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Abstract 

 
In this work, the stability properties of damped gyroscopic systems have been studied using Lyapunov direct 

method. These systems are generally stable because of the presence of gyroscopic effect. Conditions for 

determining the stability of the damped gyroscopic systems have been developed. Solution bounds of 

amplitude and velocity have been obtained for both homogeneous and inhomogeneous cases. An example is 

given to show how the stability conditions are applied to systems to determine its stability status.  

 

 

Keywords: Asymptotic stability; damped gyroscopic systems; stability; solution bounds.  

 

1 Introduction 

 
A matrix system with mass, gyroscopic, stiffness matrices and excitation is said to be a gyroscopic system. 

Gyroscopic systems find wide usage in engineering applications. They can be major system component 

themselves or sub-components of larger or more complicated systems. Common examples include rotating 

shafts when treated in a rotating co-ordinate frame, pipes conveying fluid and elastic strips moving in an axial 

direction. When modeling their transverse vibrations, each of these simple systems is formulated as a gyroscopic 
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system. Such systems are widely known to exhibit interesting stability property whose analysis is non-trivial. 

Recently, studies have been made on the stability of gyroscopic systems [1-12].  

 

The addition of damping matrix to a gyroscopic system gives a damped gyroscopic system. Applications abound 

in vibrating systems such as beams, building, bridges, highways, large space structures etc. If the gyroscopic 

force is not present, the system is called non-gyroscopic system. The relationship between stability, damping 

and gyroscopic forces is described by the Kelvin-Tait-Chetaev theorem. If a system is stable in the absence of 

gyroscopic and dissipative forces, their addition to the system will lead to asymptotic stability. Conversely, if an 

unstable equilibrium can be stabilized by the addition of pure gyroscopic forces, then, depending on whether or 

not it exhibits complete dissipation, the addition of damping may enhance or destroy this stability. Depending 

on the coefficients of a particular gyroscopic system, internal damping forces may give rise to complete 

dissipation.         

 

The damped gyroscopic systems are generally stable systems. Due to this and their common usage in industrial 

applications, where there is a desire to increase mechanical efficiency and operational safety and to minimize 

noise and vibration, further study of the stability of this class of system would be beneficial. In this work, 

damped gyroscopic system is studied using Lyapunov direct method. Stability conditions for determining the 

stability or otherwise of the system are provided. Example is given to illustrate the efficacy of the result. 

  

2 Preliminaries  
 

Consider the homogeneous linear damped gyroscopic system   

 

 10)(  KxxGDxM 
 

 

where M , D and K which are Hermitian and positive definite  are the mass matrix, the damping matrix and  the 

stiffness matrix respectively. The matrix G of the gyroscopic forces is skew-Hermitian. 

 

The solution of (1) is assumed to be of the form  

 
tqex 
                           

                                                                                                                (2) 

 

(where q is an arbitrary constant and  is an eigenvalue). 

 

Substituting (2) in (1) we have the following 

 

  0)(2  qKGDMe t 
                                                                                                      (3) 

 

 where 0te   and  0q . 

 

The eigenvalues of (3) can be used to investigate the stability of system (1). 

 

 The eigenvalues  are the solutions of the characteristics polynomial  

 

det  KGDM  )(2   of degree 2n.  

 

Routh-Hurwitz Criterion 

 

For the roots of the polynomial 
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to have negative real part it is necessary that  
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Using the above  criterion shows that the system is stable and if all the eigenvalues have negative real parts, 

then, the system is said to be asymptotically stable. The stability of system (1) can also be investigated using 

Thomson-Tait-Cetaev theorem [13].  Here we discuss the stability of the system  by the direct method of 

Lyapunov. 

 

The system (1) is equivalent to the system 

 

 4
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The equivalent form of a first order system of (3) is given as 

 

 5Azz 
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where I is the identity matrix and 𝑂  is the zero matrix. 

 

Let V(z(t)) be a Lyapunov function for system (5). If V > 0 and the time derivative 0V  for all solutions z(t) 

of (5), the existence of such a Lyapunov function implies stability of the system (asymptotic stability if 0V
). Since Lyapunov functions are considered generalized energy expressions, it is proper to consider V as a 

quadratic form in the co-ordinates and in the velocities.  

 

   tPztzV *
 

 

with a Hermitian matrix P>0.  For the solutions of (5) we then have  

 

     tzPAPAtzV  ** , such that condition  0V is expressed by the matrix 0*  QQ   of the 

Lyapunov matrix equation. 

 

QPAPA *  

     

The stability or asymptotic stability is assured if there exists Hermitian matrices P>0 and Q>0 which satisfy the 

Lyapunov matrix equation. 
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2.1 Derivation of P and Q 

 
We now derive suitable positive Hermitian matrices P and Q satisfying the Lyapunov equation. This is obtained 

from the Lyapunov function. To obtain the Lyapunov function, we start with the energy equation. Multiplying 

(1) from left with 𝑥̇∗(𝑡) we have the following 

 

𝑥̇∗𝑀𝑥̈ + 𝑥̇∗(D+G)𝑥̇ + 𝑥̇∗𝐾𝑥  = 0                                                                                                             (6) 

 

Adding the complex transpose of (6) to (6) we have 

 

2𝑥̇∗𝑀𝑥̈ +2𝑥̇∗D𝑥̇ + 2 𝑥̇∗𝐾𝑥  = 0                                                                                                             (7) 

                                                                     

Integrating (7) we have 

 

2𝑥̇∗𝑀𝑥̇ + 𝑥∗𝐾𝑥 + ∫ 𝑥̇∗D𝑥̇𝑑𝑡
𝑡

0
 = 2ϵ0                                                                                                                                                             (8) 

 

Where 2ϵ0  is the integration constant. 

 

Similarly, multiplying system (1) from left by 𝑥∗ we have 

 

𝑥∗𝑀𝑥̈ + 𝑥∗(D+G)𝑥̇ + 𝑥∗𝐾𝑥  = 0                                                                                              (9) 

 

Adding the conjugate transpose of (9) to (9) we have 

 

𝑥∗𝑀𝑥̈ +𝑥̇∗M𝑥̇ + 2 𝑥∗𝐷𝑥̇ + 2 𝑥∗𝐾𝑥̇ + (𝑥∗𝐺𝑥̇ − 𝑥̇∗𝐺𝑥) = 0                                                             (10) 

 

Integrating (10) we have 

 

𝑥̇∗𝑀𝑥 + 𝑥∗𝑀𝑥 ̇ + 𝑥∗𝐷𝑥 + ∫ (2𝑥∗𝐾𝑥 − 2𝑥̇∗𝑀𝑥̇
𝑡

0
 +(𝑥∗𝐺𝑥̇ –𝑥̇∗𝐺𝑥))𝑑𝑡 = 𝑐                                      (11) 

 

where  c is an integration constant. 

 

In order to obtain the Lyapunov function, we introduce a proper positive constant 𝛾. Multiplying (11) by  
𝛾

2
  we 

have      

                                                           
𝛾

2
(𝑥̇∗𝑀𝑥 + 𝑥∗𝑀𝑥 ̇ + 𝑥∗𝐷𝑥) +

𝛾

2
∫ (2𝑥∗𝐾𝑥 − 2𝑥̇∗𝑀𝑥̇

𝑡

0
 +(𝑥∗𝐺𝑥̇ –𝑥̇∗𝐺𝑥))𝑑𝑡 =

𝛾

2
𝑐                          (12) 

 

Adding (8) and (12) we have the following 

 

𝑥∗(𝐾 +
𝛾

2
𝐷)𝑥+ 𝑥̇∗M𝑥̇+ 𝑥̇∗ 𝛾

2
𝑀𝑥+ 𝑥∗ 𝛾

2
𝑀𝑥 ̇  

                    = 2ϵ0+ 
𝛾

2
𝑐 - ∫ (𝑥∗𝛾𝐾𝑥 +

𝑡

0
 𝑥∗ 𝛾

2
𝐺𝑥̇ +𝑥̇∗ (−

𝛾

2
𝐺) 𝑥 + 𝑥̇∗(2D-𝛾𝑀)𝑥̇)𝑑𝑡                                        (13) 

 

Putting (13) in the quadratic form  𝑉 = 𝑧∗𝑃𝑧  
  

 where   𝑧∗ = [
𝑥∗

𝑥̇∗]  and          𝑧 =  [
𝑥
𝑥̇
] 

 

we have 

 

𝑉 = [
𝑥∗𝑃11𝑥 𝑥∗𝑃12𝑥 ̇
𝑥̇∗𝑃21𝑥 𝑥̇∗P22𝑥̇

] 
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But eqn(13) is in the form 

 

𝑉 = 𝑃 + ∫ 𝑄(𝑠)𝑑𝑠
𝑡

0

 

 

where using (13) we have  
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2.2 Verification 
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3 Stability Analysis 

 
The stability or asymptotic stability of (1) is ensured. We now give the conditions for the existence of a positive 

definite P and Q that will satisfy the Lyapunov matrix equation ensuring the stability of the damped gyroscopic 

system.  
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Schur’s Lemma 

 

A matrix  
1 2

*

2 3

R R

R

R R

 
 


 
  

  with Hermitian submatrices R1 and R3 is positive definite if and only if R1 and 

2

1

1

*

23 RRRR    are positive definite. 

 

The Schur’s lemma gives the conditions for the positive definiteness of P and Q. 

 

Applying the lemma to Q , we have that Q>0 if and only if there exist γ>0 such that 

 

2D-γM−
𝛾

2
𝐺∗(𝛾𝐾)−1 𝛾

2
𝐺 > 0 

-γ2(M+ 
1

4
𝐺∗𝐾−1𝐺) + 𝛾2𝐷 > 0                                                                                                            (14) 

 

Consider z ϵ Cn  and taking 𝑧∗𝑧 = 1,then, (14) is equivalent to the inequality 

 

-γ2𝑧∗(M+ 
1

4
𝐺∗𝐾−1𝐺)𝑧 + 𝛾𝑧∗2𝐷𝑧 > 0                                                                                                 (15) 

 

The coefficients of the quadratic polynomial in γ are Rayleigh quotients for Hermitian matrices. 

 

These Rayleigh quotients are limited by the smallest eigenvalue 𝜆𝑚𝑖𝑛  and the largest eigenvalue 𝜆𝑚𝑎𝑥  of the 

respective matrices. Assume 𝑀,𝐷 𝑎𝑛𝑑 𝐾−1 to be positive definite, then, the Rayleigh quotients for the matrices 

𝑀,
1

4
𝐺∗𝐾−1𝐺 𝑎𝑛𝑑 2𝐷 are also positive definite.  

 

We now introduce the scalars 𝑎 𝑎𝑛𝑑 𝑏 defined by 

 

𝑎 = 𝜆𝑚𝑎𝑥 (𝑀 +
1

4
𝐺∗𝐾−1𝐺) > 0 

𝑏 = 𝜆𝑚𝑖𝑛2𝐷  > 0                                                                                                                                  (16) 

 

Let 𝛾 > 0, using (16) and (15) we have  

 

−𝛾2𝑎 + 𝛾𝑏 > 0 

𝛾(𝑏 − 𝑎𝛾) > 0 
 

Thus  𝛾 > 0 

and  𝑏 − 𝑎𝛾 > 0 ⇒  𝛾 <
𝑏

𝑎
              

 

There are solutions 𝛾 > 0 if and only if 

 

𝑏 > 0 𝑎𝑛𝑑 
𝑏2

4𝑎
> 0 

 

Stability Theorem  

 Let a and b  be defined by (16).  If b>0 and 0
4

2


a

b
  then the system (5) is asymptotically stable. 

 

The constant a and b need to be determined. Therefore, it is practical to make the following estimates of  a  and  

b  
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 according to [14], we can further estimate as follows 

 

𝜆𝑚𝑎𝑥(𝑀) ≤ 𝑚𝑚𝑎𝑥  

𝜆𝑚𝑎𝑥(𝐺
∗𝐾−1𝐺) ≤

𝑔𝑚𝑎𝑥
2

𝐾𝑚𝑖𝑛
                                                                                                                        (17) 

 

𝜆𝑚𝑖𝑛(𝐷) ≤  𝑑𝑚𝑖𝑛 

 

where 𝑔𝑚𝑎𝑥  𝑎𝑛𝑑 𝑚𝑚𝑎𝑥  are the maximum of the absolute values of the eigenvalues of G and M respectively. 

And 𝑘𝑚𝑖𝑛  𝑎𝑛𝑑 𝑑𝑚𝑖𝑛 are the smallest eigenvalues of K and D respectively. With the application of (16) and (17), 

the conditions for the existence of γ >0 become 

 

2𝑑𝑚𝑖𝑛 > 0, and 
4𝑘𝑚𝑖𝑛𝑑𝑚𝑖𝑛

2

4𝑚𝑚𝑎𝑥𝑘𝑚𝑖𝑛+𝑔𝑚𝑎𝑥
2   > 0 

 

We can now choose appropriate γ >0 as  

 

             γ =
b

a
                   

⇒ 𝛾 = 8𝑑𝑚𝑖𝑛𝑘𝑚𝑖𝑛/(𝑚𝑚𝑎𝑥𝑘𝑚𝑖𝑛 + 𝑔𝑚𝑎𝑥
2 )                                                                                            (18) 

 

3.1 Solution bounds for the homogeneous case 

 
The stability of the homogeneous system (1) can be established by Thomson-Tait-Cetaev theorem or Routh 

criterion. Therefore it is assumed to be stable. This is necessary since bounds are not obtained for unstable 

systems. The stability implies there exists a value γ>0 and a Lyapunov function V for a given solution 𝑥(𝑡). The 

Lyapunov function V is given as    
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where V0  is the initial energy given by the initial condition 
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The energy equation can now be used to establish the solution bounds for the amplitude and velocity. The 

amplitude bound of x(t) is obtained by estimating the first term of V as follows 
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Therefore, 
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‖𝑥(𝑡)‖ in (23) is estimated in terms of 𝛾. It is therefore necessary to estimate 𝛾.  We choose 

 

𝛾 =
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𝑎
.  This choice gives the tightest bound for this case. We now find the velocity  tx  in terms of ‖𝑥(𝑡)‖. To 

obtain ‖𝑥̇‖ we estimate the second term of V as follows. 
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2
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






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

 
 

 

 From (19) we have the following  
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Therefore it implies from (24) that  
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2
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2
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0

M

V
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


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Using the estimate of ‖𝑥(𝑡)‖ in (23), we have the following  

 

 
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V
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2
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
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
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                                                                     (26) 
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It is possible to obtain bounds for every individual co-ordinates. We note that for a given quadratic form 

    ,0,
*

 PtPztzV   then for a fixed value V the upper bound for the co-ordinate zk is as follows 

 

1 kkk VPz                                                                                                                                       (27) 

 

where 1

kkP  is the kth diagonal element of the inverse matrix P-1. The individual amplitude bound corresponding 

to (23) is the following   
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1
2

42







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




kk

MDK
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 is the kth diagonal element of the inverse matrix                

1
2

42











 MDK
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Similarly, the individual velocity bound corresponding to (25) is obtained as follows  

 

    1

0
2

 kkkk MVtxtx


                                                                                                              (29) 

 

where 1

kkM   is the kth diagonal element of the inverse matrix M-1. 

 

It follows from (29) that 
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0
2

 kkkk MVtxtx
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But 

        1

0
22

 kkkkkk MVtxtxtxtx

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     1

0
2

 kkkk MVtxtx



 

 

Therefore, 

     1

0
2

 kkkk MVtxtx


                                                                                               (30) 

 

3.2 Solution bounds for the inhomogeneous case 

 
The addition of excitation f(t) to the homogeneous system(1) gives the inhomogeneous damped gyroscopic 

system  

 

 
)()( tfKxxGDxM  

                                                                                                         (31) 

 

The stability of the inhomogeneous system (31) follows from the stability of the homogeneous system(1). The 

response bounds for the solution 𝑥(𝑡) of the in homogeneous system is therefore obtained in terms of the bounds 
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of the homogeneous system. For a non-transient excitation f(t), the solution 𝑥(𝑡) is made up of the general 

solution(homogeneous solution) and the particular solution. The solution of system (31) is given as 

 

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝𝑎𝑟𝑡(𝑡) 

⇒       txtxtx parth  )()(  

 

with the initial conditions for its corresponding state and velocity bounds as                                      

 0)0()0( parth xxx 
    

and  0)0()0( parth xxx   . The initial energy 𝑉0,ℎ for 𝑥ℎ(𝑡) is the following  
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*2
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,0 hhhhhhh xxMxxxMDKxV
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Using (23) and (28) we have the following for the amplitude bounds of 2-norm and individual co-ordinate of the 

inhomogeneous system   
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                                                                        (32) 

and 

   txVtx kpart

kk

hk MDK ,

1

,0

42
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

















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                                                       (33) 

 

 The velocity bounds for 2-norm and individual co-ordinate of the inhomogeneous system can similarly be 

obtained respectively in terms of the results of bounds of the homogeneous system as  

 

 ‖𝑥̇(𝑡)‖

 
 

 tx
M

V
tx part

h 
min

,0

2 



                                                                                     

(34) 

 

and 

|𝑥̇𝑘(𝑡)| ≤ √𝑉0,ℎ (𝐾 +
𝛾

2
𝐷 −

𝛾2

4
𝑀)

𝑘𝑘

−1

+ |𝑥𝑝𝑎𝑟𝑡,𝑘(𝑡)|                                                                            (35) 

 

For a transient excitation f(t) we can find a solution to (31) with the initial conditions x(0) = 0 and   00 x  by 

calculating the convolution of the impulse response matrix (t) and f(t).  The solution of (31) is as follows: 

 

       dfttx
t

 0  
 

The impulse response matrix (t) satisfies 

 

    IMKGDM  0,00,0)(    

where I is the identity matrix. 

 

 

We now assume that the excitation vector f(t) has the form 
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F(t) = u(t) 

 

where u is a constant vector and (t) is a scalar function subjected to  

 

    


dttP
0  

To obtain bounds of solution x(t) given by (26) we have to estimate the solution to the homogeneous equation 

(t) = (t)u  which satisfies the initial conditions (0) = 0 and     uMu 100   ,   and therefore  

uMuV h

1*

,0


.   This leads to the following estimate of the 2-norm of the solution x(t).   
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2

min
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                                                                                            (36) 

 

By using (22), we can also obtain an estimate for the co-ordinate xk(t) of the solution x(t). 

 

  PMDKuMutx
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                                                                                   (37) 

 

4 Application 

 
Consider the damped gyroscopic system 

 

0)(  KxxGDxM 
 

 

where                 𝑀 = (
3 1 −1
1 3 1

−1 1 3
),    𝐷 = (

8 −2 2
−2 8 −2
2 −2 8

)     

                             𝐺 = (
0 2 3

−2 0 2
−3 −2 0

) ,          𝐾 = (
4 2 3
2 4 2
3 2 4

) 

 

To apply the stability theorem, we compute the constants in the theorem as follows 

 

𝑎 =⋋𝑚𝑎𝑥 (𝑀 + 𝐺∗𝐾−1𝐺) = 8.2 

𝑏 =⋋𝑚𝑎𝑥 (2𝐷) = 1 

 

Since  𝑏 = 1 > 0    𝑎𝑛𝑑 
𝑏2

4𝑎
= 0.031 > 0 , the system is stable according to the stability theorem. 

 

5 Conclusion 

 
The stability properties of damped gyroscopic systems have been studied. These systems are generally stable 

because of the presence of gyroscopic effect. Gyroscopic forces can stabilize  unstable systems. The stability of 

MDK system is not always guaranteed since the gyroscopic effect is absent. Conditions for determining the 

stability of the damped gyroscopic systems have been developed. Solution bounds are obtained only for stable 

systems. Solution bounds of amplitude and velocity have been obtained for both homogeneous and 

inhomogeneous cases. An example is given to show how the stability conditions are applied to systems to 

determine its stability status.    
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