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ABSTRACT 
 

During the last two decades, there has been remarkable growth in the processing capacity of 
computers and the evolution of digital cameras. As a result, the thermographic technique and 
thermal analysis became more applied in electromechanical maintenance due to the low 
measuring device cost. Simultaneously, new methods based on Deep Learning focused on image 
and video processing have emerged. In this sense, this contribution aims to verify the applicability 
of using the deep learning technique of convolutional neural networks to classify patterns of 
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thermographic images of a bench grinder. The methodology used was the collection of 
thermographic pictures of a bench grinder after starting, without, and after applying loads to the 
discs. This procedure induced a temperature increase in the grinding machine housing since some 
types of faults in electric motors can be diagnosed due to over-temperature by thermographic 
inspection. Furthermore, a Python computational code was developed using a convolutional neural 
network to classify different grinder operation profiles based on thermal images. In conclusion, the 
technique proved promising for diagnosing motor failures by thermography and can be 
implemented in automatic predictive maintenance routines. 
 

 
Keywords: Thermal analysis; thermography of electric motors; convolutional neural networks; 

intelligent maintenance system; industry 4.0. 
 

1. INTRODUCTION 
 
The development and use of monitoring systems 
capable of providing information about the 
operating state of the machinery and 
components play a critical role in a condition-
based maintenance strategy, focusing on the 
operation’s reliability and safety and reducing 
costs. In this context, and considering the need 
for a non-invasive approach, several non-
destructive evaluation techniques were 
developed, such as eddy current, shearography, 
magnetic particles, acoustic emission, 
thermography, dye penetrant inspection, and 
ultrasonic and vibration-based methods. 
 
Infrared thermography has been widely used in 
several situations due to its efficiency, cost, and 
possible integration into an intelligent monitoring 
system. Applications of the method include the 
monitoring of fouling in heat exchangers by 
Berce et al. [1], the development of cracks in 
construction stones by Vazquez and Thomachot-
Schneider [2], and Hatir et al. [3] and the 
detection of delamination in reinforced concrete 
bridges by Ichi and Dorafshan [4]. In addition, Li 
et al. [5] developed a method to monitor defects 
in post-tensioned tendon ducts, Pearlman et al. 
[6] applied it to nuclear fuels inspection, and 
Matuzović et al. [7] used it as a tool to validate a 
heat transfer model of a roots blower. 
 
Electric motors are used in several industrial 
segments. Detection of a failure in such types of 
machinery promptly provides a reliable and safe 
operation process and, beyond, avoids waste of 
sources [8]. Furthermore, the heat transfer 
phenomena in such machines can be used for 
failure detection by comparing the thermographic 
data at the non-damage and damage conditions, 
which enables the use of infrared thermography 
for fault detection purposes.  
 

The infrared thermography was applied by Jeffali 
et al.  [9] for failure detection in a 3-phase 
induction motor to monitor the fault propagation 
and detect degradation of components, whose 
results achieved 100% accuracy in all cases. 
Khanjani and Ezoji [8] developed a model for 
failure classification from thermographic data 
based on a convolutional neural network (CNN), 
k-means, and Support Vector Machine (SVM). 
 
Infrared cameras have been combined with deep 
learning techniques for image recognition and 
damage classification for the automation 
process. One of these techniques, CNN, has 
already been used to monitor the conditions of 
rotating machines [10, 11]. Li et al. [11] proposed 
a CNN-based method for fault detection in 
rotating machines, whose results were superior 
to other methods, including the traditional 
vibration-based ones. Choudhary et al. [10] 
compared the results of CNN and regular 
multilayer perceptron (MLP) for fault detection in 
a rotating machine. The former presented better 
results, reaching an overall classification 
accuracy of 99.80%. 
 
Et-Taleby et al. [12] developed a CNN-SVM 
mixed model for detecting and classifying faults 
in photovoltaic panels. CNN was used for feature 
extraction and SVM for classification. Two 
databases with different damage conditions were 
considered. The minimum accuracy obtained 
was 99.46%. Also, Mellit [13] built two classifiers 
based on CNN optimized and embedded into a 
low-cost microprocessor for fault detection and 
diagnosis in photovoltaic panels. The results 
showed 99.00% and 95.55% accuracy for fault 
detection and diagnosis, respectively. Likewise, 
Klamert et al. [14] applied a CNN model to 
curling failure detection in a Selective Laser 
Sintering (SLS) process, resulting average 
accuracy of 98.54%. 
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Kulkarni et al. [15] developed a deep-learning 
approach to detect sub-pavement voids caused 
by failing roadway culverts. They were based on 
images captured by an infrared camera installed 
in an unmanned aerial vehicle (UAV), and the 
results were comparable to those obtained by 
other traditional techniques. Also, in the same 
subject, Liu et al. [16] modeled crack 
identification and classification in asphalt 
pavement using Deep learning (DL) and infrared 
thermography. They considered four severity 
levels (no damage and three levels of crack 
development) and three image types (visible, 
infrared, and fusion of visible and infrared 
images). Results showed a better response for 
the DL applied to fusion images. 
 
Woldeamanuel et al. [17] estimated the concrete 
strength in construction sites and laboratories by 
infrared images. They used a CNN model 
applied to true color and infrared images and 
reached anaccuracy higher than 80% concerning 
experimental results. Also, using the 
thermography data, the CNN approach 
represented a cost reduction of about 30% 
compared to the existing method. Finally, Zhou 
et al. [18] implemented a DL model for UAV 
thermal images to detect embankment leakage 
automatically. Results presented an overall 
accuracy of 94.90%, which showed that the 
approach has good applicability and 
generalization. 
 
Picazo-Ródenas et al. [19] proposed a 
methodology based on data collected via infrared 
thermography to develop a model to calculate 
heat losses by convection and radiation through 
a 1.1 kW induction motor. Comparing a healthy 
machine and with rotor broken bars, they found 
that infrared thermography is an excellent tool for 
determining heating curves and energy balance 
under different motor conditions. 
 
Schuss et al. [20] investigated the location of 
defects in photovoltaic panels with the help of 
synchronized thermography and time-resolved 
temperature. With the infrared images obtained, 
it was possible to identify the location of the 
defects as well as their influence on the output 
power losses. 
 
Resendiz-Ochoa et al. [21] proposed failure 
analysis monitoring based on infrared images in 
induction motors and kinematic chains. Through 
the Otsu thresholding method, the extraction of 
thermal features was performed in some regions 
of interest. Using three failure conditions to 

demonstrate efficiency, namely, rotor broken bar, 
damaged bearing, and misalignment, it was 
possible to verify that this methodology 
effectively determines the intensity of failure 
conditions and their diagnosis. 
 

Choudhary et al. [4] proposed an infrared 
thermography method based on emergent two-
dimensional discrete wavelet transform to 
diagnose different bearing faults in an induction 
motor. After reducing the dimensionality and 
classifying the most relevant features, the 
resulting data were passed to three failure 
evaluation algorithms, complex decision tree 
(CDT), linear discriminant analysis (LDA), and 
support vector machine (SVM). With the results, 
it was possible to verify that the SVM was the 
one that best recognized bearing failures in 
induction motors [22]. 
 

Redon et al. [23] proposed a diagnostic tool for 
induction motors using infrared images and deep 
learning algorithms. After training, the classifier 
achieved good levels of accuracy concerning 
classification in the initial stages and the five 
scenarios considered (bearing lubrication failure, 
broken bars failures, fan failure, unbalanced 
failure, and healthy motor). 
 

Following the monitoring of electrical motors, 
infrared thermography and CNN are used to 
detect failures in a grinding machine. The use of 
CNN allows the identification of modes of failure, 
and the approach can be used in an intelligent 
system, which provides quick responses so that 
decisions can be made promptly. 
 

This proposal aims to demonstrate the viability of 
the joint use of CNN techniques with thermal 
analysis for follow-up and understanding of the 
behavior of failures in electric motors within a 
reduced context. 
 

1.1 Infrared Thermography 
 

The method is based on the thermal emissivity of 
a body being monitored, which indicates the 
capability of the material to emit energy as 
thermal radiation. This is a function of the 
material properties, wavelength, and 
temperature, once bodies with temperatures 
higher than absolute zero (0 kelvin) emit infrared 
radiation [6,4], whose wavelengths are between 
about 700 nm and 1 mm, not detected by the 
human eye [3]. 
 

The energy (E) emitted by a body is related to its 
temperature (T) through the Stefan-Boltzmann 
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equation (Eq. 1), where ε and σ refer to the 
emissivity and the Stefan-Boltzmann constant 
(5.6704×10

−8
 W/m

2
·K), respectively [4,24]. 

 

                                                                        (1) 
 

From the infrared radiation measured by infrared 
thermographic cameras, it is possible to establish 
the temperature profile of a body. Differences in 
temperature gradients in the target indicate the 
presence of discontinuities in the form of pits, 
craters, cracks, or internal voids; once those 
induce a faster cooling and heating about the 
surrounding area, making it possible to detect 
them by the proper treatment of the  
thermograms [6]. 
 

Infrared thermography (IRT) inspections can be 
performed by passive and active approaches. In 
the first method, the material being monitored is 
evaluated in qualitative terms, providing 
information about the presence or not of defects. 
However, in the latter approach, the target is 
excited by a source (e.g., laser, microwave), 
which results in its heating or cooling, thus 
making it possible to obtain quantitative data 
since the heating or cooling features of the 
excited source are characterized [2,4,25]. 
Nevertheless, the active approach is less applied 
than the passive one due to its complexity, 
mainly in monitoring structures in the field. 
 

1.2 Convolutional Neural Networks 
 

Several Machine and Deep Learning techniques 
have been used in conjunction with monitoring 
techniques in recent years [26-29]. CNN is a 
deep learning technique capable of extracting the 
features and differentiating the data between 
several conditions, being used for a wide range 
of image classifications [11]. A CNN model 
consists of several layers, among which the main 
ones are convolution and fully connected. In the 

beginning, it contains a set of filters that performs 
the extraction of the features of the input images 
according to a selected kernel. Then, flattening 
operations and dense layers integrate the 
features extracted from the previous layers. This 
results in a feature vector for classification, 
whose dimensions are related to the number of 
classes to be classified [10,11,30]. 
 
In a traditional structure of a CNN model, the 
convolutional layer is followed by a batch 
normalization one, which reduces the shift of 
internal covariance, accelerating the training 
process of the deep network. Also, the 
convolution layer can be succeeded by an 
activation consisting of nonlinear functions (e.g., 
hyperbolic tangent, sigmoid, and Rectified Liner 
Unit - ReLU), aiming to accelerate the 
convergence of the CNN. In the sequence, 
usually, it’s defined a pooling layer where it’s 
done the reduction of the dimensions of the 
obtained feature map in the function of the 
pooling size and the selected method (e.g., 
maximum, average, or summation pooling), 
keeping constant the feature map count, 
reducing the calculation cost and controlling the 
over-fitting. Next, it’s linked to the fully connected 
layer and the softmax regression, which performs 
a probabilistic classification [10,11]. 
 

2. METHODOLOGY  
 
To evaluate the deep learning technique 
associated with thermographic analysis, an 
experimental procedure was proposed to 
overheat an electric motor in a controlled manner 
without causing permanent damage to the 
equipment. Thus, the electric motor used was a 
bench grinder, as shown in Fig. 1. To modify the 
temperature profile of the motor, a resistive load 
was applied to rotation on the right axis of the 
equipment. 

 

 
 

Fig. 1. Bench grinder used in the overheating study 
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An HTI thermographic camera, model HT02, with 
an image resolution of 60x60 (3600 pixels), was 
used to obtain thermographic images. The 
following parameters were used for image 
acquisition: Ambient temperature: 27

o
C 

(measured with another thermometer); 
Emissivity: 0.95 (painted metallic surface, 
according to the device manual); Relative air 
humidity: 21%. 
 

After acquiring several photos in the two 
operating conditions of the grinder: without load 
and with load, they were used to train a condition 
classification model based on a convolutional 
neural network. This neural network was 
responsible for evaluating the standard 
temperature profiles for each operational 
condition of the grinder. 
 

However, a primary pre-processing step was 
required before building a classification model. 
Fig. 2 presents the images obtained during the 
experimental procedure for collecting 
thermographic photographs. 
 

As can be seen in general, the images obtained 
by thermography allow the identification of two 

different temperature profiles of the monitored 
component subjectively and humanly. Since the 
temperature profiles are already sufficient to 
interpret the equipment's stress condition clearly 
in this work, the color tones were not readjusted 
in scale.  
 
This procedure should be performed if both 
behaviors had very similar temperature profiles 
during the data sampling process but with 
different scales and temperature ranges. This 
type of thermographic camera automatically 
adjusts the color tones to the range of 
temperatures occurring on the screen. If the 
motor presented a similar image for both 
conditions, varying the temperature range, for 
example, from 28 to 35 

o
C for the no-load case 

but 40 to 50 
o
C for the load condition, it would be 

necessary to normalize the data to that both 
color profiles look distinct. This additional task 
would not add relevant complexity because there 
are already several normalization and 
standardization functions in the sci-kit learn 
library, also used in this contribution                                       
for the data separation step in training and 
testing. 

 

 
 
Fig. 2. Some thermographic images obtained from the bench grinder with and without load 
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Since the raw data, in this case, were based on 
manual collections from a portable device, a data 
pre-processing step was necessary. The images 
were initially converted from the standard three-
layer RGB (red, green, blue) to a single layer of 
256 shades of gray. Then, the image removes 
the header and footer with information not used 
for the model’s decision-making because it is not 
part of the thermal image of the electrical motor. 
Fig. 3 illustrates a thermographic image obtained 
and the superimposition of the motor to visualize 
its positioning. 
 
In Fig. 3, it is possible to see the option of the 
camera to superimpose the thermal images on 
the actual image of the object to facilitate the 
positioning of the tripod to take pictures. 
However, due to the low mass of the bench, it 
suffered small displacements from the base 
caused by engine rotation. Nevertheless, this 
noise did not impact the classification step of the 
temperature profiles. 
 
Still, in Fig. 3, there is no significant color 
variation when it is turned off or at the beginning 

of the motor rotation. To reinforce this point, Fig. 
4 is presented, a photo taken shortly before Fig. 
3, removing the overlap of the actual image. 
 
As expected, Fig. 4 presents a homogeneous 
color pattern since the motor is turned off and its 
temperature is in thermal equilibrium with the 
environment. After a few seconds of rotation, the 
motor overheats forming the temperature profile 
without applying load. 
 
As can be seen from the color scale at the 
bottom of the thermal pictures and by overlay, 
the green temperature profile still represents a 
lower temperature pattern, with the center of the 
motor experiencing the most heating. If the motor 
had some leakage of charges, wear, or 
increasing friction in rotation close to the 
bearings, these details would also represent hot 
spots in the images. However, the limited and 
non-destructive procedure adopted in this study 
was limited to applying a frictional load on the 
axis on the right side of the image, promoting a 
greater demand on the motor and thus causing 
overheating in Fig. 2. 

 

 
 

Fig. 3. Image taken by the thermographic camera 
 

 
 

Fig. 4. Thermographic image at the start of the electric motor 
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Fig. 5. Thermographic photos showing the temperature evolution of the engine at rest until the 
operation without load 

 

A binary classification model based on 
convolutional neural networks was constructed 
with images obtained from loaded and unloaded 
profiles on the grinder. Images obtained after 
pre-processing were used as input parameters 
for the model. This pre-processing first consisted 
of transforming the RGB color pattern (three 
layers of colors) into one of 256 levels of gray. 
Then remove the header and footer from the 
image shown in Fig. 3. Fig. 6 illustrates this 
sequence of pre-processing steps. 
 

After pre-processing the sample images, the 
model based on a convolutional neural network 
was implemented using the Keras library recently 
included within TensorFlow for Python language 
and is discussed in the next section. 
 

3. RESULTS AND DISCUSSION 
 

The CNN-based model uses 256 grayscale 
images in a 160x240 pixel matrix as inputs. The 
model’s topology comprised three 2D 
convolutional layers, with 32, 64, and 64 
neurons, respectively. In all of them, the 
activation function was ReLU using weight 
initialization by the Uniform He function. After 
performing the resizing by a Flatten layer, the 
model connects to a fully connected layer with 
100 neurons and is then directed to another 
output layer with only two neurons. In this last 
layer, a Softmax activation function was used 

due to the classification decision-making 
process, indicating the percentage of chances of 
being included in the group of images without or 
with the load. 
 

The model still used the k-fold evaluation 
process in which ten executions of the entire 
process were carried out to survey the metrics 
and adjustments of the model to ensure its 
convergence and optimal results. The model's 
result metric was accuracy (the ability to predict 
correctly), and the loss function used for the 
training process was categorical cross-entropy, 
as it is a classification process. 
 

Of the total set of 240 samples, 100 images 
without load and 140 with load, 33% of the data 
were used for testing and the rest for model 
training. 
 

Thirty epochs of training were performed in each 
execution, using batches of size 3 for readjusting 
the weights. The optimization function used in 
the training process was ADAM, an algorithm 
with an adaptive learning rate. This function is 
generally used because it has a lower 
computational time for convergence in gradient-
based problems, in addition to a smaller number 
of parameters for calibration, and is based on 
two other established techniques: AdaGrad and 
RMSProp. Fig. 7 presents the loss function and 
accuracy graphs along the training steps. 
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a) Original picture b) Color change c) Window selection 

 
Fig. 6. Pre-processing of images with header and footer removal 
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Fig. 7. Results obtained with the CNN model 
 
The curves in blue are training data, and in 
orange are test data. The Loss Function only 
makes sense in the training stage because it 
adjusts the weights. However, during this 
modeling step, it is common to present test and 
training data for verification. In both cases, in the 
loss function graph, it is possible to see that the 
values achieved converge to low values over     
the epochs, tending to zero when they reach 
epoch 10. 
 
In the accuracy graph, it is possible to notice a hit 
of 1.0 (100%) for both training and test data after 
20 epochs. This shows that after building the 
model, it has obtained a capacity of 100% of the 
correctness of an image, correctly classifying it 
between a motor with load or without. 
 
For this type of evaluation of a binary 
classification model, it is common to use a 
confusion matrix illustrating the results. However, 
due to the results achieved with the model, with a 
clear distinction between the monitored 
conditions, there were no false positives or 
negatives (type I and II errors). Therefore, 
representing this result in a confusion matrix is 
unnecessary. 
 

4. CONCLUSION 
 
Maintenance has always been one of the highest 
costs in the industrial environment. However, in 
recent years, a greater demand for planning and 
availability of equipment associated with the new 
concepts of industry 4.0 has increased the 
capacity and need for maintenance. As a result, 
the idea of prescriptive maintenance emerges 
with Industry 4.0. It increases the level of 
Predictive Maintenance requests, monitoring the 

condition of items and reconciling with concepts 
of IoT, Big Data, Cloud Computing, and Artificial 
Intelligence. 
 
As already mentioned, the study in question 
qualitatively showed at the beginning that the 
engine temperature patterns under load and no 
load conditions were different, facilitating the pre-
processing step. In addition, the number of 
evaluated conditions was limited to non-
destructive equipment conditions, as they were 
only assessed with and without load application 
to cause overheating. In this way, the reduced 
set of samples was also facilitated. Of course, for 
conditions in which different sources of damage 
are sought to be evaluated, such as leakage of 
electrical charges dissipating and promoting the 
joule effect or wear in bearings causing friction, 
new destructive cases in the equipment are 
necessary. Still, the temperature profile is 
expected to differ from the two already presented 
here. Thus, the assumptions and procedures 
used in this study will also apply under these 
conditions. 
 
As for the model obtained, some characteristics 
that may suggest overfitting can be noticed. This 
is due to the reduced number of samples            
used in the study, which was also justified by the 
low qualitative variability between samples. 
However, as the accuracy graph shows, after 
more iterations, the test sets also tend to      
obtain the same results as the training sample 
group. 
 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 



 
 
 
 

Rezende et al.; Arch. Curr. Res. Int., vol. 23, no. 3, pp. 42-52, 2023; Article no.ACRI.97753 
 
 

 
51 

 

REFERENCES 
 
1. Berce J, Zupančič M, Može M, Golobič I. 

Infrared thermography observations of 
crystallization fouling in a plate heat 
exchanger. Appl Therm Eng. 2023;224: 
120116.  
DOI:10.1016/j.applthermaleng.2023.12011
6. 

2. Vazquez P, Thomachot-Schneider C. 
Infrared thermography as a tool to detect 
increasing cracking in granitic stones 
exposed to high temperatures. J Cult Herit. 
2023;59:163-70.  
DOI 10.1016/j.culher.2022.11.015. 

3. Hatir ME, İnce İ, Bozkurt F. Investigation of 
the effect of microclimatic environment in 
historical buildings via infrared 
thermography. J Build Eng. 2022;57: 
104916.  
DOI 10.1016/j.jobe.2022.104916. 

4. Ichi E, Dorafshan S. Effectiveness of 
infrared thermography for delamination 
detection in reinforced concrete bridge 
decks. Autom Constr. 2022;142:104523.  
DOI 10.1016/j.autcon.2022.104523. 

5. Li S, Han S, Wang J, Han X, Zheng P, Cui 
C et al. Infrared thermography detection of 
grouting defects in external post-tensioned 
tendon ducts under construction hydration 
heat excitation. NDT E Int. 2023; 
134:102785.  
DOI 10.1016/j.ndteint.2022.102785. 

6. Pearlman M, Lupercio A, Rektor A, Lamb 
J, Fleming A, Jaques B et al. Infrared 
thermography method to detect cracking of 
nuclear fuels in real-time. Nucl Eng Des. 
2023;405:112196.  
DOI 10.1016/j.nucengdes.2023.112196. 

7. Matuzović M, Rane S, Patel B, Kovačević 
A, Tuković Ž. Analysis of conjugate heat 
transfer in a roots blower and validation 
with infrared thermography. Int J 
Thermofluids. 2022;16:100234. DOI 
10.1016/j.ijft.2022.100234. 

8. Khanjani M, Ezoji M. Electrical fault 
detection in three-phase induction motor 
using deep network-based features of 
thermograms. Measurement. 2021;173: 
108622.  
DOI 10.1016/j.measurement.2020.108622. 

9. Jeffali F, Ouariach A, Kihel BE, Nougaoui 
A. Diagnosis of three-phase induction 
motor and the impact on the kinematic 
chain using non-destructive technique of 
infrared thermography. Infrared Phys 
Technol. 2019;102:102970.  

DOI 10.1016/j.infrared.2019.07.001. 
10. Choudhary A, Mian T, Fatima S. 

Convolutional neural network based 
bearing fault diagnosis of rotating machine 
using thermal images. Measurement. 
2021;176:109196.  
DOI 10.1016/j.measurement.2021.109196. 

11. Li Y, Du X, Wan F, Wang X, Yu H. 
Rotating machinery fault diagnosis based 
on convolutional neural network and 
infrared thermal imaging. Chinese J 
Aeronaut. 2020;33(2):427-38.  
DOI 10.1016/j.cja.2019.08.014. 

12. Et-taleby A, Chaibi Y, Allouhi A, Boussetta 
M, Benslimane M. A combined 
convolutional neural network model and 
support vector machine technique for fault 
detection and classification based on 
electroluminescence images of 
photovoltaic modules. Sustain Energy, 
Grids Netw. 2022;32:100946.  
DOI 10.1016/j.segan.2022.100946. 

13. Mellit A. An embedded solution for fault 
detection and diagnosis of photovoltaic 
modules using thermographic images and 
deep convolutional neural networks. Eng 
Appl Artif Intell. 2022;116:105459.  
DOI 10.1016/j.engappai.2022.105459. 

14. Klamert V, Schmid-Kietreiber M, Bublin M. 
A deep learning approach for real time 
process monitoring and curling defect 
detection in Selective Laser Sintering by 
infrared thermography and convolutional 
neural networks. Procedia CIRP. 2022; 
111:317-20.  
DOI 10.1016/j.procir.2022.08.030. 

15. Kulkarni NN, Raisi K, Valente NA, Benoit J, 
Yu T, Sabato A. Deep learning augmented 
infrared thermography for unmanned aerial 
vehicles structural health monitoring of 
roadways. Autom Constr. 
2023;148:104784.  
DOI 10.1016/j.autcon.2023.104784. 

16. Liu F, Liu J, Wang L. Asphalt pavement 
fatigue crack severity classification by 
infrared thermography and deep learning. 
Autom Constr. 2022;143:104575.  
DOI 10.1016/j.autcon.2022.104575. 

17. Woldeamanuel MM, Kim T, Cho S, Kim H-
K. Estimation of concrete strength using 
thermography integrated with deep-
learning-based image segmentation: Case 
studies and economic analysis. Expert 
Syst Appl. 2023;213:119249.  
DOI 10.1016/j.eswa.2022.119249. 

18. Zhou R, Wen Z, Su H. Automatic 
recognition of earth rock embankment 



 
 
 
 

Rezende et al.; Arch. Curr. Res. Int., vol. 23, no. 3, pp. 42-52, 2023; Article no.ACRI.97753 
 
 

 
52 

 

leakage based on UAV passive infrared 
thermography and deep learning. ISPRS J 
Photogramm Remote Sens. 2022;191:    
85-104.  
DOI 10.1016/j.isprsjprs.2022.07.009. 

19. Picazo-Ródenas MJ, Royo R, Antonino-
Daviu J, Roger-Folch J. Use of infrared 
thermography for computation of heating 
curves and preliminary failure detection in 
induction motors.  2012 XXth International 
Conference on Electrical Machines, 
Marseille, France. 2012;525-531. 
DOI: 10.1109/ICElMach.2012.6349920 

20. Schuss C et al. Detecting defects in 
photovoltaic panels with the help of 
synchronized thermography. In IEEE 
Transactions on Instrumentation and 
Measurement. 2018;67(5):1178-1186.  
DOI: 10.1109/TIM.2018.2809078 

21. Resendiz-Ochoa E, Osornio-Rios RA, 
Benitez-Rangel JP, De J Romero-
Troncoso R, Morales-Hernandez, 
"Induction Motor Failure Analysis: An 
Automatic Methodology Based on Infrared 
Imaging LA. In IEEE Access. 2018;6: 
76993-77003.  
DOI: 10.1109/ACCESS.2018.2883988. 

22. Choudhary A, Goyal D, Letha SS. Infrared 
thermography-based fault diagnosis of 
induction motor bearings using machine 
learning. In IEEE Sensors Journal. 2021; 
21(2):1727-1734.  
DOI: 10.1109/JSEN.2020.3015868. 

23. Redon P, Rodenas MP, Antonino-Daviu J. 
Development of a diagnosis tool, based on 
deep learning algorithms and infrared 
images, applicable to condition monitoring 
of induction motors under transient  
regime. IECON 2020 The 46th Annual 
Conference of the IEEE Industrial 
Electronics Society, Singapore. 2020; 
2505-2510. 
DOI: 10.1109/IECON43393.2020.9254639 

24. Carvalho JP, Lamim PCM, Araujo ACS, 
Oliveira JF, Moreira JS. Parâmetros 
Relevantes Na Análise Termográfica De 
Um Motor de Indução Trifásico. In 14° 

Simpósio Brasileiro de Automação 
Inteligente – SBAI. 2019;649-53.  
DOI 10.17648/sbai-2019-111206. 

25. Avdelidis NP, Moropoulou A. Applications 
of infrared thermography for the 
investigation of historic structures. J Cult 
Herit. 2004;5(1):119-27.  
DOI 10.1016/j.culher.2003.07.002. 

26. Rezende, SWF, Moura Jr, JRV, Neto, 
RMF, Gallo, CA, Steffen Jr, V. 
Convolutional neural network and 
impedance-based SHM applied to damage 
detection. Engineering Research Express. 
2020;2:035031. 
DOI 10.1088/2631-8695/abb568 

27. Rezende STF, Barella BP, Moura Jr. JRV. 
Damage identification of vehicle brake 
disks by the use of impedance-based shm 
and unsupervised machine learning 
method. International Journal of Advanced 
Engineering Research And Science. 
2020;7:324-330.  
DOI 10.22161/ijaers.76.40 

28. Freitas, FA, Jafelice, RM, Silva, JW, 
Rabelo, DS, Nomelini, QSS, Moura Jr, 
JRV, Gallo, CA, Cunha, MJ, Ramos, JE. A 
new data normalization approach applied 
to the electromechanical impedance 
method using adaptive neuro-fuzzy 
inference system. Journal of the Brazilian 
Society of Mechanical Sciences and 
Engineering. 2021;43:1-20.  
DOI 10.1007/s40430-021-03186-z. 

29. Gonçalves, DR, Moura Jr., JRV, Pereira, 
PEC, Mendes, MVA, Diniz-Pinto, HS. 
Indicator kriging for damage position 
prediction by the use of electromechanical 
impedance-based structural health 
monitoring. Comptes Rendus. Mécanique. 
2021;349:225-240.  
DOI: 10.5802/crmeca.81. 

30. Ornek AH, Ceylan M, Ervural S. Health 
status detection of neonates using infrared 
thermography and deep convolutional 
neural networks. Infrared Phys Technol. 
2019;103:103044.  
DOI 10.1016/j.infrared.2019.103044. 

 

© 2023 Rezende et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.  
 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here: 

https://www.sdiarticle5.com/review-history/97753 

http://creativecommons.org/licenses/by/2.0

