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ABSTRACT

In this paper, closed forms of the summation formulas
∑n

k=0 x
kWmk+j for generalized Fibonacci

numbers are presented. As special cases, we give summation formulas of Fibonacci, Lucas,
Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers. We present the proofs to indicate how
these formulas, in general, were discovered. Of course, all the listed formulas may be proved by
induction, but that method of proof gives no clue about their discovery. Moreover, we give some
identities and recurrence properties of generalized Fibonacci sequence.
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1 INTRODUCTION
The generalized Fibonacci sequence (or
generalized (r, s)-sequence or Horadam
sequence or 2-step Fibonacci sequence)
{Wn(W0,W1; r, s)}n≥0 (or shortly {Wn}n≥0) is
defined (by Horadam [1]) as follows:

Wn = rWn−1 + sWn−2, W0 = a,W1 = b, n ≥ 2 (1.1)

where W0,W1 are arbitrary complex (or real)
numbers and r, s are real numbers, see also
Horadam [2],[3],[4] and Soykan [5].

The sequence {Wn}n≥0 can be extended to
negative subscripts by defining

W−n = −r

s
W−(n−1) +

1

s
W−(n−2)

for n = 1, 2, 3, ... when s ̸= 0. Therefore,
recurrence (1.1) holds for all integer n.

For some specific values of a, b, r and s, it
is worth presenting these special Horadam

numbers in a table as a specific name. In
literature, for example, the following names and
notations (see Table 1) are used for the special
cases of r, s and initial values.

Here, OEIS stands for On-line Encyclopedia of
Integer Sequences.

Jacobsthal sequence has been studied by
many authors and more detail can be
found in the extensive literature dedicated
to these sequences, see for example,
[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],
[19],[20],[21].

Pell sequence has been studied by many authors
and more detail can be found in the extensive
literature dedicated to these sequences, see
for example, [22],[23],[24],[25],[26],[27],[28],[29].
For higher order Pell sequences, see
[30],[31],[32],[33],[34],[35].

Table 1. A few special case of generalized Fibonacci sequences

Name of sequence Wn(a, b; r, s) Binet Formula OEIS [6]

Fibonacci Wn(0, 1; 1, 1) = Fn

(
1+

√
5

2

)n

−
(

1−
√
5

2

)n

√
5

A000045

Lucas Wn(2, 1; 1, 1) = Ln

(
1+

√
5

2

)n

+
(

1−
√
5

2

)n

A000032

Pell Wn(0, 1; 2, 1) = Pn

(
1 +

√
2
)n −

(
1−

√
2
)n

2
√
2

A000129

Pell-Lucas Wn(2, 2; 2, 1) = Qn

(
1 +

√
2
)n

+
(
1−

√
2
)n

A002203
Jacobsthal Wn(0, 1; 1, 2) = Jn

2n−(−1)n

3
A001045

Jacobsthal-Lucas Wn(2, 1; 1, 2) = jn 2n + (−1)n A014551

Now we define two special cases of the sequence {Wn}. (r, s) sequence {Gn(0, 1; r, s)}n≥0 and
Lucas (r, s) sequence {Hn(2, r; r, s)}n≥0 are defined, respectively, by the second-order recurrence
relations

Gn+2 = rGn+1 + sGn, G0 = 0, G1 = 1, (1.2)

Hn+2 = rHn+1 + sHn, H0 = 2, H1 = r, (1.3)

The sequences {Gn}n≥0, {Hn}n≥0 and {En}n≥0 can be extended to negative subscripts by defining

G−n = −r

s
G−(n−1) +

1

s
G−(n−2),

H−n = −r

s
H−(n−1) +

1

s
H−(n−2),

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.2)-(1.3) hold for all integer n.
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Some special cases of (r, s) sequence {Gn(0, 1; r, s)}n≥0 and Lucas (r, s) sequence {Hn(2, r; r, s)}n≥0

are as follows:

1. Gn(0, 1; 1, 1) = Fn, Fibonacci sequence,

2. Hn(2, 1; 1, 1) = Ln, Lucas sequence,

3. Gn(0, 1; 2, 1) = Pn, Pell sequence,

4. Hn(2, 2; 2, 1) = Qn, Pell-Lucas sequence,

5. Gn(0, 1; 1, 2) = Jn, Jacobsthal sequence,

6. Hn(2, 1; 1, 2) = jn, Jacobsthal-Lucas sequence.

We give the ordinary generating function
∞∑

n=0

Wnx
n of the sequence {Wn}.

Lemma 1.1. Suppose that fWn(x) =
∞∑

n=0

Wnx
n is the ordinary generating function of the generalized

Fibonacci sequence {Wn}n≥0. Then,
∞∑

n=0

Wnx
n is given by

∞∑
n=0

Wnx
n =

W0 + (W1 − rW0)x

1− rx− sx2
. (1.4)

Binet’s formula of generalized Fibonacci sequence can be calculated using its characteristic equation
(the quadratic equation) which is given as

x2 − rx− s = 0. (1.5)

The roots of characteristic equation are

α =
r +

√
∆

2
, β =

r −
√
∆

2
. (1.6)

where
∆ = r2 + 4s

and the followings hold

α+ β = r,

αβ = −s,

(α− β)2 = (α+ β)2 − 4αβ = r2 + 4s.

1.1 Binet’s Formula for the Distinct Roots Case
In this subsection, we assume that the roots α and β of characteristic equation (1.5) are distinct.
Using these roots and the recurrence relation, Binet’s formula can be given as follows:

Theorem 1.2 (Distinct Roots Case). Binet’s formula of generalized Fibonacci numbers is

Wn =
b1α

n

α− β
+

b2β
n

β − α
=

b1α
n − b2β

n

α− β
(1.7)

where
b1 = W1 − βW0, b2 = W1 − αW0.
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(1.7) can be written in the following form:

Wn = A1α
n +A2β

n (1.8)

where
A1 =

W1 − βW0

α− β
, A2 =

W1 − αW0

β − α
.

Note that

A1A2 =
(W 2

1 − sW 2
0 − rW1W0)

−(r2 + 4s)
,

A1 +A2 = W0.

We next find Binet’s formula of generalized Fibonacci numbers {Wn} by the use of generating function
for Wn.

Theorem 1.3. (Binet’s formula of generalized Fibonacci numbers)

Wn =
d1α

n

(α− β)
+

d2β
n

(β − α)
(1.9)

where

d1 = W0α+ (W1 − rW0),

d2 = W0β + (W1 − rW0)β.

Proof. For a proof see [5], Theorem 1.2]. �
Note that from (1.7) and (1.9) we have

W1 − βW0 = W0α+ (W1 − rW0), (1.10)

W1 − αW0 = W0β + (W1 − rW0)β. (1.11)

For all integers n, (r, s) and Lucas (r, s) numbers (using initial conditions in (1.7) or (1.9)) can be
expressed using Binet’s formulas as

Gn =
αn

(α− β)
+

βn

(β − α)
,

Hn = αn + βn,

respectively.

1.2 Binet’s Formula for the Single Root Case
In this subsection, we assume that the roots α and β of characteristic equation (1.5) are equal, i.e.,
α = β. So (1.5) can be written as

x2 − rx− s = (x− α)2 = x2 − 2αx+ α2 = 0.

Note that in this case,

α =
r

2
,

r = 2α,

s = −α2 = −r2

4
,

r2 + 4s = 0.

Using the root α and the recurrence relation, Binet’s formula can be given as follows:
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Theorem 1.4 (Single Root Case). Binet’s formula of generalized Fibonacci numbers is

Wn = (D1 +D2n)α
n (1.12)

where

D1 = W0,

D2 =
1

α
(W1 − αW0) .

Proof. Wn is in the following form:

Wn = (D1 +D2 × n)αn

where D1 and D2 are the numbers whose values are determined by the values W0 and any other
known value of the sequence. By using the values W0 and W1, we obtain

W0 = (D1 +D2 × 0)α0

W1 = (D1 +D2 × 1)α1.

Solving these two simultaneous equations for W0 and W1, we get

D1 = W0, D2 =
1

α
(W1 − αW0) . �

Note that (1.12) can be written as

Wn = (nW1 −
r

2
(n− 1)W0)

( r

2

)n−1

Note also that

D1D2 =
W0(2W1 − rW0)

r
,

D1 +D2 = 2
W1

r
.

For all integers n, (r, s) and Lucas (r, s) numbers (using initial conditions in (1.7) or (1.9)) can be
expressed using Binet’s formulas as

Gn = nαn−1,

Hn = 2αn,

respectively.

2 SOME IDENTITIES

In this section, we obtain some identities of (r, s) and Lucas (r, s) numbers. Firstly, we can give a few
basic relations between {Gn} and {Wn}.

Lemma 2.1. The following equalities are true:

s3Wn = ((s+ r2)W1 − r(2s+ r2)W0)Gn+4 + (−r(2s+ r2)W1 + (3r2s+ r4 + s2)W0)Gn+3,

s2Wn = (−W1r + (r2 + s)W0)Gn+3 + ((s+ r2)W1 − r(2s+ r2)W0)Gn+2,

sWn = (W1 − rW0)Gn+2 + (−rW1 + (s+ r2)W0)Gn+1,

Wn = W0Gn+1 + (W1 − rW0)Gn,

Wn = W1Gn + sW0Gn−1,
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and

s
3
(−W

2
1 + sW

2
0 + rW1W0)Gn = −((s + r

2
)W1 + srW0)Wn+4 + (r(2s + r

2
)W1 + s(s + r

2
)W0)Wn+3,

s
2
(−W

2
1 + sW

2
0 + rW1W0)Gn = (rW1 + sW0)Wn+3 − ((s + r

2
)W1 + srW0)Wn+2,

s(−W
2
1 + sW

2
0 + rW1W0)Gn = −W1Wn+2 + (rW1 + sW0)Wn+1,

(−W
2
1 + sW

2
0 + rW1W0)Gn = W0Wn+1 − W1Wn,

(−W
2
1 + sW

2
0 + rW1W0)Gn = −(W1 − rW0)Wn + sW0Wn−1.

Proof. We prove (a). Writing
Wn = a×Gn+4 + b×Gn+3

and solving the system of equations

W0 = a×G4 + b×G3

W1 = a×G5 + b×G4

we find that a = (s+r2)W1−r(2s+r2)W0

s3
, b = −r(2s+r2)W1+(3r2s+r4+s2)W0

s3
. The other equalities can be

proved similarly. �

Note that all the identities in the above Lemma can be proved by induction as well.

Secondly, we can give a few basic relations between {Hn} and {Wn}.

Lemma 2.2. The following equalities are true:

s
3
(4s + r

2
)Wn = (−r(3s + r

2
)W1 + (4r

2
s + r

4
+ 2s

2
)W0)Hn+4 + ((r

4
+ 2s

2
+ 4r

2
s)W1

−r(5r
2
s + r

4
+ 5s

2
)W0)Hn+3,

s
2
(4s + r

2
)Wn = ((2s + r

2
)W1 − r(3s + r

2
)W0)Hn+3 + (−r(3s + r

2
)W1 + (r

4
+ 2s

2
+ 4r

2
s)W0)Hn+2,

s(4s + r
2
)Wn = (−rW1 + (2s + r

2
)W0)Hn+2 + ((2s + r

2
)W1 − r(3s + r

2
)W0)Hn+1,

(4s + r
2
)Wn = (2W1 − rW0)Hn+1 + (−rW1 + (2s + r

2
)W0)Hn,

(4s + r
2
)Wn = (rW1 + 2sW0)Hn + s(2W1 − rW0)Hn−1,

and

s
3
(−W

2
1 + sW

2
0 + rW0W1)Hn = (r(3s + r

2
)W1 + s(2s + r

2
)W0)Wn+4 − ((r

4
+ 2s

2
+ 4r

2
s)W1

+rs(3s + r
2
)W0)Wn+3,

s
2
(−W

2
1 + sW

2
0 + rW0W1)Hn = −((2s + r

2
)W1 + rsW0)Wn+3 + (r(3s + r

2
)W1 + s(2s + r

2
)W0)Wn+2,

s(−W
2
1 + sW

2
0 + rW0W1)Hn = (rW1 + 2sW0)Wn+2 − ((2s + r

2
)W1 + rsW0)Wn+1,

(−W
2
1 + sW

2
0 + rW0W1)Hn = (−2W1 + rW0)Wn+1 + (rW1 + 2sW0)Wn,

(−W
2
1 + sW

2
0 + rW0W1)Hn = (−rW1 + (2s + r

2
)W0)Wn + s(−2W1 + rW0)Wn−1.

3 ON THE RECURRENCE PROPERTIES OF GENERALIZED FIBO-
NACCI SEQUENCE

Horadam [36] give the following identity for the second order recurrence relation (1.1).

Theorem 3.1. For n ∈ Z, we have

Wn+2k = HkWn+k + (−1)k+1skWn.
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Now, we can propose a problem as follows: Whether and how can the generalized Fibonacci sequence
Wn at negative indices be expressed by the sequence itself at positive indices?

We present the following result which completely solves the above problem for the generalized
Fibonacci sequence Wn.

Theorem 3.2. For n ∈ Z, for the generalized Fibonacci sequence (or generalized (r, s)-sequence or
Horadam sequence or 2-step Fibonacci sequence) we have

W−n = (−1)−n−1s−n(Wn −HnW0)

= (−1)n+1s−n(Wn −HnW0).

Proof. If the roots of characteristic equation (1.5) are distinct then by using the Binet’s formulas of Wn

and Hn we get

(−1)n+1snW−n = −(−s)nW−n

= −αnβn(A1α
−n +A2β

−n)

= −(βnA1 + αnA2)

= (A1α
n +A2β

n)− (A1 +A2)(α
n + βn)

= Wn −W0Hn

⇒
W−n = (−1)−n−1s−n(Wn −HnW0).

and if the roots of characteristic equation (1.5) are equal then by using the Binet’s formulas of Wn

and Hn we obtain

(−1)n+1snW−n = −(−s)nW−n

= −α2n(D1 +D2 × (−n))α−n

= −α2n(W0 +
1

α
(W1 − αW0)× (−n))α−n

= (nW1 − α (n− 1)W0)α
n−1 −W0 × 2αn

= (D1 +D2 × n)αn −W0 × 2αn

= Wn −W0Hn

⇒
W−n = (−1)−n−1s−n(Wn −HnW0).

This proves the theorem.

We can obtain the same result by using Theorem 3.1 as follows:

Wn+2k = HkWn+k + (−1)k+1skWn

⇒
by taking − n and n for n and k respectively

W−n+2n = HnW−n+n + (−1)n+1snW−n

⇒
Wn = HnW0 + (−1)n+1snW−n

⇒
(−1)n+1snW−n = Wn −HnW0

⇒
W−n = (−1)−n−1s−n(Wn −HnW0).
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�
Note that from the definition of Hn, we obtain

H−n = (−s)−nHn

i.e., H−n = (−s)−nHn and so Hn = (−s)nH−n. Note also that

(−s)n =
1

2
(H2

n −H2n).

By using Lemma 2.2 and Theorem 3.2 we obtain the following theorem.

Theorem 3.3. For n ∈ Z, for the generalized Fibonacci sequence (or generalized (r, s)-sequence or
Horadam sequence or 2-step Fibonacci sequence) we have

W−n =
(−1)n+1s−n

−W 2
1 + sW 2

0 + rW0W1
((2W1 − rW0)W0Wn+1 − (W 2

1 + sW 2
0 )Wn).

Taking r = 1, s = 1 in Theorem 3.2 and Theorem 3.3, we obtain the following Proposition.

Proposition 3.1. For n ∈ Z, generalized Fibonacci numbers (the case r = 1, s = 1) have the
following identity:

W−n = (−1)n+1(Wn − LnW0)

=
(−1)n+1

−W 2
1 +W 2

0 +W0W1
((2W1 −W0)W0Wn+1 − (W 2

1 +W 2
0 )Wn).

From the above Proposition, we have the following corollary which gives the connection between the
special cases of generalized Fibonacci sequence at the positive index and the negative index: for
Fibonacci and Lucas numbers, take

Wn = Fn with F0 = 0, F1 = 1 and take Wn = Ln with L0 = 2, L1 = 1, respectively. Note that in this
case Hn = Ln.

Corollary 3.4. For n ∈ Z, we have the following recurrence relations:

(a) Fibonacci sequence:
F−n = (−1)n+1Fn.

(b) Fibonacci-Lucas sequence:
L−n = (−1)nLn.

Taking r = 2, s = 1 in Theorem 3.2 and Theorem 3.3, we obtain the following Proposition.

Proposition 3.2. For n ∈ Z, generalized Pell numbers (the case r = 2, s = 1) have the following
identity:

W−n = (−1)n+1(Wn −QnW0)

=
(−1)n+1

−W 2
1 +W 2

0 + 2W0W1
((2W1 − 2W0)W0Wn+1 − (W 2

1 +W 2
0 )Wn).

From the above Proposition, we have the following corollary which gives the connection between the
special cases of generalized Pell sequence at the positive index and the negative index: for Pell and
Pell-Lucas numbers, take
Wn = Pn with P0 = 0, P1 = 1 and take Wn = Qn with Q0 = 2, Q1 = 2, respectively. Note that in this
case Hn = Qn.
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Corollary 3.5. For n ∈ Z, we have the following recurrence relations:

(a) Pell sequence:
P−n = (−1)n+1Pn.

(b) Pell-Lucas sequence:
Q−n = (−1)nQn.

Taking r = 1, s = 2 in Theorem 3.2 and Theorem 3.3, we obtain the following Proposition.

Proposition 3.3. For n ∈ Z, generalized Jacobsthal numbers (the case r = 1, s = 2) have the
following identity:

W−n = (−1)n+12−n(Wn − jnW0)

=
(−1)n+12−n

−W 2
1 + 2W 2

0 +W0W1
((2W1 −W0)W0Wn+1 − (W 2

1 + 2W 2
0 )Wn).

From the above Proposition, we have the following corollary which gives the connection between the
special cases of generalized Jacobsthal sequence at the positive index and the negative index: for
Jacobsthal and Jacobsthal-Lucas numbers, take

Wn = Jn with J0 = 0, J1 = 1 and take Wn = jn with j0 = 2, j1 = 1, respectively. Note that in this
case Hn = jn.

Corollary 3.6. For n ∈ Z, we have the following recurrence relations:

(a) Jacobsthal sequence:
J−n = (−1)n+12−nJn.

(b) Jacobsthal-Lucas sequence:
j−n = (−1)n2−njn.

4 THE SUM FORMULA
∑n

k=0 x
kWmk+j

In this section, we present sum formulas of generalized (r, s) numbers (generalized Fibonacci numbers).

The following theorem presents sum formulas of generalized (r, s) numbers (generalized Fibonacci
numbers).

Theorem 4.1. Let x be a real (or complex) number. For all integers m and j, for generalized (r, s)
numbers (generalized Fibonacci numbers), we have the following sum formulas:

(a) If (−s)mx2 − xHm + 1 ̸= 0 then

n∑
k=0

xkWmk+j =
((−s)m x−Hm)xn+1Wmn+j + (−s)m xn+1Wmn+j−m +Wj − (−s)m xWj−m

(−s)mx2 − xHm + 1
.

(4.1)

(b) If (−s)mx2 − xHm + 1 = u(x − a)(x − b) = 0 for some u, a, b ∈ C with u ̸= 0 and a ̸= b, i.e.,
x = a or x = b, then

n∑
k=0

x
k
Wmk+j =

(x(n + 2) (−s)m − (n + 1)Hm)xnWj+mn + (−s)m (n + 1)xnWmn+j−m − (−s)m Wj−m

2 (−s)m x − Hm
.
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(c) If (−s)mx2 − xHm + 1 = u(x − c)2 = 0 for some u, c ∈ C with u ̸= 0, i.e., x = c, then

n∑
k=0

x
k
Wmk+j =

(n + 1)
(
(−s)m (n + 2)xn − nxn−1Hm

)
Wmn+j + n(n + 1) (−s)m xn−1Wmn+j−m

2 (−s)m
.

Proof.

(a) Note that if the roots of characteristic equation (1.5) are distinct then

n∑
k=0

xkWmk+j = xnWmn+j +

n−1∑
k=0

xkWmk+j

= xnWmn+j +

n−1∑
k=0

(A1α
mk+j +A2β

mk+j)xk

= xnWmn+j +A1α
j

(
(αmx)n − 1

αmx− 1

)
+A2β

j

(
(βmx)n − 1

βmx− 1

)
.

Simplifying the last equalities in the last two expression imply (4.1) as required. If the roots of
characteristic equation (1.5) are equal then the proof is similar.

(b) We use (4.1). For x = a and x = b, the right hand side of the above sum formula 4.1) is an
indeterminate form. Now, we can use L’Hospital rule. Then we get (b) by using

n∑
k=0

a
k
Wmk+j =

d
dx

(
((−s)m x − Hm)xn+1Wmn+j + (−s)m xn+1Wmn+j−m + Wj − (−s)m xWj−m

)
d
dx

(
(−s)mx2 − xHm + 1

)
∣∣∣∣∣∣
x=a

=
(x(n + 2) (−s)m − (n + 1)Hm)xnWj+mn + (−s)m (n + 1)xnWmn+j−m − (−s)m Wj−m

2 (−s)m x − Hm

∣∣∣∣∣
x=a

=
(a(n + 2) (−s)m − (n + 1)Hm)anWj+mn + (−s)m (n + 1)anWmn+j−m − (−s)m Wj−m

2 (−s)m a − Hm

and

n∑
k=0

b
k
Wmk+j =

d
dx

(
((−s)m x − Hm)xn+1Wmn+j + (−s)m xn+1Wmn+j−m + Wj − (−s)m xWj−m

)
d
dx

(
(−s)mx2 − xHm + 1

)
∣∣∣∣∣∣
x=b

=
(x(n + 2) (−s)m − (n + 1)Hm)xnWj+mn + (−s)m (n + 1)xnWmn+j−m − (−s)m Wj−m

2 (−s)m x − Hm

∣∣∣∣∣
x=b

=
(b(n + 2) (−s)m − (n + 1)Hm)bnWj+mn + (−s)m (n + 1)bnWmn+j−m − (−s)m Wj−m

2 (−s)m b − Hm
.

(c) We use (4.1). For x = c, the right hand side of the above sum formula (4.1) is an indeterminate
form. Now, we can use L’Hospital rule (twice). Then we get (c) by using

n∑
k=0

c
k
Wmk+j =

d2

dx2

(
((−s)m x − Hm)xn+1Wmn+j + (−s)m xn+1Wmn+j−m + Wj − (−s)m xWj−m

)
d2

dx2

(
(−1)mx2 − xHm + 1

)
∣∣∣∣∣∣∣
x=c

=
(n + 1)

(
(−s)m (n + 2)xn − nxn−1Hm

)
Wmn+j + n(n + 1) (−s)m xn−1Wmn+j−m

2 (−s)m

∣∣∣∣∣∣
x=c

=
(n + 1)

(
(−s)m (n + 2)cn − ncn−1Hm

)
Wmn+j + n(n + 1) (−s)m cn−1Wmn+j−m

2 (−s)m
.

�
Note that (4.1) can be written in the following form

n∑
k=1

x
k
Wmk+j =

((−s)m x − Hm)xn+1Wmn+j + (−s)m xn+1Wmn+j−m + x(Hm − (−s)m x)Wj − (−s)m xWj−m

(−s)mx2 − xHm + 1
.
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4.1 The Case r = s = 1: Generalized Fibonacci Numbers
The following theorem presents sum formulas of generalized Fibonacci numbers (the case r = s = 1).

Theorem 4.2. Let x be a real (or complex) number. For all integers m and j, for generalized Fibonacci
numbers (the case r = s = 1) we have the following sum formulas:

(a) If (−1)mx2 − xLm + 1 ̸= 0 then
n∑

k=0

xkWmk+j =
((−1)m x− Lm)xn+1Wmn+j + (−1)m xn+1Wmn+j−m +Wj − (−1)m xWj−m

(−1)mx2 − xLm + 1
.

(4.2)
(b) If (−1)mx2 −xLm +1 = (x− a)(x− b) = 0 for some a, b ∈ C and a ̸= b, i.e., x = a or x = b, then

n∑
k=0

x
k
Wmk+j =

(x(n + 2) (−1)m − (n + 1)Lm)xnWj+mn + (−1)m (n + 1)xnWmn+j−m − (−1)m Wj−m

2 (−1)m x − Lm
.

(c) If (−1)mx2 − xLm + 1 = (x− c)2 = 0 for some c ∈ C then

n∑
k=0

c
k
Wmk+j =

(n + 1)
(
(−1)m (n + 2)cn − ncn−1Lm

)
Wmn+j + n(n + 1) (−1)m cn−1Wmn+j−m

2 (−1)m
.

Proof. Take r = s = 1 and Hn = Ln in Theorem 4.1.
Note that (4.2) can be written in the following form

n∑
k=1

x
k
Wmk+j =

((−1)m x − Lm)xn+1Wmn+j + (−1)m xn+1Wmn+j−m + x(Lm − (−1)m x)Wj − (−1)m xWj−m

(−1)mx2 − xLm + 1
.

As special cases of m and j in the last Theorem, we obtain the following proposition.

Proposition 4.1. For generalized Fibonacci numbers (the case r = s = 1) we have the following
sum formulas for n ≥ 0:

(a) (The case: m = 1, j = 0).
If −x2 − x+ 1 ̸= 0, i.e., x ̸= − 1

2
+ 1

2

√
5, x ̸= − 1

2
− 1

2

√
5, then

n∑
k=0

xkWk =
(x+ 1)xn+1Wn + xn+1Wn−1 − (W1 −W0)x−W0

x2 + x− 1
,

and
if −x2 − x+ 1 = 0, i.e., x = − 1

2
+ 1

2

√
5 or x = − 1

2
− 1

2

√
5, then

n∑
k=0

xkWk =
(2x+ 1 + n(x+ 1))xnWn + (n+ 1)xnWn−1 − (W1 −W0)

2x+ 1
.

(b) (The case: m = 2, j = 0).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkW2k =
(x− 3)xn+1W2n + xn+1W2n−2 + (W1 − 2W0)x+W0

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkW2k =
(2x− 3 + n(x− 3))xnW2n + (n+ 1)xnW2n−2 + (W1 − 2W0)

2x− 3
.

21



Soykan; ACRI, 21(3): 11-38, 2021; Article no.ACRI.69283

(c) (The case: m = 2, j = 1).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkW2k+1 =
(x− 3)xn+1W2n+1 + xn+1W2n−1 − (W1 −W0)x+W1

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkW2k+1 =
((x− 3)n+ 2x− 3)xnW2n+1 + (n+ 1)xnW2n−1 − (W1 −W0)

2x− 3
.

(d) (The case: m = −1, j = 0).
If −x2 + x+ 1 ̸= 0, i.e., x ̸= 1

2
+ 1

2

√
5, x ̸= 1

2
− 1

2

√
5, then

n∑
k=0

xkW−k =
xn+1W−n+1 + (x− 1)xn+1W−n −W1x−W0

x2 − x− 1
,

and
if −x2 + x+ 1 = 0, i.e., x = 1

2
+ 1

2

√
5 or x = 1

2
− 1

2

√
5, then

n∑
k=0

xkW−k =
(n+ 1)xnW−n+1 + (2x− 1 + n(x− 1))xnW−n −W1

2x− 1
.

(e) (The case: m = −2, j = 0).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkW−2k =
xn+1W−2n+2 + (x− 3)xn+1W−2n −W2x+W0

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkW−2k =
(n+ 1)xnW−2n+2 + (2x− 3 + n(x− 3))xnW−2n −W2

2x− 3
.

(f) (The case: m = −2, j = 1).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkW−2k+1 =
xn+1W−2n+3 + (x− 3)xn+1W−2n+1 −W3x+W1

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkW−2k+1 =
(n+ 1)xnW−2n+3 + (2x− 3 + n(x− 3))xnW−2n+1 −W3

2x− 3
.

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci
numbers (take Wn = Fn with F0 = 0, F1 = 1).
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Corollary 4.3. For n ≥ 0, Fibonacci numbers have the following properties:

(a) (The case: m = 1, j = 0).
If −x2 − x+ 1 ̸= 0, i.e., x ̸= − 1

2
+ 1

2

√
5, x ̸= − 1

2
− 1

2

√
5, then

n∑
k=0

xkFk =
(x+ 1)xn+1Fn + xn+1Fn−1 − x

x2 + x− 1
,

and
if −x2 − x+ 1 = 0, i.e., x = − 1

2
+ 1

2

√
5 or x = − 1

2
− 1

2

√
5, then

n∑
k=0

xkFk =
(2x+ 1 + n(x+ 1))xnFn + (n+ 1)xnFn−1 − 1

2x+ 1
.

(b) (The case: m = 2, j = 0).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkF2k =
(x− 3)xn+1F2n + xn+1F2n−2 + x

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkF2k =
(2x− 3 + n(x− 3))xnF2n + (n+ 1)xnF2n−2 + 1

2x− 3
.

(c) (The case: m = 2, j = 1)).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkF2k+1 =
(x− 3)xn+1F2n+1 + xn+1F2n−1 − x+ 1

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkF2k+1 =
((x− 3)n+ 2x− 3)xnF2n+1 + (n+ 1)xnF2n−1 − 1

2x− 3
.

(d) (The case: m = −1, j = 0).
If −x2 + x+ 1 ̸= 0, i.e., x ̸= 1

2
+ 1

2

√
5, x ̸= 1

2
− 1

2

√
5, then

n∑
k=0

xkF−k =
xn+1F−n+1 + (x− 1)xn+1F−n − x

x2 − x− 1
,

and
if −x2 + x+ 1 = 0, i.e., x = 1

2
+ 1

2

√
5 or x = 1

2
− 1

2

√
5, then

n∑
k=0

xkF−k =
(n+ 1)xnF−n+1 + (2x− 1 + n(x− 1))xnF−n − 1

2x− 1
.
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(e) (The case: m = −2, j = 0).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkF−2k =
xn+1F−2n+2 + (x− 3)xn+1F−2n − x

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkF−2k =
(n+ 1)xnF−2n+2 + (2x− 3 + n(x− 3))xnF−2n − 1

2x− 3
.

(f) (The case: m = −2, j = 1).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkF−2k+1 =
xn+1F−2n+3 + (x− 3)xn+1F−2n+1 − 2x+ 1

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkF−2k+1 =
(n+ 1)xnF−2n+3 + (2x− 3 + n(x− 3))xnF−2n+1 − 2

2x− 3
.

Taking Wn = Ln with L0 = 2, L1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Lucas numbers.

Corollary 4.4. For n ≥ 0, Lucas numbers have the following properties:

(a) (The case: m = 1, j = 0).
If −x2 − x+ 1 ̸= 0, i.e., x ̸= − 1

2
+ 1

2

√
5, x ̸= − 1

2
− 1

2

√
5, then

n∑
k=0

xkLk =
(x+ 1)xn+1Ln + xn+1Ln−1 + x− 2

x2 + x− 1
,

and
if −x2 − x+ 1 = 0, i.e., x = − 1

2
+ 1

2

√
5 or x = − 1

2
− 1

2

√
5, then

n∑
k=0

xkLk =
(2x+ 1 + n(x+ 1))xnLn + (n+ 1)xnLn−1 + 1

2x+ 1
.

(b) (The case: m = 2, j = 0).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkL2k =
(x− 3)xn+1L2n + xn+1L2n−2 + (L1 − 2L0)x+ 2

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkL2k =
(2x− 3 + n(x− 3))xnL2n + (n+ 1)xnL2n−2 − 3

2x− 3
.
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(c) (The case: m = 2, j = 1).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkL2k+1 =
(x− 3)xn+1L2n+1 + xn+1L2n−1 + x+ 1

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkL2k+1 =
((x− 3)n+ 2x− 3)xnL2n+1 + (n+ 1)xnL2n−1 + 1

2x− 3
.

(d) (The case: m = −1, j = 0).
If −x2 + x+ 1 ̸= 0, i.e., x ̸= 1

2
+ 1

2

√
5, x ̸= 1

2
− 1

2

√
5, then

n∑
k=0

xkL−k =
xn+1L−n+1 + (x− 1)xn+1L−n − x− 2

x2 − x− 1
,

and
if −x2 + x+ 1 = 0, i.e., x = 1

2
+ 1

2

√
5 or x = 1

2
− 1

2

√
5, then

n∑
k=0

xkL−k =
(n+ 1)xnL−n+1 + (2x− 1 + n(x− 1))xnL−n − 1

2x− 1
.

(e) (The case: m = −2, j = 0).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkL−2k =
xn+1L−2n+2 + (x− 3)xn+1L−2n − 3x+ 2

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkL−2k =
(n+ 1)xnL−2n+2 + (2x− 3 + n(x− 3))xnL−2n − 3

2x− 3
.

(f) (The case: m = −2, j = 1).
If x2 − 3x+ 1 ̸= 0, i.e., x ̸= 3

2
+ 1

2

√
5, x ̸= 3

2
− 1

2

√
5, then

n∑
k=0

xkL−2k+1 =
xn+1L−2n+3 + (x− 3)xn+1L−2n+1 − 4x+ 1

x2 − 3x+ 1
,

and
if x2 − 3x+ 1 = 0, i.e., x = 3

2
+ 1

2

√
5 or x = 3

2
− 1

2

√
5, then

n∑
k=0

xkL−2k+1 =
(n+ 1)xnL−2n+3 + (2x− 3 + n(x− 3))xnL−2n+1 − 4

2x− 3
.

Taking x = 1 in the last two corollaries we get the following corollary.

Corollary 4.5. For n ≥ 0, Fibonacci numbers, and Lucas numbers have the following properties:
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1.

(a)
∑n

k=0 Fk = 2Fn + Fn−1 − 1.

(b)
∑n

k=0 F2k = 2F2n − F2n−2 − 1.

(c)
∑n

k=0 F2k+1 = 2F2n+1 − F2n−1.

(d)
∑n

k=0 F−k = −F−n+1 + 1.

(e)
∑n

k=0 F−2k = −F−2n+2 + 2F−2n + 1.

(f)
∑n

k=0 F−2k+1 = −F−2n+3 + 2F−2n+1 + 1.

2.

(a)
∑n

k=0 Lk = 2Ln + Ln−1 − 1.

(b)
∑n

k=0 L2k = 2L2n − L2n−2 + 1.

(c)
∑n

k=0 L2k+1 = 2L2n+1 − L2n−1 − 2.

(d)
∑n

k=0 L−k = −L−n+1 + 3.

(e)
∑n

k=0 L−2k = −L−2n+2 + 2L−2n + 1.

(f)
∑n

k=0 L−2k+1 = −L−2n+3 + 2L−2n+1 + 3.

4.2 The Case r = 2, s = 1: Generalized Pell Numbers
The following theorem presents sum formulas of generalized Pell numbers (the case r = 2, s = 1).

Theorem 4.6. Let x be a real (or complex) number. For all integers m and j, for generalized Pell
numbers we have the following sum formulas:

(a) if (−1)mx2 − xQm + 1 ̸= 0 then

n∑
k=0

xkWmk+j =
((−1)m x−Qm)xn+1Wmn+j + (−1)m xn+1Wmn+j−m +Wj − (−1)m xWj−m

(−1)mx2 − xQm + 1
.

(4.3)

(b) If (−1)mx2 −xQm +1 = (x−a)(x− b) = 0 for some a, b ∈ C and a ̸= b, i.e., x = a or x = b, then

n∑
k=0

x
k
Wmk+j =

(x(n + 2) (−1)m − (n + 1)Qm)xnWj+mn + (−1)m (n + 1)xnWmn+j−m − (−1)m Wj−m

2 (−1)m x − Qm
.

(c) If (−1)mx2 − xQm + 1 = (x− c)2 = 0 for some c ∈ C then

n∑
k=0

ckWmk+j =
(n+ 1)

(
(−1)m (n+ 2)cn − ncn−1Qm

)
Wmn+j + n(n+ 1) (−1)m cn−1Wmn+j−m

2 (−1)m
.

Proof. Take r = 2, s = 1 and Hn = Qn in Theorem 4.1. �
Note that (4.3) can be written in the following form

n∑
k=1

x
k
Wmk+j =

((−1)m x − Qm)xn+1Wmn+j + (−1)m xn+1Wmn+j−m + x(Qm − (−1)m x)Wj − (−1)m xWj−m

(−1)mx2 − xQm + 1
.

As special cases of m and j in the last Theorem, we obtain the following proposition.

Proposition 4.2. For generalized Pell numbers (the case r = 2, s = 1) we have the following sum
formulas for n ≥ 0:
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(a) (The case: m = 1, j = 0).
If −x2 − 2x+ 1 ̸= 0, i.e., x ̸= −1 +

√
2, x ̸= −1−

√
2, then

n∑
k=0

xkWk =
(x+ 2)xn+1Wn + xn+1Wn−1 − (W1 − 2W0)x−W0

x2 + 2x− 1
,

and
if −x2 − 2x+ 1 = 0, i.e., x = −1 +

√
2 or x = −1−

√
2, then

n∑
k=0

xkWk =
(2x+ 2 + n(2 + x))xnWn + (n+ 1)xnWn−1 − (W1 − 2W0)

2x+ 2
.

(b) (The case: m = 2, j = 0).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkW2k =
(x− 6)xn+1W2n + xn+1W2n−2 + (2W1 − 5W0)x+W0

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkW2k =
(2x− 6 + n(x− 6))xnW2n + (n+ 1)xnW2n−2 + (2W1 − 5W0)

2x− 6
.

(c) (The case: m = 2, j = 1).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkW2k+1 =
(x− 6)xn+1W2n+1 + xn+1W2n−1 − (W1 − 2W0)x+W1

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkW2k+1 =
((x− 6)n+ 2(x− 3))xnW2n+1 + (n+ 1)xnW2n−1 − (W1 − 2W0)

2(x− 3)
.

(d) (The case: m = −1, j = 0).
If −x2 + 2x+ 1 ̸= 0, i.e., x ̸= 1 +

√
2, x ̸= 1−

√
2, then

n∑
k=0

xkW−k =
xn+1W−n+1 + (x− 2)xn+1W−n −W1x−W0

x2 − 2x− 1
,

and
if −x2 + 2x+ 1 = 0, i.e., x = 1 +

√
2 or x = 1−

√
2, then

n∑
k=0

xkW−k =
(n+ 1)xnW−n+1 + (2x− 2 + n(x− 2))xnW−n −W1

2x− 2
.

(e) (The case: m = −2, j = 0).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkW−2k =
xn+1W−2n+2 + (x− 6)xn+1W−2n −W2x+W0

x2 − 6x+ 1
,
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and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkW−2k =
(n+ 1)xnW−2n+2 + (2x− 6 + n(x− 6))xnW−2n −W2

2x− 6
.

(f) (The case: m = −2, j = 1).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkW−2k+1 =
xn+1W−2n+3 + (x− 6)xn+1W−2n+1 −W3x+W1

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkW−2k+1 =
(n+ 1)xnW−2n+3 + (2x− 6 + n(x− 6))xnW−2n+1 −W3

2x− 6
.

From the above proposition, we have the following corollary which gives sum formulas of Pell numbers
(take Wn = Pn with P0 = 0, P1 = 1).

Corollary 4.7. For n ≥ 0, Pell numbers have the following properties:

(a) (The case: m = 1, j = 0).
If −x2 − 2x+ 1 ̸= 0, i.e., x ̸= −1 +

√
2, x ̸= −1−

√
2, then

n∑
k=0

xkPk =
(x+ 2)xn+1Pn + xn+1Pn−1 − x

x2 + 2x− 1
,

and
if −x2 − 2x+ 1 = 0, i.e., x = −1 +

√
2 or x = −1−

√
2, then

n∑
k=0

xkPk =
(2x+ 2 + n(2 + x))xnPn + (n+ 1)xnPn−1 − 1

2x+ 2
.

(b) (The case: m = 2, j = 0).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkP2k =
(x− 6)xn+1P2n + xn+1P2n−2 + 2x

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkP2k =
(2x− 6 + n(x− 6))xnP2n + (n+ 1)xnP2n−2 + 2

2x− 6
.

(c) (The case: m = 2, j = 1).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkP2k+1 =
(x− 6)xn+1P2n+1 + xn+1P2n−1 − x+ 1

x2 − 6x+ 1
,
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and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkP2k+1 =
((x− 6)n+ 2(x− 3))xnP2n+1 + (n+ 1)xnP2n−1 − 1

2(x− 3)
.

(d) (The case: m = −1, j = 0).
If −x2 + 2x+ 1 ̸= 0, i.e., x ̸= 1 +

√
2, x ̸= 1−

√
2, then

n∑
k=0

xkP−k =
xn+1P−n+1 + (x− 2)xn+1P−n − x

x2 − 2x− 1
,

and
if −x2 + 2x+ 1 = 0, i.e., x = 1 +

√
2 or x = 1−

√
2, then

n∑
k=0

xkP−k =
(n+ 1)xnP−n+1 + (2x− 2 + n(x− 2))xnP−n − 1

2x− 2
.

(e) (The case: m = −2, j = 0).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkP−2k =
xn+1P−2n+2 + (x− 6)xn+1P−2n − 2x

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkP−2k =
(n+ 1)xnP−2n+2 + (2x− 6 + n(x− 6))xnP−2n − 2

2x− 6
.

(f) (The case: m = −2, j = 1).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkP−2k+1 =
xn+1P−2n+3 + (x− 6)xn+1P−2n+1 − 5x+ 1

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkP−2k+1 =
(n+ 1)xnP−2n+3 + (2x− 6 + n(x− 6))xnP−2n+1 − 5

2x− 6
.

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of Pell-Lucas numbers.

Corollary 4.8. For n ≥ 0, Pell-Lucas numbers have the following properties:

(a) (The case: m = 1, j = 0).
If −x2 − 2x+ 1 ̸= 0, i.e., x ̸= −1 +

√
2, x ̸= −1−

√
2, then

n∑
k=0

xkQk =
(x+ 2)xn+1Qn + xn+1Qn−1 + 2x− 2

x2 + 2x− 1
,
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and
if −x2 − 2x+ 1 = 0, i.e., x = −1 +

√
2 or x = −1−

√
2, then

n∑
k=0

xkQk =
(2x+ 2 + n(2 + x))xnQn + (n+ 1)xnQn−1 + 2

2x+ 2
.

(b) (The case: m = 2, j = 0).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkQ2k =
(x− 6)xn+1Q2n + xn+1Q2n−2 − 6x+ 2

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkQ2k =
(2x− 6 + n(x− 6))xnQ2n + (n+ 1)xnQ2n−2 − 6

2x− 6
.

(c) (The case: m = 2, j = 1).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkQ2k+1 =
(x− 6)xn+1Q2n+1 + xn+1Q2n−1 + 2x+ 2

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkQ2k+1 =
((x− 6)n+ 2(x− 3))xnQ2n+1 + (n+ 1)xnQ2n−1 + 2

2(x− 3)
.

(d) (The case: m = −1, j = 0).
If −x2 + 2x+ 1 ̸= 0, i.e., x ̸= 1 +

√
2, x ̸= 1−

√
2, then

n∑
k=0

xkQ−k =
xn+1Q−n+1 + (x− 2)xn+1Q−n − 2x− 2

x2 − 2x− 1
,

and
if −x2 + 2x+ 1 = 0, i.e., x = 1 +

√
2 or x = 1−

√
2, then

n∑
k=0

xkQ−k =
(n+ 1)xnQ−n+1 + (2x− 2 + n(x− 2))xnQ−n − 2

2x− 2
.

(e) (The case: (m = −2, j = 0).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkQ−2k =
xn+1Q−2n+2 + (x− 6)xn+1Q−2n − 6x+ 2

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkQ−2k =
(n+ 1)xnQ−2n+2 + (2x− 6 + n(x− 6))xnQ−2n − 6

2x− 6
.
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(f) (The case: m = −2, j = 1).
If x2 − 6x+ 1 ̸= 0, i.e., x ̸= 3 + 2

√
2, x ̸= 3− 2

√
2, then

n∑
k=0

xkQ−2k+1 =
xn+1Q−2n+3 + (x− 6)xn+1Q−2n+1 − 14x+ 2

x2 − 6x+ 1
,

and
if x2 − 6x+ 1 = 0, i.e., x = 3 + 2

√
2 or x = 3− 2

√
2, then

n∑
k=0

xkQ−2k+1 =
(n+ 1)xnQ−2n+3 + (2x− 6 + n(x− 6))xnQ−2n+1 − 14

2x− 6
.

Taking x = 1 in the last two corollaries we get the following corollary.

Corollary 4.9. For n ≥ 0, Pell numbers and Pell-Lucas numbers have the following properties:

1.

(a)
∑n

k=0 Pk = 1
2
(3Pn + Pn−1 − 1).

(b)
∑n

k=0 P2k = 1
4
(5P2n − P2n−2 − 2).

(c)
∑n

k=0 P2k+1 = 1
4
(5P2n+1 − P2n−1).

(d)
∑n

k=0 P−k = 1
2
(−P−n+1 + P−n + 1).

(e)
∑n

k=0 P−2k = 1
4
(−P−2n+2 + 5P−2n + 2).

(f)
∑n

k=0 P−2k+1 = 1
4
(−P−2n+3 + 5P−2n+1 + 4).

2.

(a)
∑n

k=0 Qk = 1
2
(3Qn +Qn−1).

(b)
∑n

k=0 Q2k = 1
4
(5Q2n −Q2n−2 + 4).

(c)
∑n

k=0 Q2k+1 = 1
4
(5Q2n+1 −Q2n−1 − 4).

(d)
∑n

k=0 Q−k = 1
2
(−Q−n+1 +Q−n + 4).

(e)
∑n

k=0 Q−2k = 1
4
(−Q−2n+2 + 5Q−2n + 4).

(f)
∑n

k=0 Q−2k+1 = 1
4
(−Q−2n+3 + 5Q−2n+1 + 12).

4.3 The Case r = 1, s = 2: Generalized Jacobsthal Numbers
The following theorem presents sum formulas of generalized Jacobsthal numbers (the case r = 1, s =
2).

Theorem 4.10. Let x be a real (or complex) number. For all integers m and j, for generalized
Jacobsthal numbers we have the following sum formulas:

(a) if (−2)mx2 − xjm + 1 ̸= 0 then
n∑

k=0

xkWmk+j =
((−2)m x− jm)xn+1Wmn+j + (−2)m xn+1Wmn+j−m +Wj − (−2)m xWj−m

(−2)mx2 − xjm + 1
.

(4.4)

(b) If (−2)mx2 − xjm +1 = (x− a)(x− b) = 0 for some a, b ∈ C and a ̸= b, i.e., x = a or x = b, then
n∑

k=0

x
k
Wmk+j =

(x(n + 2) (−2)m − (n + 1)jm)xnWj+mn + (−2)m (n + 1)xnWmn+j−m − (−2)m Wj−m

2 (−2)m x − jm
.
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(c) If (−2)mx2 − xjm + 1 = (x− c)2 = 0 for some c ∈ C then

n∑
k=0

ckWmk+j =
(n+ 1)

(
(−2)m (n+ 2)cn − ncn−1Lm

)
Wmn+j + n(n+ 1) (−2)m cn−1Wmn+j−m

2 (−2)m
.

Proof. Take r = 1, s = 2 and Hn = jn in Theorem 4.1.
Note that (4.4) can be written in the following form

n∑
k=1

x
k
Wmk+j =

((−2)m x − jm)xn+1Wmn+j + (−2)m xn+1Wmn+j−m + x(jm − (−2)m x)Wj − (−2)m xWj−m

(−2)mx2 − xjm + 1
.

As special cases of m and j in the last Theorem, we obtain the following proposition.

Proposition 4.3. For generalized Jacobsthal numbers (the case r = 1, s = 2) we have the following
sum formulas:

(a) (The case: m = 1, j = 0).
If −2x2 − x+ 1 ̸= 0, i.e., x ̸= −1, x ̸= 1

2
, then

n∑
k=0

xkWk =
(2x+ 1)xn+1Wn + 2xn+1Wn−1 − (W1 −W0)x−W0

2x2 + x− 1
,

and
if −2x2 − x+ 1 = 0, i.e., x = −1 or x = 1

2
, then

n∑
k=0

xkWk =
(4x+ 1 + n(2x+ 1))xnWn + 2(n+ 1)xnWn−1 − (W1 −W0)

4x+ 1
.

(b) (The case: m = 2, j = 0).
If 4x2 − 5x+ 1 ̸= 0, i.e., x ̸= 1, x ̸= 1

4
, then

n∑
k=0

xkW2k =
(4x− 5)xn+1W2n + 4xn+1W2n−2 + (W1 − 3W0)x+W0

4x2 − 5x+ 1
,

and
if 4x2 − 5x+ 1 = 0, i.e., x = 1 or x = 1

4
, then

n∑
k=0

xkW2k =
(4x(n+ 2)− 5(n+ 1))xnW2n + 4(n+ 1)xnW2n−2 + (W1 − 3W0)

8x− 5
.

(c) (The case: m = 2, j = 1).
If 4x2 − 5x+ 1 ̸= 0, i.e., x ̸= 1, x ̸= 1

4
, then

n∑
k=0

xkW2k+1 =
(4x− 5)xn+1W2n+1 + 4xn+1W2n−1 − 2(W1 −W0)x+W1

4x2 − 5x+ 1
,

and
if 4x2 − 5x+ 1 = 0, i.e., x = 1 or x = 1

4
, then

n∑
k=0

xkW2k+1 =
((4x− 5)n+ 8x− 5)xnW2n+1 + 4(n+ 1)xnW2n−1 − 2(W1 −W0)

8x− 5
.
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(d) (The case: m = −1, j = 0).
If x2 − x− 2 ̸= 0, i.e., x ̸= 2, x ̸= −1, then

n∑
k=0

xkW−k =
xn+1W−n+1 + (x− 1)xn+1W−n −W1x− 2W0

x2 − x− 2
,

and
if x2 − x− 2 = 0, i.e., x = 2 or x = −1, then

n∑
k=0

xkW−k =
(n+ 1)xnW−n+1 + (2x− 1 + n(x− 1))xnW−n −W1

2x− 1
.

(e) (The case: m = −2, j = 0).
If x2 − 5x+ 4 ̸= 0, i.e., x ̸= 1, x ̸= 4, then

n∑
k=0

xkW−2k =
xn+1W−2n+2 + (x− 5)xn+1W−2n −W2x+ 4W0

x2 − 5x+ 4
,

and
if x2 − 5x+ 4 = 0, i.e., x = 1 or x = 4, then

n∑
k=0

xkW−2k =
(n+ 1)xnW−2n+2 + (2x− 5 + n(x− 5))xnW−2n −W2

2x− 5
.

(f) (The case: m = −2, j = 1).
If x2 − 5x+ 4 ̸= 0, i.e., x ̸= 1, x ̸= 4, then

n∑
k=0

xkW−2k+1 =
xn+1W−2n+3 + (x− 5)xn+1W−2n+1 −W3x+ 4W1

x2 − 5x+ 4
,

and
if x2 − 5x+ 4 = 0, i.e., x = 1 or x = 4, then

n∑
k=0

xkW−2k+1 =
(n+ 1)xnW−2n+3 + (2x− 5 + n(x− 5))xnW−2n+1 −W3

2x− 5
.

From the above proposition, we have the following corollary which gives sum formulas of Jacobsthal
numbers (take Wn = Jn with J0 = 0, J1 = 1).

Corollary 4.11. For n ≥ 0, Jacobsthal numbers have the following properties:

(a) (The case: m = 1, j = 0).
If −2x2 − x+ 1 ̸= 0, i.e., x ̸= −1, x ̸= 1

2
, then

n∑
k=0

xkJk =
(2x+ 1)xn+1Jn + 2xn+1Jn−1 − x

2x2 + x− 1
,

and
if −2x2 − x+ 1 = 0, i.e., x = −1 or x = 1

2
, then

n∑
k=0

xkJk =
(4x+ 1 + n(2x+ 1))xnJn + 2(n+ 1)xnJn−1 − 1

4x+ 1
.
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(b) (The case: m = 2, j = 0).
If 4x2 − 5x+ 1 ̸= 0, i.e., x ̸= 1, x ̸= 1

4
, then

n∑
k=0

xkJ2k =
(4x− 5)xn+1J2n + 4xn+1J2n−2 + x

4x2 − 5x+ 1
,

and
if 4x2 − 5x+ 1 = 0, i.e., x = 1 or x = 1

4
, then

n∑
k=0

xkJ2k =
(4x(n+ 2)− 5(n+ 1))xnJ2n + 4(n+ 1)xnJ2n−2 + 1

8x− 5
.

(c) (The case: m = 2, j = 1).
If 4x2 − 5x+ 1 ̸= 0, i.e., x ̸= 1, x ̸= 1

4
, then

n∑
k=0

xkJ2k+1 =
(4x− 5)xn+1J2n+1 + 4xn+1J2n−1 − 2x+ 1

4x2 − 5x+ 1
,

and
if 4x2 − 5x+ 1 = 0, i.e., x = 1 or x = 1

4
, then

n∑
k=0

xkJ2k+1 =
((4x− 5)n+ 8x− 5)xnJ2n+1 + 4(n+ 1)xnJ2n−1 − 2

8x− 5
.

(d) (The case: m = −1, j = 0).
If x2 − x− 2 ̸= 0, i.e., x ̸= 2, x ̸= −1, then

n∑
k=0

xkJ−k =
xn+1J−n+1 + (x− 1)xn+1J−n − x

x2 − x− 2
,

and
if x2 − x− 2 = 0, i.e., x = 2 or x = −1, then

n∑
k=0

xkJ−k =
(n+ 1)xnJ−n+1 + (2x− 1 + n(x− 1))xnJ−n − 1

2x− 1
.

(e) (The case: m = −2, j = 0).
If x2 − 5x+ 4 ̸= 0, i.e., x ̸= 1, x ̸= 4, then

n∑
k=0

xkJ−2k =
xn+1J−2n+2 + (x− 5)xn+1J−2n − x

x2 − 5x+ 4
,

and
if x2 − 5x+ 4 = 0, i.e., x = 1 or x = 4, then

n∑
k=0

xkJ−2k =
(n+ 1)xnJ−2n+2 + (2x− 5 + n(x− 5))xnJ−2n − 1

2x− 5
.

(f) (The case: m = −2, j = 1).
If x2 − 5x+ 4 ̸= 0, i.e., x ̸= 1, x ̸= 4, then

n∑
k=0

xkJ−2k+1 =
xn+1J−2n+3 + (x− 5)xn+1J−2n+1 − 3x+ 4

x2 − 5x+ 4
,

34



Soykan; ACRI, 21(3): 11-38, 2021; Article no.ACRI.69283

and
if x2 − 5x+ 4 = 0, i.e., x = 1 or x = 4, then

n∑
k=0

xkJ−2k+1 =
(n+ 1)xnJ−2n+3 + (2x− 5 + n(x− 5))xnJ−2n+1 − 3

2x− 5
.

Taking Wn = jn with j0 = 2, j1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Jacobsthal-Lucas numbers.

Corollary 4.12. For n ≥ 0, Jacobsthal-Lucas numbers have the following properties:

(a) (The case: m = 1, j = 0).
If −2x2 − x+ 1 ̸= 0, i.e., x ̸= −1, x ̸= 1

2
, then

n∑
k=0

xkjk =
(2x+ 1)xn+1jn + 2xn+1jn−1 + x− 2

2x2 + x− 1
,

and
if −2x2 − x+ 1 = 0, i.e., x = −1 or x = 1

2
, then

n∑
k=0

xkjk =
(4x+ 1 + n(2x+ 1))xnjn + 2(n+ 1)xnjn−1 + 1

4x+ 1
.

(b) (The case: m = 2, j = 0).
If 4x2 − 5x+ 1 ̸= 0, i.e., x ̸= 1, x ̸= 1

4
, then

n∑
k=0

xkj2k =
(4x− 5)xn+1j2n + 4xn+1j2n−2 − 5x+ 2

4x2 − 5x+ 1
,

and
if 4x2 − 5x+ 1 = 0, i.e., x = 1 or x = 1

4
, then

n∑
k=0

xkj2k =
(4x(n+ 2)− 5(n+ 1))xnj2n + 4(n+ 1)xnj2n−2 − 5

8x− 5
.

(c) (The case: m = 2, j = 1).
If 4x2 − 5x+ 1 ̸= 0, i.e., x ̸= 1, x ̸= 1

4
, then

n∑
k=0

xkj2k+1 =
(4x− 5)xn+1j2n+1 + 4xn+1j2n−1 + 2x+ 1

4x2 − 5x+ 1
,

and
if 4x2 − 5x+ 1 = 0, i.e., x = 1 or x = 1

4
, then

n∑
k=0

xkj2k+1 =
((4x− 5)n+ 8x− 5)xnj2n+1 + 4(n+ 1)xnj2n−1 + 2

8x− 5
.

(d) (The case: m = −1, j = 0).
If x2 − x− 2 ̸= 0, i.e., x ̸= 2, x ̸= −1, then

n∑
k=0

xkj−k =
xn+1j−n+1 + (x− 1)xn+1j−n − x− 4

x2 − x− 2
,
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and
if x2 − x− 2 = 0, i.e., x = 2 or x = −1, then

n∑
k=0

xkj−k =
(n+ 1)xnj−n+1 + (2x− 1 + n(x− 1))xnj−n − 1

2x− 1
.

(e) (The case: m = −2, j = 0).
If x2 − 5x+ 4 ̸= 0, i.e., x ̸= 1, x ̸= 4, then

n∑
k=0

xkj−2k =
xn+1j−2n+2 + (x− 5)xn+1j−2n − 5x+ 8

x2 − 5x+ 4
,

and
if x2 − 5x+ 4 = 0, i.e., x = 1 or x = 4, then

n∑
k=0

xkj−2k =
(n+ 1)xnj−2n+2 + (2x− 5 + n(x− 5))xnj−2n − 5

2x− 5
.

(f) (The case: m = −2, j = 1).
If x2 − 5x+ 4 ̸= 0, i.e., x ̸= 1, x ̸= 4, then

n∑
k=0

xkj−2k+1 =
xn+1j−2n+3 + (x− 5)xn+1j−2n+1 − 7x+ 4

x2 − 5x+ 4
,

and
if x2 − 5x+ 4 = 0, i.e., x = 1 or x = 4, then

n∑
k=0

xkj−2k+1 =
(n+ 1)xnj−2n+3 + (2x− 5 + n(x− 5))xnj−2n+1 − 7

2x− 5
.

Taking x = 1 in the last two corollaries we get the following corollary.

Corollary 4.13. For n ≥ 0, Jacobsthal numbers and Jacobsthal-Lucas numbers have the following
properties:

1.

(a)
∑n

k=0 Jk = 1
2
(3Jn + 2Jn−1 − 1).

(b)
∑n

k=0 J2k = 1
3
((3− n)J2n + 4(n+ 1)J2n−2 + 1).

(c)
∑n

k=0 J2k+1 = 1
3
((3− n)J2n+1 + 4(n+ 1)J2n−1 − 2).

(d)
∑n

k=0 J−k = 1
2
(−J−n+1 + 1).

(e)
∑n

k=0 J−2k = 1
3
(−(n+ 1)J−2n+2 + (4n+ 3)J−2n + 1).

(f)
∑n

k=0 J−2k+1 = 1
3
(−(n+ 1)J−2n+3 + (4n+ 3)J−2n+1 + 3).

2.

(a)
∑n

k=0 jk = 1
2
(3jn + 2jn−1 − 1).

(b)
∑n

k=0 j2k = 1
3
((3− n)j2n + 4(n+ 1)j2n−2 − 5).

(c)
∑n

k=0 j2k+1 = 1
3
((3− n)j2n+1 + 4(n+ 1)j2n−1 + 2).

(d)
∑n

k=0 j−k = 1
2
(−j−n+1 + 5).

(e)
∑n

k=0 j−2k = 1
3
(−(n+ 1)j−2n+2 + (4n+ 3)j−2n + 5).

(f)
∑n

k=0 j−2k+1 = 1
3
(−(n+ 1)j−2n+3 + (4n+ 3)j−2n+1 + 7).
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5 CONCLUSION

Recently, there have been so many studies of the
sequences of numbers in the literature and the
sequences of numbers were widely used in many
research areas, such as architecture, nature,
art, physics and engineering. In this work, sum
identities were proved. The method used in this
paper can be used for the other linear recurrence
sequences, too. We have written sum identities
in terms of the generalized Fibonacci sequence,
and then we have presented the formulas as
special cases the corresponding identity for the
Fibonacci, Fibonacci-Lucas, Pell, Pell-Lucas,
Jacobsthal and Jacobsthal-Lucas sequences.
All the listed identities in the propositions and
corollaries may be proved by induction, but
that method of proof gives no clue about their
discovery. We give the proofs to indicate how
these identities, in general, were discovered.
Furthermore, some identities and recurrence
properties of generalized Fibonacci sequence
were studied.

We can mention some applications of sum
formulas. Computations of the Frobenius norm,
spectral norm, maximum column length norm
and maximum row length norm of circulant
(r-circulant, geometric circulant, semicirculant)
matrices with the generalized m-step Fibonacci
sequences require the sum of the numbers of the
sequences.
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