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ABSTRACT 
 
Statistical simulation is used in cases which there is not enough theoretical background about the 
method in hand. It is used to derive the performances of inferential methods like empirical 
estimation of sampling distributions, the power of statistical tests or robustness of methods. 
Simulation methods specially Monte Carlo methods are used frequently, in finance and in risk 
management. There are many powerful software to run the simulation in financial problems, like 
@Risk or ModelRisk. However, this software (ModelRisk) is applicable in many other statistical 
fields. The current paper is concerned with application of ModelRisk software in ten simulation 
cases. Applications are presented in the format of different examples, including change point 
analysis, rolling analysis, bootstrapping, Bayesian inference, numerical analysis and extreme value 
problems. Finally, a conclusion section is given. 
 

 
Keywords: Bayesian; bootstrap; change point; copula; extreme value; geometric Brownian motion; 
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1. INTRODUCTION 
 
Using the statistical simulation approaches, there 
are a lot of opportunities to construct 

probabilities, confidence intervals and hypothesis 
testing, in cases at which there are a few 
theoretical background. There are many reasons 
for using the statistical simulation techniques 
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such as simulation presents simple and 
important tools to solve problems. Second, 
simulation techniques help researcher to 
visualize and understand main statistical 
concepts. There are many useful software's to 
perform valid simulations. One of them is the 
ModelRisk of [1], an add-in to Microsoft Excel 
which is applied for professional quality risk 
analysis. 
  
1.1 Problem Description 
 
Financial applications of ModelRisk software has 
been received considerable attentions in 
literatures. For example, [2] proposed a 
comprehensive review about applications of this 
software. [3] applied the ModelRisk software to 
survey the assessment of risks that threaten a 
project. [4] applied this software to simulate the 
probabilistic time-specific risk load for PPP. [5] 
studied practical aspects of spreadsheet risk 
modeling for management. In this short note 
article, the applications of ModelRisk software in 
ten simulation cases has been shown. 
Applications are presented in the format of 
different examples.  
 
2. METHODOLOGY 
 
An important technique used in this paper is the 
Monte Carlo approach. It is a computerized 
mathematical methods used to compute the 
likelihood of various outcomes of a random 
experiment which are not predictable, 
analytically. It is used frequently in finance, 
project management, statistics, mathematics, 
numerical analysis and physics. It gives an 
opportunity to the decision-maker to see all 
possible consequences of a random experiment 
and their probabilities and distinguishing frequent 
and rare events.  
 
The rest of paper is designed as follows.  In 
section 2, experimental simulations containing 
ten examples including change point analysis, 
rolling analysis, bootstrapping, Bayesian 
inference, numerical analysis and extreme value 

problems are given. Results and discussions are 
given in section 4. Conclusions are presented in 
section 5.  
 
3. EXPERIMENTAL SIMULATIONS 
 
As follows, examples are presented and 
empirical results are also proposed. 
  
Example 1. [6] approximated the law of the 
maximum partial sum of Normal deviates by a 
Chi-square distribution. Let ��, … , ��  be a 
sequence of independent and identically 
Normally distributed (iid) random variables. Then, 
the maximum partial sum is given by  
 

� = �	��
�
� �(�� − �̅)
�

���
, 

 
where �̅ is the average of total ��'s, � = 1, … , �. [6] 
fitted the distribution of 

�
� ��  by a Chi-square 

distribution. Here, for a correlated sequence 
��, … , ��, precisely, for first order auto-regressive 
AR(1) in the presence of GARCH(1,1) errors 
	���  is approximated by Chi-squared with �� 
degrees of freedom. The moment estimates of 
	� and �� are  
 

	� = 2�(��)
�	�(��)   and �� = 	��(��). 

 
The plot (Fig. 1) shows the histogram of �, for 
� = 1000.  
 
The autoregressive parameter is " = 0.3  and 
GARCH parameters are $ = 0.0005  (constant 
term), 	� = 0.01  (ARCH term) and &� = 0.95 
(GARCH term). The following Table (Table 1) 
gives the standardized coefficient 	�  and 
degrees of freedom ��of M  for various values of 
α. The sample size is � = 1000. 
 
The scatter plot (Fig. 2) between "  and �� 
suggest a logarithmic relation which is given by 
  

�� = exp (−5.028") and	� = exp (0.233").
 

Table 1. The values of -. and /. 
 

" 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
�� 0.675 0.742 0.664 0.79 0.515 0.52 0.58 0.339 0.377 
	� 1.313 1.4 1.098 1.004 0.638 0.666 0.592 0.285 0.285 
" 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 
�� 0.106 0.165 0.049 0.009 0.024 0.008 0.01 0.01 0.015 
	� 0.253 0.047 0.051 0.01 0.001 0 0 0 0 
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Fig. 1. Histogram of 0 
 

 
 

Fig. 2. Scatter plot between 1 and /. 
 
Also, the stopsum function used to show that the 
suitable sample size for Chi-square 
approximation for 	��� is 150.  
 
Example 2. Suppose that 23  and 43  are two 
independent geometric Brownian motions with 
parameters 56 , 76�  and 58 , 78� , respectively. 
Define � = �	�9
3
:23 + �	�9
3
:43. Here, first, 
the Tornado and Spider plots is applied to 
decompose the risk related to �. Then, 23  and 43 
are considered a sequence of iid random 
variables from an extreme value distributions. 
Next, it is possible to suppose that 23 and 43 are 
two independent Markov processes and finally 23 
and 43 are considered correlated process having 

Franklin copula. Here, assume that 1000 
samples are generated of both geometric 
Brownian motions where µ< = 0.002, σ< = 0.025, 
µ= = 0.001  and σ= = 0.05 . The initial values of 

both time series is 1. The Fig. 3 shows the 
Tornado and Spider plots.  
 
Example 3. Suppose that 23 ,  > = 1,2, … , �  is a 
sequence of iid random variables where �(23) =
59  for > = 1, … , >9  and �(23) = 5�  for > = >9 +
1, … , �.  The >9  is referred as change point. [7] 
showed that the bootstrapped samples 23∗ has a 
mixture distribution with mixing portion 

3@
� . 

Another tool to detect the stability of a time series 
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is the rolling analysis, see [8]. Suppose that 2000 
samples are generated such that the first 1500 
samples come from standard Normal distribution 
and the remaining are from Normal distribution 
with mean and variance one. The histogram  
(Fig. 4) is bootstrapped mean of the first 1500 
observations. 
 
The histogram (Fig. 5) presents the bootstrapped 
mean of whole 2000 observations. Clearly, it is a 
mixture distribution. 
 
Example 4. The rolling estimate of a parameter 
A based on sample window of length B is  
 

AC3 = D(�3EFG�, … , �3). 
 
[9] proved theoretically that AC3  is a moving 
average process MA(B). This fact is tested via 
simulation. This correlation is fitted using the 
empirical copula and various types of copulas. 
Here, 1000 samples are derived of beta 
distribution with parameters 2,1. The length of 
rolling window B  is 2 and function D  is the 
standard deviation of �3E�  and �3 . The 
coefficients of MA(2) are simulated using Monte 
Carlo method. The histogram of the first 
coefficient is given in Fig. 6. 

 

 
 

Fig. 3. Tornado and spider plot 
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Fig. 4. Histogram under null hypothesis of no change 
 
The Table 2 gives the summarize statistics about 
the second coefficient of MA(2) process. 
 
Example 5. Here, in a risk event model, the 
Bayesian posterior is calculated using the 
Bayesian model averaging. An alternative option 
is to use the model tree models. Suppose                  
that 1000 samples are generated from a                    
risk event model with success probability 0.5      
and the impact Beta distribution with parameters 
3,4. Suppose that there is a prior                     
knowledge about data such that i-th observation 

has weight 0.25(0.8I), i = 1,2, … . The histogram 
(Fig. 7) is the posterior using Bayesian model 
averaging. 
 
Example 6. The distribution of maximum and 
median of a combined and spliced distribution is 
approximated by empirical fit function. Suppose 
that 100 samples are generated of a splice 
distribution. The law distribution is Gamma with 
parameters 3, 8 and the second is a Pareto with 
parameters 4,6,3. The histogram of maximum is 
plotted in Fig. 8. 

 

 
 

Fig. 5. Histogram under alternative hypothesis 
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Fig. 6. Histogram of the first coefficient in MA(2) 
 

Table 2. Descriptive statistics of the second coefficient 
 

mean stdev skew kur med min max 
-0.919 0.038 0.168 2.91 -0.921 -1 -0.828 

 

 
 

Fig. 7. Histogram of posterior distribution 
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Fig. 8. Histogram of maximum of spliced distribution 
 
A Chi-squared distribution is fitted to above distribution with 7.84 degree of freedom. For the median 
of combined distribution, the histogram (Fig. 9) is given as follows. 
 

 
 

Fig. 9. Histogram of maximum of combined distribution 
 
A Chi-squared distribution is fitted to above distribution with 1.93 degree of freedom. 
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Example 7. The expectation of a geometric 
Brownian motion is found by ODE and 
Interpolate functions. To calculate the mean, first 
the sample mean of 1000 samples of a GBM with 
5 = 0.01 , 7 = 0.025  and the initial value 1 is 
computed. Then, 5  changes from 0.01 to 0.05 
with step size 0.01. Then, the numerical 
derivatives are obtained and the ODE is 
constructed. Table 3 gives the logarithm of mean 
values as follows.  
 

Table 3. Logarithm of mean values 
 
5 0.01 0.02 0.03 0.04 0.05 
Ln(mean) 7.24 16.98 26.94 38.7 45.77 
 
By fitting a regression between Ln(mean) and 5, 
it is seen that  J�(�K	�) = 913.0135 ≈ 10005 , 

which corresponds to famous formula of 
�(M:) = M9KN:.  
 
Example 8. The individual risk model for total 
claim of insurer portfolio is  
 

M = 2� + ⋯ + 2�, 
 
where 2�  is the � -th risk factor � = 1, … , � . The 
Aggregate options like FFT, Panjer, MC, and De 
Prill are useful to this end. The ruin function 
calculates the possibility of ruin of insurer 
portfolio. Suppose that 1000 samples are 
generated from three risk event models with 
success probability 0.5 and the impact Beta 
distribution with parameters 3,4. The output is 
the sum of three random samples. The histogram 
is plotted in Fig. 10. 

  

 
 

Fig. 10. Histogram plot of FFT 
 
Example 9. A distribution is fitted for maximum of each random series of Wilkie models. 
VoseTimeWilkie is a function that generates random values from each of Wilkie's time series models. 
One of them is price inflation series produced by VoseTimePriceInflation. Its histogram (Fig. 11) and 
descriptive statistics (Table 4) are given as follows.  
 

Table 4. Summarize statistics 
 

mean min max sd skew kur med 

0.078 0.04 0.286 0.024 20.26 13.67 0.07 
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Fig. 11. Histogram plot 
 
Example 10. Example 3 studies the change 
point analysis. However, the ModelRisk six 
sigma function presents the standard plots to 
detect shift in parameters of model. Suppose that 
200 samples are generated such that the first 
100 samples come from t-student distribution 
with 2 degrees of freedom and the remaining are 
from t-student distribution with 3 degrees of 
freedom. The cumulative sum (Fig. 12) is plot 
designed for detection of shift in parameters. It is 
seen that a change has occurred in time series. 
 
Example 11. The Basel Accord sets limitation on 
exposures of bank. ModelRisk may be used the 
losses and Value at Risk (VaR's) under different 
scenarios. Consider a bank that has a portfolio of 
100 loans. The volume of loans varies from 
2,000 to 20000 dollars with different probability of 
default. The Table 5 presents the VaR under 
different scenarios (S).  
 

Table 5. VaR under different scenarios 
 
Scenarios PQ PR PS 
Expected loss 14503 14668 17655 
VaR(0.95) 43736 43775 52554 
VaR(0.975) 55775 55988 96888 
VaR(0.99) 51154 52257 122442 
VaR(0.995) 74776 75136 168332 

 

Example 12. The OptQuest icon of ModelRisk 
performs stochastic optimization. Consider a 
portfolio contains 132 risky assets with 
Lognormal, PERT, Normal, ModPERT and 
Triangle distributions. The maximized value at 
risk ( CVaR ) for some significance level α  are 
given as follows (V9 is the initial value of portfolio) 
is given in Table 6.  
 

Table 6. Maximized WXYZ 
 
α 0.005 0.01 0.05 0.1 
VaR 0.58V9 0.62V9 0.83V9 0.94V9 

 
4. RESULTS AND DISCUSSION 
 
In this paper, the application of ModelRisk 
software in statistical simulation problems are 
seen. Although, there are many other 
applications about this software. This paper can 
be considered as a starting point for many other 
similar research on this software. The main focus 
of this software is the application of Monte Carlo 
methods, distribution fitting, dependence analysis 
(copula fitting) and time series analysis in 
financial problems. However, in this short not, the 
ability of this software in financial management is 
used for many other important problems 
proposed in statistics. 
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Fig. 12. Cumulative sum plot 
 

5. CONCLUSIONS 
 
This short note studies the application of 
ModelRisk software in simulated data. The main 
focus of this short note is on ability of ModelRisk 
software in implementing of statistical simulations 
which is shown by 12 examples. This note is 
extending by author.   
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