [12]. 

 

2.3 Adams-Bashforth-Moulton  

 
Adams-Bashforth-Moulton is a multi-step variable order method which uses Adams-Bashforth-Moulton 

predictor and corrector of order 1 to 13. It may be more efficient than Runge-kutta at stringed tolerance and 

when the ODEs problem is particularly expensive to evaluate. It is designed for non-stiff problems [13]. 

 

2.3.1 Derivation of Adams-Bashforth Method 

 

To simplify, let                     (33) 

 

Then the general form of Adams-Bashforth method is  

 

                      
 
           (34) 

 

Where    
 
   =1.  

 

For the two-step Adams-Bashforth method, set 

 

                    .  

 

Then (34) becomes  

 

                        ;      

 

                                                 (35) 

 

By using Taylor’s theorem, expand 
          at 

     to get 

 

          
 

 
            

 

 
                                           (36) 

 

Thus, the simplified form is  

 

                                                                      (37) 

 

Expanding y(tn+2) at
 
y(tn+1) yields  

 

                       
 

 
                           (38) 

 

Subtracting (37) from (38) and then requiring the h
2
 term to cancel makes  

 

   
 

 
 

 

The two-step Adams-Bashforth method is then  

 

          
 

 
            

 

 
                              (39) 
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since                   . The local truncation error is of order o(h
3
) and thus the method is second order 

Atcovi [10,13]. 

 

3 Numerical Example 
 

In this section, the numerical methods are applied to solve systems (linear) of differential equation. To illustrate 

the methods proposed in this paper, the example below was considered; 

 

Process Description: The overall mechanism of the fermentation process that performs this transformation can 

be described as follows: 
 

Cell growth:  

 

             Glucose + Cells   Cells 
 

Glucose oxidation: 
 

              Glucose + 02   Gluconolactone + H202 (G1ucoseas Oxidase as Enzyme) 
 

Gluconolactone hydrolysis: 

 

               Gluconolactone + H2O  Gluconic acid 
 

Peroxide decomposition: 

 

              H2O2    H20 + ½ O2 (in the presence of  manganese(IV) oxide) 
 

Rate of Cell Growth 
 

   

  
            

  

  
           (40) 

 

Rate of Gluconolactone Formation 
 

   

   
   

      

     
                                              (41) 

 

Rate of Gluconic acid formation 
 

   

  
                                           (42) 

 

Rate of Glucose Consumption 
 

   

   
         

      

     
                                       (43) 

 

A mathematical model of the fermentation of the bacterium Pseudomonas ovalis, which produces Gluconic acid, 

has been developed by Rai and Constantinides (2000). This model, which describes the dynamics of the 

logarithmic growth phases, can be summarized as follows: 
 

where; y1 =concentration of cell 

            y2= concentration of Gluconolactone 

            y3= concentration of Gluconic acid 

            y4= concentration of glucose 

b1 – b5 =parameters of the system which are functions of temperature and pH.  
 

At the operating conditions of 30°C and pH 6.6, the values of the five parameters were determined from 

experimental data to be 
 

b1 = 0.949,           (44) 
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 b2= 3.439,           (45) 
 

b3 = 18.72,           (46) 
 

 b4= 37.51,          (47) 
 

  b5 = 1.169,          (48) 

 

At these conditions, develop the time profiles of all variables, y1 to y4 for the period 

0 ≥ t ≥9 h. The initial conditions at the start of this period are 

 

Y1 (0) = 0.5 U.O.D/ml         (49) 
 

Y2(0) = 0.0 mg/l          (50) 
 

Y3(0) = 0.0 mg/l          (51) 
 

Y4(0) = 50.0mg/l          (52) 
 

(Adapted from: Constantinides and Mostoufi, 2000[2]). 
 

4 Results 
 
In order to confirm the applicability and suitability of the methods for solution of initial value problems in 

ODEs, it was computerized in MatLab Programing language and implemented on a computer. The performance 

of the methods was checked by comparing their accuracy. The accuracy is determined by the size of the 

discretization error estimated from the difference between the exact solution and the numerical approximations.

    

Errors involved with the numerical methods for y1(t) in the example are presented in Fig. 1. 
 

 
 

Fig. 1. Deviation of ODEs solvers from analytical method for y1 

Fig. 1 represents the deviation of ODEs solvers employed from the analytical method of the calculus with, 

Euler, Bogacki-Shampine and Adams-Bashforth-Moulton having average errors of 0, -0.021815212, -
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0.021624024 respectively. From the average error results obtained it show that Euler is the best for evaluating 

the numerical approximations of the problem. 

 

 
 

Fig. 2. Errors involved with the numerical methods for y2 (t) in the example 

 

Fig. 2 represents the deviation of ODEs solvers employed from the analytical method of the calculus with, 

Euler, Bogacki-Shampine and Adams-Bashforth-Moulton having average errors of 0, 00.373235515, and 

0.019250918 respectively. From the average error results obtained it show that Euler is the best solvers for 

evaluating the Numerical approximations of the problem. 

 

Fig. 3 represents the deviation of ODEs solvers employed from the analytical method of the calculus with, 

Euler, Bogacki-Shampine and Adams-Bashforth-Moulton having average errors of 0.006210211, -0.780631789, 

-0.786843526 respectively. The average error results obtained show that ode23 and ode113 are the best solvers 

for evaluating the numerical approximations of the problem. 
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Fig. 3. Errors involved with the numerical methods for y3 (t) in the example 

 

Fig. 4 represents the deviation of ODEs solvers employed from the analytical method of the calculus with, 

Euler, Bogacki-Shampine and Adams-Bashforth-Moulton having average errors of 0, 0.712125895, and 

0.709801316 respectively. From the average error results obtained it show that Euler is the best Solvers for 

evaluating the numerical approximations of the problem. 
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Fig. 4. Errors involved with the numerical methods for y4 (t) in the example 

 

5 Discussion of Result 

 
Mathemathecally, the deviations observed with the numerical techniques were very small. This provides a basis 

for recommendation that numerical approximations with Euler, Bogachi-Shampine, and Adams-Bashforth-

Moulton can within mathematical tolerance accurately approximate ODEs problems with Euler being most 

prefered. This position was not different from findings of Ihoeghian et al. in 2018 [8]. In their numerical 

simulation Runge Kutta Lower order was most accurate and significantly approximates their analytical solution 

[8]. Meburgerac et al. [9] demonstrated the stability of finite volume numerical method while studying thermo-

rheological properties in Oldroyd-B type viscoelastic fluids. They found the results at different imposed wall 

temperatures, as well as Weissenberg numbers to be in good agreement with experimental data. 

  

6 Conclusion 

 
Numerical approximations (Adams-Bashforth-Moulton, Bogacki-Shampine, Euler) of ODEs Initial value 

Problem using a case study of gluconic acid frementation by Psuedonomas Ovalis has been studied. The 

performance of the methods was checked by comparing their accuracy. Less rigorous work and time was 

involved as it creats room for flexibility in terms of using different step sizes.  The results obtained affirms that 

numerical methods give approximate solutions that are accurate and dependable for complex scientific system 

studies. 
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