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ABSTRACT
The objective of this paper is to extend the Universal Probability Space (UPS) in [1] to include
complex events. The UPS consists of Borel sets, elements of which are tensors. It is shown that
the UPS has a defined metric and this metric is in fact the probability measure (P). The metric as a
probability measure is proven to exist for any tensor event (x ∈ Rd) in the space of all tensor fields,
(Rd). In this paper it is shown that for any complex event, (x ∈ Cd) in a space of all complex tensor
fields, (Cd), a probability measure (P) in the form of a metric exists. To this effect several theorems
are introduced and proven, mainly by modifying concepts introduced in [2], [3], [4], [5], to include
complex fields. Finally following [6], [7], [8], a case is demonstrated in order to compare probability
as a metric for complex events with classical probability. The objective of the case study is to show
that metric probability is a more realistic measure than classical probability for complex events.
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1 INTRODUCTION

Classical probability gives an abstract estimate of
an occurrence of an event. The main trust of
estimation is the number of times an outcome
is observed in (n) trials. This estimation does
not take into account the environment in which
an event occurs, or the traits and characteristics
inherent to the event itself that cause the event
to happen. In other words, the causality of the
occurrence of an event is systematically ignored
when calculating probabilities. Though classical
probability gives us a peak at the possibility
of an occurrence of an event it can not give
us the true possibility of an occurrence of an
event. An event is considered to be some
transformation based on variables that constitute
the environment of such an event. The traits
and characteristics internal to it constitute the
causality of the event. A good example of this
is given by [9] where in 1999 a British solicitor
was convicted of murdering her two children
based on the testimony of an statistician who had
estimated the probability of two children dying
in the same family to be as small as 1 in 73
million. Later on the discovery of the sudden
infant death syndrome proved the probability to
be wrong due to bad statistics and ignoring
causality. To be able to get a true probability an
event should be formulated as a tensor. A tensor
is a mathematical formulation of cause and effect.

Probability measure in the case where an event is
described by a tensor can not be the same as the
classical probability calculation. To measure the
impact of causality in the occurrence of a tensor
event point, the metric probability is introduced.
Metric probability gives the probability of the
occurrence of a tensor event point, as the ratio
of the distance between each casual factor
in (d) dimension (ℜd) or the metric, and the
general metric given all causal factors in (ℜd).
Formulation of such a probability metric is given
in section (3).

To construct a metric probability, it is shown that
it is possible to have a probability space where
an event can occur if it is in a Borel field (B)
that contains a group of finite Borel sets that
are mappings in a tensor space (Ω), i.e. (B =∪M

l=1 B
i
l ) and (B =

∏M
l=1 B

i
l ), the superscript

(i) represents the tensor indexing of coordinates,

and (l) represents the number of Borel tensor
sets contained in a tensor field (B). Each Borel
tensor set can be identified as (B i ∈ Ω : B i =
B ir

js
⊗ ej1,....,jsi1,....,ir

), where (ej1,....,jsi1,....,ir
) constitutes the

basis in the tensor space (Ω). The advantage
of each Borel set to be a mapping in a tensor
space is that it acquires the following properties;
(a) closure, the product of every two mappings of
the Borel set (B ) is a mapping of the Borel set; (b)
Inverse: for every mapping of the Borel set, there
is an inverse mapping that is in the Borel set.
The class of such alternative probability space
is called the Universal Probability Space (UPS),
[1]. To sum up, the UPS consists of Borel sets,
elements of which are mappings or tensors. UPS
represents a more general probability space.

Although big data allows for the discovery of
causes behind an occurrence of an event, it is
not always possible to draw the right inferences.
This could be due to many factors. For example,
not all variables that can cause an event can be
formulated accurately, or the actual relationship
between the advent of an event and its cause is
only approximately identified. In this case, the
best representation of causality is to formulate an
event as a complex tensor. The objective of this
paper is to introduce a metric probability for the
case of complex tensors. In order to include a
class of tensor fields in the (UPS), it is necessary
to find a representation of complex tensor disks in
the (Ω) space for the metric probability such that it
includes transformation sets of singularities. This
can be done using germ sets. Let’s assume that
there are 2 complex tensor disks (U), and (V)
in some complex tensor space (U ⊂ Cd), and
(V ⊂ Cd). Let (z ) be a set of tensor points in the
complex tensor space (U ⊂ Cd), then the germ
of a transformation tensor (w ) at (z ) is the set of
all tensor points (w , V ), (z ∈ U ), where (V) is a
complex tensor disk subset of the complex tensor
space (Cd), (V ⊂ Cd), where (w = z ) on (U ∩V ).
A germ set can be denoted as ([w ]z ), [10].

It must be shown that an event can occur in a
complex tensor field (U ) that contains a group
of finite complex tensor disks (U =

∪M
l=1 U

i
l )

and (U =
∏M

l=1 U
i
l ). The superscript (i)

represents the tensor indexing of coordinates,
and (l) represents the number of complex tensor
disks contained in a complex tensor field (U ).
Suppose that there are (n) finite number of open
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complex tensor disks (U1,U2, ....,Un).

It is assumed that the pairwise intersections
of (Ul ∩Uk), ( l ≥ 1, k ≤ n) and the
union of these open complex tensor disks
(U1 ∪ U2 ∪ .... ∪ Un ̸= 0) are non- empty
complex tensor sets. In order to have non-empty
complex tensor disks, it must be shown that all
singularities can be transformed into germ sets
or composition of germ sets. Singularities are
points that are not included in complex tensor
disks. One such point is the point (zero).
Complex tensor disks contain metrics, [10]. A
metric in complex disks, is a parametrized metric.
Let (η(t)) be parametrized metric defined by
a distance between two complex sets that are
defined based on parameter (t). (t) is defined in
interval (a ≤ t ≤ b), where (a, b ∈ R). There
exists a union of open disks of complex sets
with a covering, (U1 ∪U2 ∪ .... ∪Un ̸= 0) that
contains the metric. The parametrized metric,
(η(t)) includes singularities if it is closed meaning
is a covering. A covering implies that the complex
disks are closed sets. Equivalent metric in
the UPS can exist as a transformation from a
complex tensor space. A metric is transformed
into the UPS space, (Ω,B , P ), if it is transformed
into the distance between two tensor germ sets.
Metric parametrization is not necessary in a
tensor context. It is shown that the metric of
tensor germ sets is a natural covering. The
details of a metric of germ sets in the UPS are
given in the next section.

2 THE UNIVERSAL PROBA-
BILITY SPACE, UPS:
SOME BASIC DEFINI-
TIONS ON COMPLEX
CASE

A complete space consisting of Borel tensor
fields (Ω,B) and a probability measure (P),
(Ω,B , P ) is the UPS. This is proven in 2.4 and
2.5. The proofs are provided in [1].

Theorem 2.1. If (Ω) is a tensor space, where a
class of Borel tensor fields (B) can be defined,
then the ensemble (Ω,B) constitutes a complete
space.

Theorem 2.2. Given that (Ω,B ) is a complete
space, then there is a metric on the tensor field
(B), [2], [3], [4], [5]. This metric is the probability
measure (P). The complete space (Ω,B ) with the
probability measure (P) is the UPS.

Definition 2.1. Let (s) be a complex tensor set
of singularities such that (s = {sj}; j = 1, ....,m)
is in a complex space, (s ∈ Cd). Let any
transformation of the singularities be defined as
(s̄ = {

∑
j λ̄ijsj}; j = 1, ....,m) such that (s̄ ∈ V ),

(V ⊂ Cd) is defined ((s̄, V ) ⊂ Cd). The matrix
(λij) is an (i×j) transformation matrix. The linear
transformation is a tensor germ set denoted by
([s̄]s). Let there exist another transformation
given by (s̃ = {

∑
j λ̃ijsj}; j = 1, ....,m) such

that (s̃ ∈ U ) and (U ⊂ Cd), ((s̃, U) ⊂ Cd). This
transformation is a tensor germ set denoted by
([s̃]s). If the two tensor germ sets ([s̄]s = [s̃]s)
are equal in the intersection of the two regions
(V

∩
U ), then the tensor germ set ([s̄]s) is the

tensor germ set of the singularities (s).

Definition 2.2. Let there exists two subregions
(V ⊂ Cd) and (U ⊂ Cd). Let (([s̄]s, [s̃]s) ∈
(V

∩
U)), then any composition of the two tensor

germ sets, (([s̄]s)) and (([s̃]s)) is denoted by (ŝ =
([s̄]s ◦ [s̃]s))). The composition tensor germ set
(ŝ ∈ (V

∩
U)) is the tensor germ set of the

singularities (s).

Definition 2.3. Let (z ∈ Cd) and (z′ ∈ Cd) be two
complex tensor points. A metric can be defined
as (dz =| z − z′ |=

√
(z − z′)2), where (dz ∈ R).

Such a metric is always a transformation from a
complex tensor space (Cd) to a real space (R).
A metric for a complex tensor set (s) is a metric
of the tensor germ sets of the complex tensor
set (s). Given two tensor germ sets (([s̄]s)) and
(([ŝ]s)), such that (([s̄]s, [ŝ]s) ∈ (V

∩
U)), a metric

is defined as (ds =| [s̄]s− [ŝ]s |=
√

([s̄]s − [ŝ]s)2).
The metric (ds ∈ R) is in a real space (R).

Corollary 2.3. The UPS,(Ω,B , P ) contains a
class of complex tensor fields (A ⊂ Ω), elements
of which consist of tensor germ sets or a
composition of tensor germ sets.
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Proof. By definition 2.1, the class of tensor fields
(A) must contain any two complex tensor sets
(V ⊂ Cd) and (U ⊂ Cd) in such a way that
(A) contains both the intersection of the two
complex tensor sets (V

∩
U ) and the union of

the of the two complex tensor sets (V
∪

U ). By
definition 2.1, since (A) contains (V

∩
U ), then

the intersection contains tensor germ sets.

Theorem 2.4. Given that (Ω,B ∪ A) is a UPS,
then there exists a metric that is a covering.

Proof. A metric is a covering if it contains
singularities. By definition 2.1 any complex tensor
singularity (s ∈ U ) can be represented by a
complex tensor germ set ([s̄]s ∈ (V

∩
U)). Any

metric containing complex tensor germ set ([s̄]s)
is continuous, in such a way that the derivative of
the complex tensor germ set is non-zero, ([s̄]′s ̸=
0). Therefore, the inverse complex tensor germ
set ([s̄]−1

s ) can be defined. Given that all the
prerequisites of a covering are satisfied, then
the intersection of the two complex tensor sets
(V

∩
U ) is a covering.

Theorem 2.5. Given that (Ω,B ∪A) is the UPS,
then there exists a metric on the tensor field
(A ∩ B). This metric is the probability measure
(P).

Proof. By definition 2.3, and by Corollary 2.3, the
complex tensor field (A) contains tensor germ
sets and its metric. This metric is defined as
(ds =| [s̄]s − [ŝ]s |=

√
([s̄]s − [s̃]s)2). By

definition 2.1, ([s̄]s) and ([ŝ]s) are defined as
([s̄]s = {

∑
j λ̄ijsj), and ([ŝ]s = {

∑
j λ̂ijsj}). For

a metric to be on the tensor field (A ∩ B), the
transformation matrices (λ̄ij), and (λ̂ij) must be
in the Borel tensor field (B).

Corollary 2.6. Given that (Ω,B ∪ A) is the
UPS, then any Borel tensor set (Bi) contains
transformation matrices (λ̄ij) .

Proof. Let’s define the transformation matrix
(λ̄ij) as the measure of variations from one
coordinate sytem to another denoted as (λ̄ij =

( ∂s̄i

∂šj
)), where ([š]s) is a tensor germ set different

from ([s̄]s), ([š]s ̸= [s̄]s). By Theorem 2.4,
the intersection of any two complex tensor sets

(V ⊂ Cd) and (U ⊂ Cd), (V
∩

U ) must be a
covering. The existance of a covering allows
the application of (Lindelöf ′s) Lemma which
states that any tensor germ set ([s̄]s) has a limit,
(limsups→ξ | [s̄]s |< m). (ξ) is on the boundary
of (V

∩
U ). (m > 0) is an arbitrary positive

integer. Replacing the tensor germ set with its
equivalent, (limsups→ξ |

∑
j λ̄ijsj |< m), follows

that the transformation matrix (λ̄ij) is bounded.
The most obvious bound is any Borel tensor set
(Bi). Therefore, the transformation matrix is in
any Borel tensor set (Bi), (λ̄ij ∈ Bi)

3 EXAMPLES OF METRIC
PROBABILITIES: CASE
OF 3 AND 6 FACTORS

In this section examples of 3 and 6 causal factors
metric probabilities are given below. Consider,
the case of a toss of a coin. In classical
probability, both outcomes, “head” or “tail” have
the same probability of one half. This is the
case because the two outcomes are considered
independent of each other. No other factors as
causes of the outcomes are considered. Now,
let’s assume that the outcome of interest is
“head”. Assume that to get this outcome, (n)
factors can be considered as causes. Metric
probability for an (n) factors tensor event is
calculated by following the steps given hereafter.
Let a tensor event point be designated by
(X̄ ∈ Ω) in the UPS. The tensor event point
(X̄) is formulated as a transformation from one
coordinate system (x = (x1, ...., xn)) which
represents the vector of factors either internal
or environmental related to the tensor event
point (X̄) to another coordinate system (x̄ =
(x̄1, ...., x̄n)) which represents variations in the
measurements of causal factors due to random
occurrences, [11]. This is expressed as (X̄ =
A⊗X) or in the expanded form (x̄i = (aijxj), i =
1, ..., n; j = 1, ...., n). The coefficient Matrix
(A = {aij}) consists of the derivatives of (x̄)
with respect to (x). This is denoted as (A =

{aij} = ( ∂x̄i

∂xj )). Subscripts (j) correspond
to the causal factors. Let matrix (G) be a
positive definite matrix given as (G = (ATA)).
The diagonal entries of matrix (G), ((ATA) =
(aij)

2, i = j) constitute the elements of the
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general metric ((ds)). The general metric ((ds))
is formulated as ((ds) = (a11)

2 + (a22)
2 + .... +

(ann)
2). The characteristic equation is given

as (Λ =| G − λI |= 0), where matrix (I)
is an identity matrix. The eigenvalues (λ =
(λ1, ..., λn)) are ranked from the lowest to the
highest ((λ1 < λ2 < ... < λn)). The eigen
vectors corresponding to these eigenvalues are
denoted by (V = {vi}), [12], [13]. The estimated
event point (X̂) is formulated as (X̂ = λV)
or in an expanded form (x̂i = λi × vi). The
calculated distance between each eigenvector
({vi}) and each estimated event point (x̂i) is
given as (ds(vi, x̂i)), [14]. The estimated distance
is calculated as (ds(vi, x̂i) =

√
vi − λi × vi). The

metric probability for each causal factor (i), (Pi)
is equal to the ratio of the calculated metric for
each causal element, (ds(vi, x̂i)) to the square
root of the general metric ((ds)), given as (Pi =
ds(vi,x̂i)√

ds
). If the estimated distance for factor (i) is

close to the general metric, then the causal factor
corresponding to the estimated distance for factor
(i) is the significant cause in getting the desired
outcome.

Let’s calculate the metric probability of getting
a “head” in a toss of a coin, when (3) causal
factors are identified. These factors are: 1)
weight of the coin, 2) distance of a toss, 3)
physical condition of the person tossing the coin
(shape of hands, trembling or steady hands). The
event (X̄ = (x̄1, x̄2, x̄3) ∈ (Ω,B , P )) consists
of getting the outcome “head” as a function of
the weight of the coin, (x̄1), getting the outcome
“head” as a function of the distance of a toss (x̄2),
and getting the outcome (head) as a function
of the physical condition of the person doing
the tossing, (x̄3). The vector of causal factors
(X = (x1, x2, x3) ∈ (Ω,B , P )) represents the (3)
causal factors, weight, (x1), distance of a toss
(x2), and physical conditions, (x3). It is assumed
that the coefficient matrix (A) is given through
observation. In this case the coefficient matrix
(A) is a (3 × 3) matrix. The number of rows
and columns represents the (3) causal factors,
weight, distance, and physical condition. The
entries of matrix (A) are given as (A = {aij} =

( ∂x̄i

∂xj )). (( ∂x̄i

∂xj )) is the variations in causal factors
measurements due to random occurrences. The

term ( ∂x̄i

∂xj ) is taken to be approximately equal to
variations in each causal factor. For example if
weight is graded as (Low, Medium, Heavy), and
tossing distance as (Short, Medium, Far), and
physical condition as (Shape of hands, shaky
hands, and Steady hands), then the variations
let’s say in the weight factor signifies general
observed variations in the weight of a generic
coin. The same definition applies for the other
causal factors. This variation is coded as a
quantity between (0,1). Based on matrix (A),
the Eigenvalues and the eigenvectors of the
tensor event point (X̄) can be found. The metric
calculated given the observed matrix (A), is
((ds) = 1.1218977). A metric probability for
each of the (3) causal factors is calculated to
be (P1 = 0.8500716) for the weight factor, (x1),
(P2 = 0.6051443) for the distance of a toss factor,
(x2), and (P3 = 1.9245483) for physical conditions
factor, (x3). Causal factors within the general
metric are factors (x1), and (x2) the weight of the
coin, and the distance of the toss respectively
since they are within the general metric (ds).
Therefore, the existence of causal factors (x1),
and (x2) creates the desired effect “head”. But
since the causal factor (x1) is closer to the
general metric, this factor is the major causal
factor in getting the outcome “head”. Figure 1,
gives a visual example of eigenvalues for the (3)
causal factors case. Eigenvalues in this context
represent real values of the causal factors. In 3D
representation, the z-axis designates the values
of the causal factors. The x-axis designates the
number of causal factors, and the y-axis is the
scale used for 3D demonstration.

Figure 2, gives an example of eigenvectors.
Eigenvectors represent the evolution of each
eigenvalue. The first two causal factors, the
weight of the coin (in blue), and the distance of
the toss (in green) have unstable eigenvectors,
while the third causal factor, the physical
condition of the person (in red) has a stable
eigenvector.

Figure 3, gives an example of eigenvectors field.
The length of the arrows is proportional to the
intensity of the field. The eigenvectors field
confirms the conclusion that the first two causal
factors are unstable.
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Fig. 1. Example of eigenvalues for a (3) factors case
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Fig. 2. Example of eigenvectors for a (3) factors case
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Now consider the case where the outcome
“head” of a toss of a coin depends on
(6) causal factors in (∈ (Ω,B , P )), (X =
(x1, x2, x3, x4, x5, x6) ∈ (Ω,B , P )). Let these
factors be 1) weight of the coin, (x1), 2) distance
of the toss, (x2), presence of others, (x3),
physical condition of the person tossing the
coin (shape of hands, trembling hands, steady
hands), (x4), mental condition of the person
tossing the coin (happy, sad, Zen, nervous),
(x5), and finally, air quality, (x6). Given matrix
(A), of size (6 × 6) corresponding to variations
in the (6) causal factors, the corresponding
metric can be calculated to be ((ds) = 1.2).
Given the characteristic function, eigenvalues,
eigenvectors, and calculated metric are obtained.
Metric probability of each factor is calculated to
be, (P1 = 1.2) for the weight factor, (x1), (P2 =
1.2) for the distance of a toss factor, (x2), (P3 =
1.2) for presence of others factor, (x3), (P4 = 1.1)
for physical conditions factor, (x4), (P5 = 1.0) for

mental condition factor, (x5), and (P6 = 1.0), for
the air quality factor (x6). Factors (x5), the mental
condition of the person tossing the coin, and (x6),
the air quality are within the acceptable metric.
They are the most likely causes of the desired
outcome “head”. Figure 4, gives a visual example
of eigenvalues for the (6) causal factors case.
In 2D representation, the x-axis designates the
number of causal factors. The y-axis designates
the values of the causal factors. Figure 5, gives
an example of eigenvectors, and Figure 6, gives
an example of eigenvectors field. In this particular
trial, all eigenvectors are stable. This observation
is confirmed by the eigenvectors field. Since the
eigenvalues of causal factors (5), and (6) have
the highest values, and all the eigenvectors are
stable and the eigenvectors field has the same
intensity, it is reasonable that factors (5), and (6)
are the most likely causes of the outcome event
“heads”.
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Fig. 3. Example of eigenvectors field for a (3) factors case
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Fig. 6. Example of eigenvectors field for a (6) factors case

In case, there are uncertainties in either
observations or the identification of the degrees
of causal factors, it is possible to formulate events
and their causal elements as complex tensors
in complex tensor space, (X̄ ∈ Cd), and (X ∈
Cd). Naturally, matrix (A), and the characteristic
function (Λ), the eigenvalues and eigenvectors all
remain in the complex tensor space, (A ∈ Cd),
(Λ ∈ Cd), and (V ∈ Cd). As is discussed
in section (2), the metric is in UPS, ((ds) ∈
(Ω,B , P )). As is discussed in the introduction
and section (2), the calculated metric for each
of the causal factors (xi) is also in the UPS
(ds(vi, x̂i) ∈ (Ω,B , P )). Let’s revisit the (6) causal
factors case. The difference this time is that each
of the entries of the required matrix (A ∈ Cd),
is a transformation in a complex tensor space
of any observed point, (xi = xi(wi, zi) | w ∈
ℜd, z ∈ Cd)) into the space of analytical functions
or complex planes, (xi(wi, zi) −→ f(xi(wi, zi))).
The metric is calculated to be equal to ((ds) =
1.9789175). The metric probability for each of
the (6) causal factors is: (P1 = 1.738227)
for the weight factor, (x1), (P2 = 0.7566326)
for the distance of a toss factor, (x2), (P3 =

0.4131377) for presence of others factor, (x3),
(P4 = 0.4437326) for physical conditions factor,
(x4), (P5 = 0.3692848) for mental condition
factor, (x5), and (P6 = 0.2004571), for the air
quality factor (x6). Causal factor (x2), distance
of toss is closest in value to the general metric.
Therefore, the presence of casual factor (x2),
results in outcome “head”. Figure 7, gives a
visual example of complex valued eigenvalues
for the (6) causal factors case. The x-axis
represents the real part, and the y-xis represents
the imaginary part. Only those causal factors
with low magnitude of imaginary part are stable
enough to be considered as plausible significant
causal factors. Figure 8, gives an example
of complex valued eigenvectors. Eigenvectors
show that all (6) factors are stable in general
and could potentially be significant in getting
outcome “head”. In fact, eigenvectors show
that the imaginary part stays smaller than the
real part which signifies stability. Figure 9,
gives an example of complex eigenvectors field.
The eigenvectors field shows high intensity and
movement towards stability.
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Fig. 7. Example of complex valued eigenvalues for a (6) factors case
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Fig. 8. Example of complex valued eigenvectors for a (6) factors case

10



Khoshyaran; AIR, 8(2), 1-12, 2016; Article no.AIR.29924

5

4

3

2

1
-1.0
-0.8
-0.6
-0.4

0

-0.2

1

0.0
0.2

2

0.4

0
3

0.6
0.8

4

1.0

5

Eigenvector field 

Fig. 9. Example of complex valued eigenvectors field for a (6) factors case

4 CONCLUSION

Metric robability provides a reasonable
alternative to the standard probability calculation.
This is the case because it takes into account 1)
All factors internal to an occurrence of a tensor
event point, 2) plus, all factors that represent
the environment in which an event occurs. An
event is defined as an effect of several causal
elements. Thus, the calculation of the probability
of an occurrence of the tensor event point is
not limited to an abstract representation, but a
more realistic calculation that is analytic. In the
case of complex tensors, metric probability of
the occurrence of a complex tensor event, has
the following advantages: 1) probabilities can be
calculated for events in the UPS, ((Ω,B , P )). 2)
The probability is based on metric calculation
which is more reliable than the number of trials
used in classical probability calculation. 3)
Metric probability has applications in many areas
where a simple approximation based on a limited
number of trials is not sufficient.
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