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Abstract 
 

The aim of this paper is to compute eigenvalues of fourth order regular Sturm-Liouville Boundary Value 
Problems (SLP).  We propose the Galerkin weighted residual method with Bernstein polynomials as basis 
functions to approximate the solutions of SLP. We derive rigorous matrix formulations to compute the 
eigenvalues of the SLP. Special care has been given about how the polynomials satisfy the corresponding 
homogeneous form of Dirichlet boundary conditions. The approximate eigenvalues are compared with 
the exact result and also compared with the relevant studies by some authors. The results in this study 
agree with that of the other relevant articles.  

 

Keywords: Galerkin method; Bernstein polynomials; Sturm-Liouville problems; Eigenvalue. 
 

1 Introduction 
 
The concept of eigenvalue problem is rather important both in pure and applied mathematics, a physical 
system, such as pendulum, a vibrating or rotating shaft etc. The physical system such as pendulums and 
vibrating and rotating shafts are connected with eigenpairs of the system. The Sturm-Liouville systems arise 
from vibration problems in continuum mechanics. 
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In the literature, we observe that many researchers studied second order Sturm Liouville eigenvalue 
problems. Some authors Abbasbandy and Shirazdi [1], Shi and Cao [2], Yucel and Boubaker [3], Gamel and 
Sameeh [4], Taher et al. [5] paid their attention to develop various techniques for finding eigenvalues of 
fourth order Sturm-Liouville BVP’s. They applied different algorithms to minimize the convergence rates. 
 
Chanane and Chanane [6,7] introduced a novel series representation for the boundary/characteristic function 
associated with fourth-order Sturm-Liouville problems using the concepts of Fliess series and iterated 
integrals. Chawla [8] presented fourth-order finite-difference method for computing eigenvalues of fourth-
order two-point boundary value problems. Usmani and Sakai [9] applied finite difference method of order 
two and four for computing eigenvalues of the fourth-order boundary value problems while Twizell and 
Matar [10] developed finite difference method for approximating the eigenvalues of fourth-order boundary 
value problems. 
 
Jia et al. [11] approximated the eigenvalues of fourth order BVP for a class of crosswise vibration equation 
of beam using Galerkin method and obtained the estimation of errors using the trigonometric polynomials 
that satisfies all the boundary conditions directly. The Adomian decomposition method (ADM) to solve 
fourth-order eigenvalue problems was used by Attili and Lesnic [12]. Syam and Siyyam [13] developed a 
variational iteration technique (VIM) for finding the eigenvalues of fourth-order non-singular Sturm-
Liouville problems. Recently, Chanane [14] has enlarged the scope of the Extended Sampling method [15] 
which was devised initially for second-order Sturm-Liouville (SLE) problems to fourth-order ones. 
Abbasbandy and Shirzadi [1] applied the homotopy analysis method (HAM) to numerically approximate the 
eigenvalues of the second and fourth order Sturm-Liouville problems. Shi and Cao [2] presented a 
computational method for solving eigenvalue problems of high-order ordinary differential equations which 
based on the use of Haar wavelets. Yucel and Boubaker [3] applied differential quadrature method (DQM) 
and boubaker polynomial expansion scheme (BPES) for efficient computation of the eigenvalues of fourth-
order Sturm-Liouville problems. Gamel and Sameeh [4] applied Chebychev method for finding eigenvalues 
of fourth order nonsingular Sturm-Liouville problems and compared the results to the other methods 
available in the literature.  
 
Very recently Taher et al. [5] applied an efficient technique using Chebychev spectral collocation method 
where Chebychev differentiation matrix is defined and computed the eigenvalues of SLP’s. Since Bernstein 
polynomials have been used for the solution of differential equations by Doha et al. [16] and also by Islam 
and Hossain [17], this partially motivates our interest to compute the eigenvalues of the SLP's using 
Bernstein polynomials. Another motivation is concerned with Galerkin weighted residual method which can 
provide solutions to many complicated problems.  
We organize this article as follows. 
 
We give a brief introduction of Bernstein polynomials in section 2 along with their properties. The 
formulation of the general linear fourth order Sturm-Liouville problems by utilizing the technique of 
Galerkin weighted residual method incorporated with the boundary conditions have been discussed in 
Section 3. In Section 4, we consider numerical examples to verify the efficiency of the proposed method. 
 

2 Bernstein Polynomials 
 
The general form of the Bernstein polynomials of n- th degree over the interval ],[ ba  defined by Islam and 

Hossain [17]. 
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Now the addition of two polynomials of degree n-1 over the interval [0, L] as [16] 
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Also the first derivative and second derivatives may be defined successively, as 
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Note that each these n+1 polynomials satisfies the following properties  
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For simplicity we denote )(, xB ni  as iB  throughout the paper. Since the piecewise polynomials are 

differentiable and integrable, Bernstein polynomials defined in equation (1) form a complete basis over the 
finite interval. 
 

3 Matrix Formulation 
 
Consider the following general fourth order nonsingular Sturm-Liouville problem (SLP) 
 

    uxuxrxuxqxuxp )()()()()()( 
 ,   Lx 0 .              (2)  

 

Here L is finite number; )(xp , )(xq , )(xr  and )(x  are all piecewise continuous functions and )(xp , 

0)x(  subject to some specified conditions and at  these conditions mean that equation (2) is regular, 

i.e., nonsingular. 
 
We can rewrite the equation (2) in the following form as a general fourth order Sturm-Liouville problems 
(SLP) 
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Let us consider the fourth order SLP (3) subject to the boundary conditions   
 

  0)(0)(0)(  au;bu,au   0)(  bu                                                                     (4) 

 
To approximate the solution of SLP (3), we express in terms of Bernstein polynomial basis as 
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where )(0 x  is specified by the Dirichlet boundary conditions and 0)( aBi  and 0)( bBi  for  each  

.1,,3,2,1  ni   

 
Using (5) into equation (3), the Galerkin weighted residual equations are [18]:    
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Now integrating each term of (6) by parts, we have    
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Equations  (7) and (8) are obtained by imposing boundary conditions in equation  (4). 
 
Also,  
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Inserting  0)()(  bBaB jj   in the above integrals, we finally obtain the equations (7), (8),(9) and (10) 

 
Substituting (7), (8), (9) and (10) into (6) and after rearranging the terms we have 
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Also from equation (5), we have  
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Using equations (12a) and (12b) into equation (11) we obtain 
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Finally, the eigenvalues are obtained in matrix form as below 
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where, 
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Hence, the eigenvalues can be obtained by solving the determinant of the coefficient matrix in equation (14a) 
such that 

 
  .0det ,,  jiji FD                                                                                                                 (15) 

 
Similarly for the boundary conditions of the type: 0)(0)(0)(  au,bu,au ,  0)(  bu , the 

formulation can be obtained easily. 

 

4 Test Examples 
 
In this section we present five numerical examples of fourth order SLP problems, using the method outlined 
in the previous section. All the numerical calculations are carried out using MATLAB 13 by an itel(R) 
Core(TM) i5-4570 CPU with power 3.20 GHz CPU, equipped with 8 GB of Ram. The convergence of the 
Galerkin method is measured by the relative error 
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Example 1(a): We first consider the Sturm-Liouville BVP examined by Yucel and Boubaker [3], Gamel and 
Sameeh [4] and Taher et al [5] . 
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which corresponds to the case 0)()()()( 3210  xaxaxaxa , 0a  and 1b  in equation (3). 

 
The exact solution of (17a) is obtained by solving 
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Using the method illustrated in section 3, we approximate )(xu  as  
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Here 0)(0 x as specified by the Dirichlet boundary conditions of equation (17b). 

 
The weighted residual, equation (17a) becomes  
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where, 
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Solving the determinant of the system in (20a), we get the approximate eigenvalues for different values of n.  

 
Exact eigenvalues and relative errors are tabulated in Table 1 using different degrees of polynomials with the 
relative error for the differential quadrature method [3], Chebychev method [4] and Chebychev spectral 
collocation method [5]. 

 
The results, obtained using n=20, for the first six eigenvalues of the problem using Bernstein polynomials 
are shown in Table 2. The observed CPU time is 3.78 seconds. 

 
Example 1(b):  Consider the Sturm-Liouville BVP worked out by Gamel and Sameeh [4], Syam & Siyyam 
[13]. 
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  .0)1()0()1()0(  uuuu                                                         (21b)  

 
Table 3 shows the comparison of our result obtained using n=22, for Bernstein polynomial, with the first six 
eigenvalues of the problem with Gamel and Sameeh [4], Syam and Siyyam [13]. 
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Table 1. Observed relative errors of the eigenvalues for example 1(a) 
 

Exact 
eigenvalues 

Relative error 
     

present 
(Bernstein) 
n=20 

Relative error 
     

present 
(Bernstein) 
   n=29 
 

Relative error  
Taher et al [5] 
(Cheby-spect-
collo)    

 Relative errors         
 Cheby  

 
Gamel and  

 Sameeh [4]
 

 Relative errors 
 Yucel and  
 Boubaker [3]     
  PDQ N=20 

Relative Errors 
Yucel and Boubaker    
[3] PDQ N=30 

237.72106753 4.697E-012 4.206E-012 2.03E-009 4.697 E-012 7.59E-009 7.59 E-009 
2496.48743786 1.269E-012 1.269E-012 7.93E-010 3.046E-012 4.44E-008 4.45E-008 
10867.58221698 1.022E-013 1.022E-013 2.33E-010 5.104E-012 1.94E-009 1.71E-008 
31780.09645408 3.880E-014 3.388E-014 8.61E-009 8.605E-009 4.50E-008 2.36E-008 
74000.84934915 1.994E-012 6.851E-015 7.51E-011  3.97E-005 2.99E-008 
148634.47728577 3.053E-009 2.153E-015 2.24E-010  1.43E-004 4.77E-008 
269123.43482664 01    2.262E-013 6.272E-015   4.08E-003 9.61E-010 
451247.99471928 0   1.640E-005 2.966E-015   1.11E-002 1.74E-008 
713126.24789600 1.362E-004 1.257E-012   9.02E-002 3.16E-006 
1075214.10347396 4.104      4.104E-003 2.230E-010        2.06E-002 9.31E-006 

 
 

Table 2. Comparison of eigenvalues for example1 (a) 
 

Results of Gamel and 

Sameeh [4]   
 Cheby
k   

Results of       
Attili and Lesnic [12] 

Results of     
Abbasbandy and  
Shirazdi   [1] 

Results of  
Syam and   
Siyyam  [13]                   

  Eigenvalue  ( Bernstein) 

  (present)
 .Gal
k  

237.72106753 237.72106753 237.72106753 237.72106754   237.72106753 
2496.48743786 2496.48743785 2496.48743785 2496.48743843   2496.48743786 
10867.58221704 10867.59367146 10867.58221697 10867.58221699   10867.58221698 
31780.09645409 31475.48355038 31780.09645277 31780.09650785   31780.09645408 
……………  …………… 74000.84934655 74000.85036550               74000. 84934930 
………………. ……………. 148634.47747229               148634.47728684                 148634. 47773948 
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Example 1(c):  Consider the Sturm-Liouville BVP which is taken from Attili and Lesnic [12] 
 

  ,xuxu 0)()(4                                                                                            (22a) 

 

.0)1()1(,0)0()0(  uuuu                                                                                 (22b)   

 
Table 4 shows the comparison of our result obtained using n=22, for Bernstein polynomial, with the first 
nine eigenvalues of the problem with the results of Attili and Lesnic [12]. 
 
Example 2(a): Consider the Sturm-Liouville BVP taken from the articles of Taher et al [5] and Attili and 
Lesnic [12].  
 

  ,xuxu.x.xux.xux.xu )()()02000010()(040)(020)( 424                 (23a) 
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The above problem can be written as self-adjoint form as 
 

    ,xuxu.x.xux.xu )()()02000010()(020)( 424                                         (24) 

 
Table 5 shows the comparison of our result obtained using n=22, for Bernstein polynomial, of the first six 
eigenvalues of the problem with the results of Yucel and Boubaker [3], Gamel and Sameeh [4], Taher et al 
[5], Attili and Lesnic [12], Syam and Siyyam [13]. The observed CPU time is 5.33 seconds. 
 
Example 2(b): Consider the Sturm-Liouville BVP worked out by Yucel and Boubaker [3], Taher et al [5], 
Attili and Lesnic [12], Chanane [15].  
 

  ,xuxu.x.xux.xux.xu )()()02000010()(040)(020)( 424              
 (25a)  

 

 ,0)0()0(  uu  

 0)5()5(  uu                                                                                                                        (25b) 

 
Table 6 shows the comparison of our result obtained using the degree of polynomial n=22, for Bernstein 
basis, for the first six eigenvalues of the  problem with the results of Yucel and Boubaker, Taher et al, Attili 
and Lesnic, Chanane [ 3, 5,12, 15] respectively. 
 

Table 3. Comparison of eigenvalues for example 1(b) 
 

 Galerkin
k Bernstein               

Gamel and Sameeh  
Cheby-coll. [4] 

Results of  Syam and  
Siyyam[[13]0 

500. 563901740 500.563901740 500.563901756 
3803. 53708049 3803.53708058 3803.53708049 

14617. 6301311 14617.6301777 14617.6301311 
39943. 7990057 ……………………. 39943.7990057 
89135.4076573   …………………. 89135.4076571 
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Table 4. Comparison of eigenvalues for example 1(c) 
 

k Computed eigenvalue by present method 
 .Gal
k    Results of Attili and Lesnic [12] 

1 12.3623633683259 12.3623633683262 
2 485.518818513372 485.518818513372 
3 3806.54626639151 3806.54626639145 
4 14617.2733051187 14617.2733051100 
5 39943.8317785095 39943.8317790386 
6 89135.4050714239 89135.4050444342 
7 173881.315656105 173881.315656105 
8 308208.452093651 308208.438655408 
9 508481.543266068 508481.270992137 

 

Table 5. Comparison of eigenvalues for example 2(a) 
       

Our method n=22 
 galerkin
k  

Results of  
Taher et al.  [5] 

Results of 
Gamel and Sameeh [4] 

Result of 
Attili and Lesnic [12] 

Results of  Yucel and 
Boubaker [3] 

Results of Syam 
and Siyyam [13] 

0.21505086437       0.21505086432      0.21505086437             0.2150508643697             0.21505086437                                         0.21505086437         
2.75480993468 2.75480993362 2.7548099346829 2.7548099346829 2.75480993468 2.75480993468 
13.21535154056 13.21535154059        13.215351540416       13.215351540558         13.2153515406           13.2153515406        
40.95081975916 40.95081975814                 40.950820029821         40.950819759137          40.9508197591                                                                                                                             40.9508197591        
99.05347806349 99.05347803835             ………………       99.053478138138          99.0534780633                                                                  99.0534781381                                                                 
204.35573226893 204.35573547934      ..…………… 204.35449348957         204.355732256                                                                                                                            204.3544934895 

 

Table 6. Comparison of eigenvalues for example 2(b) 
 

Our method
 galerkin
k  Taher et al. [5] Yucel and Boubaker [3] Chanane [15] Attili and Lesnic [12] 

0.86690250239970 0.86690250239196 0.86690250224260 0.86690250239947 0.8669025023997106 
6.35768644814590 6.35768644814386 6.35768644843984 6.35768644817446 6.357686448145815 
23.99274685030238 23.99274685032633 23.9927468509660 23.99274695066747 23.992746850281375 
64.97866759050172 64.97866759484157 64.97866761311830 64.97863591597007 64.97866759571622 
144.2806269274497 144.28062688384347 144.2806269273480 ...................... 144.28062803844648 
280.6009633049182 280.60096699712966 280.60096374439620  280.58602048195377 
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5 Conclusion 

 
We have discussed in details the formulations of Sturm-Liouville problem by the Galerkin weighted residual 
method using Bernstein polynomials as basis functions. To verify the accuracy of our scheme we have 
considered five examples. In Table 1, we have computed first 10 eigenvalues and compare our results with 
other published works available in the literature. In Table I, the first seven eigenvalues using Bernstein 
polynomials are very close to the exact results and the computed values for the lower eigenvalues have a 
better accuracy than those for the higher eigenvalues. At the same time it is also observed in Table 1 that all 
10 eigenvalues, obtained using Bernstein polynomials, converge more rapidly than those obtained by the 
other methods. In fact relative error decreases as the degree of polynomials increase from n=20 to n=29 in 
the case of Bernstein basis. But on the other hand, estimated eigenvalues show less convergent especially at 
present method for n=20. It is obviously observed that eigenvalues obtained by Galerkin-Bernstein method 
are most accurate than the other results have been achieved by various methods. Excellent agreement is 
being observed in Table 1 between results of present work and the results of previously published works by 
Yucel and Boubaker [3], Gamel and Sameeh [4] and Taher et al. [5]. In tables 2, 3 and 5, we have computed 
6 eigenvalues and compared our results with Taher et al. [5], Attili and Lesnic [12], Syam and Siyyam [13]. 
Also using 29 Bernstein polynomials, we obtain the first 9 eigenvalues and compared our results with Attili 
and Lesnic [8] summarized in Table 4.  

 

The shortcoming of the current method is that, in case of huge number of eigenvalues computation, higher 
eigenvalues are less convergent than the lower spectrum and with increasing of the degree of polynomials 
the computational time highly increases, without leading to a significant improvement of the numerical 
values for some higher order problems. Although slow convergent rate of Bernstein polynomials for some 
particular problems with complicated boundary conditions makes it less popular still this drawbacks is to be 
compensated for achieving better accuracy. In spite of these disadvantage, we can conclude that for a 
relatively small n, i.e., n = 20, moderately precise numerical results are obtained using the proposed method. 

 

Therefore, we may conclude as that Galerkin-Bernstein polynomial scheme produces much accurate results 
than all other previously published works available in the literature. 
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