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Abstract 
 
We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a 
new expected discounted penalty function which is different from that of Gerber and Shiu. We find that ite-
ration mothed can be used to compute the values of expected discounted dividends until ruin and the new 
penalty function. Applying the new function and the recursion method proposed in Section 5, we obtain the 
arbitrary moments of discounted dividend payments until ruin. 
 
Keywords: Sparre Andersen Model, Expected Discounted Penalty Function, Constant Dividend Barrier,  

Recursion, Iteration 

1. Introduction 
 
The dividend problem in risk theory was brought out 
initially by De Finetti [1] and has been studied exten-
sively in many literatures by now. Much of the literature 
on dividend theory is concentrated on the classical risk 
model, in which claims occur as a Poisson process. For 
the classical risk model with a barrier strategy, Lin et al. 
[2] studied the Gerber-Shiu discounted penalty function 
at ruin; Dickson and Waters [3] studied arbitrary mo-
ments of the discounted sum of dividend payments until 
ruin; Gerber et al. [4] recently developed methods for 
estimating the optimal dividend barrier. 

The surplus process is not necessarily a compound 
Poisson process. Andersen [5] lets claims occur accord-
ing to a more general renewal process. Since then, Sparre 
Andersen risk model was studied extensively. For some 
recent contributions to Sparre Andersen risk models with 
a dividend barrier, see [6-8]. It is worth mentioning that 
Albrecher et al. [8] studied a class of Sparre Andersen 
risk models with generalized Erlang(n) waiting times in 
the presence of a constant dividend barrier b, and gained 
some results on the distribution of dividend payments 
until ruin. It is natural to ask for developing some me-
thods to get the distribution or moments of discounted 

dividend payments in an arbitrary Sparre Andersen mo- 
del. 

In this paper, we consider the Sparre Andersen model 
with arbitrary distributed waiting times in the presence of 
a constant dividend barrier b. The analysis is focused on 
the evaluation of the new expected discounted penalty 
function defined in Section 2, which will permit us to 
obtain arbitrary moments of discounted dividend pay-
ments by applying the proposed recursion method. 
 
2. The Model 
 
Consider the Sparre Andersen risk model, which is given 
by 

   
 

1

N

i

t

iU t u ct S t u ct X


             (2.1) 

where 0u   is the initial surplus, c  is a constant pre-
mium rate,  S t  is the aggregate claim up to time t, N(t) 
is the number of claims occurring in (0,t], and iX  is the 
ith claim. Let 1 2, ,M M   denote the inter-claim times, 
and assume that 

1

.
n

n k
k

L M


   

We assume that  , 1nX n   and  , 1nM n   are in-
dependent sequences of i.i.d. non-negative random va-
riables.  , 1nX n   have a common distribution 
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   1PrF x X x   with (0) 0F  , and  , 1nM n   
have a common distribution  1( ) PrG x M x   with 

(0) 0G  . Assume 1EM   . 
The risk process (2.1) is now modified by introducing 

a constant dividend barrier b  0b  , i.e. whenever the 
surplus process reaches the level b, the premium income 
is paid out as dividends to shareholders and the modified 
surplus process remains at level b until the occurrence of 
the next claim. Let   bU t  denote the modified sur-
plus process, and the random variable D (u,b) denote the 
sum of the discounted dividend payments until ruin (with 
force of interest 0 0  ). In the sequel we will be inter-
ested in the kth moment of the sum of discounted divi-
dend payments 

       , | 0 , 1, 2, .k k
bW u E D u b U u k       

Let      1
b bW u W u , which is the expectation. We 

will always assume that 0 u b  . 
Let the time of ruin for this modified surplus process 

 ( )bU t  be 

     inf 0 : 0   otherwiseb b
T T u t U t      

Obviously, T must be some iL . Define the stochastic 
time   by 

  ( ) inf : , 1 .b i iu L U L b i       

For 0,x   let v(x) be a non-negative measurable 
function. For 0 0   we define a new expected dis-
counted penalty function by 

        0 ,0b u E e v U I T U u u b           

 (2.2) 
where  I   is the indicator function. The function 

 b u  is similar to (but different from) Gerber-Shiu 
expected discounted penalty function. 

Let S denote the space of real-valued measurable func-
tions on [0,b]. Choosing the metric defined by 

       0,d , sup , , ,u bx y x u y u x y S     

 ,S S d is complete metric space. Obviously,  bW u  
and  b u  are contained within S because of the mea-
surable property of  v x  and the monotone property of 

 bW u . 
 
3. The Expectation of Discounted Dividends 

Until Ruin 
 
Define an operator  :T S S  by 

       

      
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 (3.1) 

where f = f(u) is an arbitrary function in S, and 
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(3.2) 
Theorem 1. Under the assumption that   1F b   or 

0 0  , the function  bW u  is equal to 

    lim , 0.
n

b
n

W u T f u b


         (3.3) 

As an approximation of   ,bW u    
n

T f u  satisfies 

 
    

 
    

0, 0,
sup sup ,

1
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
 

  


 

(3.4) 

where    0

0
d .tF b e G t

    

Proof. Ruin can not occur in (0, 1L ) and the expecta-
tion of the discounted dividends paid out in this period is 

1D . By the renewal argument we have 

    0 1 1 1 1,L
b bW u E e W u cL b X D        

namely, 

     
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 

 
(3.5) 

which is an integral equation for  .bW u  Since 
  ,bW u S  the Equation (3.5) can be rewritten as 

    .b bW u TW u             (3.6) 

For arbitrary , ,f g S  we have 

  
 0,

d , sup
u b

T f Tg

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0 0
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0 0
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which leads to 

  0
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         (3.7) 
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Thus, T  is a contraction on S if F(b) < 1 or 0 0   
(see [9]). (3.3) and (3.4) follow. 

Note that when b = 0 we have, for 0 0  , 

    0
0 0

0

0 1 d ,tc
W e G t


            (3.8) 

and for 0 0  ,    0 10 .W cE M  
Theorem 1 gives an iteration procedure by which we 

can obtain approximations to  bW u  and error bounds. 
In order to gain more information about the sum of dis-
counted dividend payments until ruin, we discuss the 
new expected discounted penalty function in Section 4. 
 
4. Expected Discounted Penalty Function 
 
Define an integral operator as follows: 

       

    

0 0

/

d d

        d , .

b u c u ct t

t

b u c

T f f u ct x e F x G t

e v u ct G t f S

  

 



  

   

 


  (4.1) 

Theorem 2. The penalty function  b u  is the solu-
tion of the integral equation 

    .b bu T u             (4.2) 

And under the assumption that F(b) < 1 or G(b/c) < 1 
or 0,   the penalty function  b u  is the unique 
solution and equal to 

    lim ,
n

b
n

u T f u


           (4.3) 

where f is an arbitrary real-valued measurable function. 
Proof. The discrete time process   , 0,1,b nU L n    

has stationary and independent increments. By the re-
newal argument, we have the integral Equation (4.2). 
The uniqueness and the result (4.3) are due to the fact 
that T  is a contraction under the conditions F (b) < 1 or 
G (b/c) < 1 or 0.   In fact, for arbitrary real-valued 
measurable functions y(u) and z(u) on [0,b], we have 

 
 

 0, 0,
sup sup

u b u b
T y Tz

 
   

         0 0
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b u c u ct ty u ct x z u ct x e F x G t
         
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00,
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b c t
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
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where    
0

d 1.
b c tF b e G t   The results are proven. 

Remark. 1) Obviously, when u = b we can obtain the 
explicit expression 
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0

( ) d .t
b b e v b ct G t

          (4.4) 

2) According to Theorem 2, we can obtain the ap-
proximation of  b u  by the iteration method. As an 
approximation of   ,b u  

n
T f  satisfy 

 
    

 
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
 

  


 

 (4.5) 

where 
 

    
00,

sup d
b u c t

u b
e F u ct G t

 


  .The error 

bound (4.5) can be used for estimating the number of 
steps necessary to reach a given accuracy. 

Now, we give some examples of dividend-related 
quantities (such as the probability of the event 

   b bu T u  , the kth moment of the discounted divi-
dends paid out in time period  0, , and the distribution 
function of the sum of the dividends paid out in time pe-
riod  0, , etc.) to illustrate applications of Theorem 2. 

Example 4.1. Letting v(x) = 1 and 0,   we have 

      Pr .b b bu u T u    

The contraction T  is defined by 

         
0 0

d d

                 1 ,   .

b u c u ct
T f u f u ct x F x G t

b u
G f S

c

 
  

     
 

 
 (4.6) 

For any real-valued measurable function f on [0,b], we 
have 

     Pr lim .
n

b b
n

u T u T f


          (4.7) 

From (4.4), it is easily seen that 

    Pr 1b bb T b   .           (4.8) 

Example 4.2. Letting v(x) = 1 and 0,   we have 

       .b b bu E e I u T u      

Let  R u  denote this function. Note that 

      0 Pr .b bR u u T u   

Here, the contraction T  is defined by 

         
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(4.9) 

Choosing f = 0, we have 

     
lim d .

n t

b u cn
R u T e G t

 
 

          (4.10) 

The error estimate is 
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 
      
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sup d .
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n
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T f u R u e G t


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


 
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By (4.4), we have  

0
( ) d ( ).tR b e G t

 
             (4.12) 

Example 4.3. The insurer will continuously pay divi-
dends in time period    ,U b c      at rate c 
when T  . Set 
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w x e
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 

  
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Then, the present value of these dividends is 
  0 .e w U   For arbitrary 0,1,i   , letting  

   iv x w x and 0,   yields 

          ,i
b b bu E e w U I u T u        

which we denote by  , .iA u  The contraction T  is 
defined by 
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(4.13) 
Choosing   0f u  , we have 

       , lim d .
n t i

i b u cn
A u T e w u ct G t

 
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       (4.14) 

The error estimate is 
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0
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Note that if 0i   , then    
0, ,i i iA u A u   is the 

ith moment of the discounted dividends paid out in the 
period  0, ; if 0,i   i.e.    0 ,v x w x  then  

   ,0 .A u R u   In addition, it should be pointed out 
that 

     , 0
d .t i
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        (4.16) 

Example 4.4. Letting 0,   and    v x I x b z    
for arbitrary 0z  , we have 

   Pr , ,b u U b z T          

which is the distribution function of the cumulative divi-
dends in time period    / , .U b c      We de-
note this distribution function by  , .u z  The contrac-
tion T  is defined by 
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0 0

d d

                 .

b u c u ct
T f u f u ct x F x G t

b u z b u
G G

c c

 
  

         
   

 
 (4.17) 

Choosing   0f u  , we have 

  , lim .
n

n

b u z b u
u z T G G

c c

                 
 (4.18) 

The error estimate is 

 
    

0,
sup , ,

1

n
n

u b

b z
T f u u z G

c




      
  (4.19) 

where 

 
    /

00,
sup d .

b u c

u b
F u ct G t




   

 
5. The kth Moment of Discounted Dividend 

Payments Until Ruin 
 
In this section, we use  1 u  (or 1 ) instead of  b u  
and use  1T u  (or 1T ) instead of  .bT u  

If ruin doesn’t occur at time  1 u  and  1 2bU u   
( 20 u b  ), we view the process as “starting again” 
with “initial surplus” 2u , and similarly to the definitions 
of  bT u  and  b u , define the stochastic times 

 2 2 2T T u  and  2 2 2u   respectively for the new 
pro cess  2bU u . If ruin doesn’t occur at 2  either, 
similarly we define  3 3 3T T u  and  3 3 3u  . Ap-
plying repeatedly the idea of “starting again”, we can 
define two sequences of mutually independent random 
variables  , 1iT i   and  , 1i i  . Suppose that the 
claim amount at i  is  1iX  . Then,  i iu b X   
( 2i  ). 

Further, suppose that 

 0 1
1 1 1 ,e I T    

    0 , 2.i
i i iiI X b e I T i       

Then, i  ( 2i  ) are i.i.d. random variables and inde-
pendent of 1 . According to Example 2 in Section 4, we 
have  

01
k

kE R u   and 

     
   

0

0

2 2 2

0
       d .

k
k

b

k

E E I X b R b X

R b x F x

 



    

 
      (5.1) 

We denote 2
kE  by kR . Assume that 

    0 1
1 1 1 1 ,e w U I T      

       0 , 2,i
i i i iiI X b e w U I T i         

which is the “present value” of the dividends paid in time 
period  0, i  in the (i − 1)th “starting again” process. 
Obviously, i   2i   are i.i.d. random variables and 
random vectors  1 1,  ,  2 2,  ,  are mutually in-
dependent. According to Example 3 in Section 4, we have 
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     
01 1 , , , 0,i j

i j jE A u i j           (5.2) 

          
       

0

0

2 2 2 , 2

,0
             d , 0 .

i j
i j j

b

i j j

E E I X b A b X

A b x F x i j

   

 

  

  
  (5.3) 

We denote  2 2
i jE    by ,i j jA  . 

Theorem 3. The kth moment of the sum of discounted 
dividend payments until ruin is equal to 

       
0 ,

0

!
, 1.2, ,

! !

k
k

b k i k i
i

k
W u A u x k

i k i  


 
    (5.4) 

where  0,1,2,jx j    satisfy the following recursive 
formulas: 

   ,0
1

!
1; 1 , 0.

! !

j

j i jj j i
i

j
x x A x R j

i j i 


    
  

(5.5) 
Proof. It is easily seen that the sum of the discounted 

dividend payments until ruin is equal to 

 
1

1 1 2 1 2 3
1 1

, ,
i

i k
i k

D u b       


 

       
 

   (5.6) 

where we adopt the convention that 
0

1
1kk




 . Thus, 
we have 

     

   

1 1 2 1 2 3 1 2 3 4
0

1 1 2 2 3 2 3 4
0

!
,

! !

!
             .

! !

k
k ik i

i

k
k ii k i

i

k
D u b

i k i

k

i k i

         

       









   


   










(5.7) 

Taking expectation of (5.7) yields 

         
0 , 2 2 3 2 3 4

0

!
,

! !

1,2, .

k
k ik

b k i
i

k
W u A u E

i k i

k

      




   




 


(5.8) 

Note that 

 2 2 3 2 3 4

j
E          

   2 2 3 2 3 4 2 3 4 5
0

!

! !

j
j ii

i

j
E

i j i
          



   
   

   2 2 3 3 4 3 4 5
0

!

! !

j
j ij i i

i

j
E

i j i
        



   
   

   2 2 3 3 4 3 4 5
0

!

! !

j
j ij i i

i

j
E E

i j i
        



         

   , 2 2 3 2 3 4
0

!
.

! !

j
j i

j i

i

j
A E

i j i
      



    
   

Since ,0 ,j jA R  it follows that, for 1,2, ,j    

 

 
 

2 2 3 2 3 4

2 2 3 2 3 4
,

1

!
,

! ! 1

j

j ij

j i

ji

E

Ej
A

i j i R

     

      



  

  


 




  (5.9) 

which leads to 

 2 2 3 2 3 4 , 0,1,2, .
j

jx E j            (5.10) 

From (5.8) and (5.10), we get (5.4). 
 
6. Numerical Illustration 
 
As an illustration of the results in Sections 3 and 5, con-
sider the case of a Sparre Andersen model with Erlang (2) 
interclaim times and Erlang (2) claim amounts, i.e. 

       1 1 0 .tG t F t t e t       

Let 2, 1.1,c    and 0 0.03.   These accord 
with the assumptions in the Example 4.1 in [8]. 

Let us first consider the expectation of discounted 
dividend payments until ruin. Given 0,1,2, ,10b    
respectively, according to Theorem 1 we choose the 
function   0f u   and determine a number of steps n  

necessary to obtain   
n

T f u  as an approximation for  

 bW u  such that 

 
    

0,
sup 0.0001,

n

b
u b

T f u W u


   

see Table 1. Using the iteration procedure, we get some 
approximate values of  bW u  in Table 2. Comparing 
with the exact values given by Albrecher et al. [8], it can 
be seen that the approximate values in Table 2 are fairly 
good. Note that, when b = 0, the numerical value 1.076 is 
obtained by (3.8). 

For the kth moment of discounted dividend payments 
until ruin, we need compute  

0 , ,j iA u ,j iA  (j = 1,2, 
 , k; 1, 2, ,i j  ) and jR  (j = 1,2,  , k). In this 
example, we only consider three cases: k = 1, 2, 3. In 
order to reach an accuracy of 0.00001, the necessary 
numbers of steps for iteration are given in Table 3. By 
formula (5.4), we obtain the approximate values for 

 bW u  again, see Table 4. In Table 5, the approximate  

values for the standard deviation      2 2
b bW u W u  

are given. Comparing with the Table 2 in [8], one can 
find the approximate values are very excellent too. In 
Table 6, approximations for the third moment are dis-
played. In addition, we point out that when b = 0 the 
number of steps is not offered in Table 3, and the cor-
responding approximations in Tables 4-6 can be ob-
tained by (4.8) (4.12) and (4.16). 
 
7. Summary 
 
As shown in Section 6, the iteration method and the re-  
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Table 1. Numbers of steps for computing the expectation Wb(u) by Theorem 1. 

b 1 2 3 4 5 6 7 8 9 10 

n 19 76 197 283 307 311 312 312 312 312 

 
Table 2. Approximations for the expectation Wb(u) by Theorem 1. 

u 
b 

0 1 2 3 4 5 6 7 8 9 10 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.076\1.076 

0.836\0.836 

0.856\0.856 

0.848\0.848 

0.802\0.801 

0.730\0.730 

0.648\0.648 

0.565\0.565 

0.487\0.486 

0.416\0.416 

0.354 

 

1.808\1.808 

1.847\1.847 

1.829\1.828 

1.728\1.728 

1.575\1.575 

1.397\1.397 

1.218\1.218 

1.049\1.049 

0.897\0.897 

0.763 

 

 

2.846\2.846 

2.815\2.815 

2.661\2.661 

2.424\2.424 

2.151\2.151 

1.875\1.875 

1.615\1.615 

1.381\1.381 

1.175 

 

 

 

3.803\3.803 

3.597\3.597 

3.277\3.277 

2.908\2.908 

2.535\2.535 

2.184\2.184 

1.867\1.867 

1.589 

 

 

 

 

4.574\4.574

4.175\4.174

3.705\3.705

3.229\3.229

2.782\2.782

2.379\2.379

2.025 

 

 

 

 

5.143\5.143

4.575\4.575

3.988\3.988

3.436\3.436

2.938\2.9

38 

2.500 

 

 

 

 

 

 

5.538\5.538

4.840\4.840

4.170\4.170

3.566\3.566

3.035 

 

 

 

 

 

 

 

5.799\5.799

5.010\5.010

4.285\4.285

3.647 

 

 

 

 

 

 

 

 

5.967\5.967 

5.118\5.118 

4.357 

 

 

 

 

 

 

 

 

 

6.073\6.073

5.185 

 

 

 

 

 

 

 

 

 

 

6.139

a. The exact values given by Albrecher et al. (2005) are in smaller size after \. 

 
Table 3. Numbers of steps for computing δ ( ),iA u  (i = 0, 1, 2, 3). 

 \ n \ u 1 2 3 4 5 6 7 8 9 10 

0.03 8 18 39 78 141 220 292 340 366 379 

0.06 8 18 36 67 106 143 169 184 191 194 

0.09 8 17 34 58 85 107 120 127 130 131 

 
Table 4. Approximations for the expectation Wb(u) by Formula (5.4). 

u 
b 

0 1 2 3 4 5 6 7 8 9 10 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.0757 

0.8357 

0.8564 

0.8480 

0.8015 

0.7302 

0.6479 

0.5647 

0.4865 

0.4160 

0.3541 

 

1.8082 

1.8469 

1.8285 

1.7283 

1.5745 

1.3971 

1.2177 

1.0490 

0.8970 

0.7635 

 

 

2.8462 

2.8146 

2.6605 

2.4239 

2.1507 

1.8746 

1.6149 

1.3809 

1.1753 

 

 

 

3.8027 

3.5969 

3.2774 

2.9081 

2.5347 

2.1836 

1.8672 

1.5893 

 

 

 

 

4.5740 

4.1745 

3.7048 

3.2292 

2.7819 

2.3788 

2.0246 

 

 

 

 

 

5.1433 

4.5745 

3.9881 

3.4357 

2.9379

2.5005 

 

 

 

 

 

 

5.5376 

4.8396 

4.1703 

3.5661 

3.0352 

 

 

 

 

 

 

 

5.7989 

5.0101 

4.2853 

3.6474 

 

 

 

 

 

 

 

 

5.9670 

5.1178 

4.3570 

 

 

 

 

 

 

 

 

 

6.0731 

5.1849 

 

 

 

 

 

 

 

 

 

 

6.1393 

 
cursion method proposed in this paper give good appro- 
ximations for the arbitrary moments of discounted divi-
dend payments until ruin. The exact mothed presented by 

Albrecher et al. [8] can only be used in the model with 
generalied Erlang(n)-distributed inter-claim times. The 
purpose of this paper is to find an approach which can be   
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Table 5. Approximations for the standard deviation      2 2

b bW u W u . 

u 
b 0 1 2 3 4 5 6 7 8 9 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.7440\0.744 

1.2397\1.240 

1.6667\1.667 

1.8637\1.864 

1.8841\1.884 

1.7972\1.797 

1.6564\1.656 

1.4958\1.496 

1.3343\1.334 

1.1815\1.181 

1.0415 

 

1.3988\1.399 

2.1105\2.110 

2.4562\2.456 

2.5275\2.528 

2.4365\2.436 

2.2634\2.263 

2.0577\2.058 

1.8467\1.847 

1.6444\1.644 

1.4571 

 

 

2.1930\2.193 

2.6948\2.695 

2.8457\2.846  

2.7834\2.783 

2.6128\2.613 

2.3959\2.396 

2.1666\2.167 

1.9424\1.942 

1.7317 

 

 

 

2.7416\2.742

2.9887\2.989

2.9813\2.981

2.8365\2.836

2.6288\2.629

2.3987\2.399

2.1675\2.167

1.9458 

 

 

 

 

3.0201\3.020

3.0855\3.085

2.9884\2.988

2.8072\2.807

2.5897\2.590

2.3617\2.362

2.1369 

 

 

 

 

 

3.1112\3.111

3.0796\3.080

2.9450\2.945

2.7548\2.755

2.5404\2.540

2.3197 

 

 

 

 

 

 

3.1040\3.104

3.0348\3.035

2.8918\2.892

2.7048\2.705

2.4974 

 

 

 

 

 

 

 

3.0599\3.060 

2.9844\2.984 

2.8454\2.845 

2.6652 

 

 

 

 

 

 

 

 

3.0106\3.011 

2.9416\2.942 

2.8100 

 

 

 

 

 

 

 

 

 

2.9690\2.969

2.9095 

a. The exact values given by Albrecher et al. (2005) are in smaller size after \. 

 
Table 6. Approximations for the third moment    3

bW u . 

u 
b 0 1 2 3 4 5 6 7 8 9 10 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3.5755 

8.4888 

19.421 

26.504 

26.994 

23.379 

18.484 

13.877 

10.113 

7.2458 

5.1400 

 

20.770 

45.111 

61.464 

62.598 

54.214 

42.863 

32.179 

23.453 

16.803 

11.920 

 

 

77.832 

104.56 

106.45 

92.189 

72.888 

54.720 

39.881 

28.573 

20.269 

 

 

 

160.74 

163.03 

141.20 

111.63 

83.809 

61.081 

43.762 

31.044 

 

 

 

 

239.93 

207.79 

164.32 

123.36 

89.909 

64.415 

45.694 

 

 

 

 

 

300.33 

237.87 

178.62 

130.19 

93.273 

66.166 

 

 

 

 

 

 

341.11 

256.75 

187.17 

134.11 

95.133 

 

 

 

 

 

 

 

366.92 

268.21 

192.22 

136.36 

 

 

 

 

 

 

 

 

382.71 

275.06 

195.18 

 

 

 

 

 

 

 

 

 

392.21 

279.13 

 

 

 

 

 

 

 

 

 

      

397.90 

 
used in an arbitrary Sparre Andersen model. The itera-
tion and the recursion prove helpful in achieving the goal. 
I think that more extensive applications about these me-
thods can be found. Obviously, the iteration method can 
also be used to compute the Gerber-Shiu penalty func-
tion in Sparre Andersen model, even more complicated 
model. 
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