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ABSTRACT 
 

In this paper we propose numerical method for the study of localized hidden oscillation in 
multidimensional fractional chaotic dynamical systems. Implementation of the algorithm is different 
from the classical method of Aizerman and Kaplan. The reconstructed mapping is presented.  
 

 
Keywords: Chaotic system; time series; SSA – algorithm; lifting; poincare diagram. 
 
1. INTRODUCTION  
 
The implementation of the tasks on the stability 
of multidimensional chaotic systems of fractional 
order can manifest hidden oscillation, that are     
not established after the transition process from 
the neighborhoods of the stationary states. Here 
a simple simulation can lead to erroneous 
results. 

Therefore, numerous results dealing with 
mechanisms of the generation of attractors, their 
localization in the phase space, and the evolution 
of their characteristics where obtained with the 
use of computer modeling well – known 
examples of the existence of hidden attractor in 
multidimensional models of automated control 
systems are given by counterexamples to the 
Aizerman and Kaplan conjecture, where the 
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unique stable-in-small equilibrium co-exists with 
an orbital stable cycle [1]. 
 
Effectively verified conditions for the existence 
hidden orbital stable cycles in some                          
class multidimensional systems were obtained in 
[1]. 
 
2. FORMULATION OF THE PROBLEM 
 
Consider the following n-dimensional-fractional-
order chaotic system [2]. 

                                                

( )θ,X,XFXDq

0= ,                                 (1)                                                 

where n
T

R
n

x,,x,xX ∈




= K21

 denotes the 

n-dimensional state vector of the original system; 

0X  - represents the system initial state, 

( ) nT

n Rq,,q,qq ∈= K21  is a set of fractional 

order of the original system, and  

( ) DT

D Rθ,,θ,θθ ∈= K21  is the value of 
original system parameters.  
 
Let the fractional-order derivative of the function 

( )tf  in the Caputo sense is defined as [2]:  
                                              

( ) ( ) ( ).tfJtfD mqmq −=                               (2)   
       
Here, q  is the fractional order, m  is an integer 

that satisfies ( )tf,mqm m<≤−1  is the 

ordinary m th derivative of f , and µJ  is the 
Riemann-Liouville integral operator of order 

0>µ , defined by 
                                    

( ) ( ) ( ) ( ) ,dgttgJ
t

∫ τττ−
µ

= −µµ

0

11
Γ

            (3)     

 

where ( )⋅Γ  denotes the gamma function. A 

particularly important case in many engineering 
applications is 10 << q . In this situation, Eq. (2) 

together with Eq. (3).  
                               

( ) ( ) ( ) ( )∫ τττ−
−

= −
t

tqq

* dft
q

tfD
01

1

Γ  
     (4)                                              

 

The operator q

*D  is often called “ q th-order 

Caputo differential operator” and will be used 
throughout the paper. 

Given a fractional-order hyperchaotic systems: 
 
Fractional-order Rabinovich-Fabrikant system 
following [3]: 
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where 765001.0,1.1,14.0 ≤≤−== δγα . 
 
The fractional-order Chen system as follows [4]: 
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where  
 

5.0,3,12,7,35 ===== rdcba  and 9.0=α . 

 

Let { }N

nnxx 0,2,1ˆ ==α  is the mapping of the (5-6) 

hyperchaotic fractional-order and (3) 
hyperchaotic systems. 
 
2.1 SSA Algorithm 
 
We consider a time series ( )TT y,,yY K1= . Fix 

( )2/TLL ≤ , the window length, and let 

1+−= LTK  [5]. 
 
Step 1. (Computing the trajectory matrix): this 
transfers a one-dimensional time series 

( )TT y,,yY K1=  into the multi-dimensional 

series KX,,X K1  with vectors 

( ) L
Liii yyX R∈′= −+ 1,,K , where 1+−= LTK . 

The single parameter of the embedding is the 
window length L , an integer such that 
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TL ≤≤2 . The result of this step is the 

trajectory matrix [ ]KXX ,,K1=X , [5]: 
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Note that the trajectory matrix X  is a Hankel 
matrix, which means that all the elements along 
the diagonal constji =+  are equal. 
 

Step 2. Compute the matrix TXX . 
 
Step 3. Compute the eigenvalues and 

eigenvectors of the matrix TXX  and represent it 

in the form TT PPΛ=XX . Here 

( )L,,diag λλ K1=Λ  is the diagonal matrix of 

eigenvalues of TXX  ordered so that 

021 ≥≥≥≥ Lλλλ K  and ( )LP,,P,PP K21=  is 
the corresponding orthogonal matrix of eigen-

vectors of TXX . 
 
Step 4. (Selection of eigen-vectors): select a 
group of  ( )Lll ≤≤1  eigen-vectors 

liii P,,P,P K
21

.     

 
The grouping step corresponds to splitting the 

elementary matrices iX  into several groups and 

summing the matrices within each group. Let 

{ }li,,iI K1=  be a group of indices li,,i K1 . 

Then the matrix IX  corresponding to the group 

I  is defined as 
liiI XXX ++= L

1
.                 

 
Step 5. (Reconstruction of the one-dimensional 
series): compute the matrix XX ∑ =

== l

k

T
iiji kk

PPx
1,

~~   

as an approximation to X . Transition to the one-
dimensional series can now be achieved by 

averaging over the diagonals of the matrix X
~

 
[5]. 
 
It is known, the singularly-spectral analysis is 
effective in a combination with wavelet-
transformation [6]. It is connected by that the 
signal can have a changing frequency.  
 
Further cleaned components related to the trend 
and noise. After the restoration of a number 
using wavelet-transform [6]. 

In this paper, for the purpose of localization and 
reconstruction of abnormal components of 
fractional dynamic chaotic multidimensional 
maps, it proposed the use singularly-spectral 
analysis in combination with lifting method [7]. 
 
Lifting methods of processing of the information 
make possible wavelet the stretching’s and shifts 
of one function.  
 
The advantage of the lifting scheme is: 
 

1. the conversion process occurs quickly; 
2. the set of wavelet-coefficients  occupies a 

volume that matches the original data; 
3. return transformation restores a signal very 

precisely. 
 

2.2 Lifting Scheme  
 

Briefly, the mechanism is a follows [7]. Let the 

original signal js  contains j2 points. 

Transformation involves three steps (split-
predict-update), which will yield two sets of points  

1−js   and  1−jd . 
 

2.2.1 Split 
 

From in js  shape two new not crossed sets. We 

note that the division of the set into two depends 
on the type of wavelet. For example, Lazy 
wavelet distinguishes 1−jeven  and 1−jodd  

samples.  
 
Formally it looks as [7]: 

                                             
( ) ( )jjj sSoddeven =−− 11, .                        (8) 

 

2.2.2 Predict  
 
Here is calculated the difference between true 
and predicted values and defines coefficients 

1−jd  [7]: 
 

( )111 −−− −= jjj evenPoddd ,                     (9)   

                               
where P  - the predicting operator.  
 
2.2.3 Update  
 

On this step, the help of the operator U , 

calculate coefficients 1−js  [7]: 

 

( )111 −−− += jjj dUevens .                        (10)                                           
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Fig. 1. Constructing the wavelet-coefficients in the lifting-scheme 
 

The described algorithm of transformation of data 
lifting-scheme is presented in figure [7]. 
 
Thus, lifting schema generates two sets of 
coefficients 1−js   and  1−jd  , each of which is 

less than half the length of the initial signal.  
 

From here 1−js   reflects behavior of a signal in 

the big scale, and a coefficients  1−jd  shows 

difference an initial signal from 1−js . 

 
In this paper, the realization of lifting scheme is 
based on the use of Haar wavelets and 
Doubechies [7]. 
 
2.2.4 The goal of the problems 
 

i -  determine the influence on the function of 
fractional sawtooth at hyperchaotic  
systems. 

ii -   determine the stability systems. 
iii - approximate result with subsequent 

reconstruction mapping. 
iiii - construction Poincare recurrence diagram. 

 

3. ALGORITHM 
 
Step 1 . Perturbation of the system (5 - 6) as [8]: 

 








 +∨ ϕη
T

x
fracAxD i

q: , where ( )xfrac  is 

the fractional part. 
 

( ) [ ]xxxfrac −= , A  is amplitude, T  is 
the period of the wave, and  is its phase.  
 

Step 2 . Determine the stability systems [8]. 
 

Step 3 . Produce the singular-spectrum analysis 
for systems (5 - 6). 

 
Step 4 . Produce signal (Step 3) reconstruction 
using a lifting scheme. 

 
Step 5.  Construction Poincare recurrence 
diagrams. 

 

4. VISUALIZATION OF SIMULATION 
 
The Figs. 2 and 3 shows the main fragments 
visualization of the proposed algorithm.

 
 

a                                              b                                              c 
 

 
 

d                                                e                                               f 
 

Fig. 2. Fractional-order chaotic Chen system; a - signal with noise, b - stability, c - signal 
reconstruction, d, e, f - Poincare recurrence diagrams 
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a                                                 b                                             c 
 

 
 

d                                               e                                              f 
 

Fig. 3. Fractional-order chaotic Rabinovich-Fabricant system; a - signal with noise,  
b - stability, c - signal reconstruction, d, e, f - Poincare recurrence diagrams 

 

5. CONCLUSION 
 
Proposed structure of the “SSA – lifting scheme”, 
produced a reconstruction signal. The proposed 
algorithm can be used in micro – control 
systems. Visualizing transient implemented in 
MATLAB software environment. 
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