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Many real-world robotic applications such as search and rescue, disaster relief,
and inspection operations are often set in unstructured environments with a
restricted or unreliable communication infrastructure. In such environments, a
multi-robot system must either be deployed to i) remain constantly connected,
hence sacrificing operational efficiency or ii) allow disconnections considering
when and how to regroup. In communication-restricted environments, we
insist that the latter approach is desired to achieve a robust and predictable
method for cooperative planning. One of the main challenges in achieving
this goal is that optimal planning in partially unknown environments without
communication requires an intractable sequence of possibilities. To solve this
problem, we propose a novel epistemic planning approach for propagating
beliefs about the system’s states during communication loss to ensure
cooperative operations. Typically used for discrete multi-player games or
natural language processing, epistemic planning is a powerful representation of
reasoning through events, actions, and belief revisions, given new information.
Most robot applications use traditional planning to interact with their immediate
environment and only consider knowledge of their own state. By including
an epistemic notion in planning, a robot may enact depth-of-reasoning about
the system’s state, analyzing its beliefs about each robot in the system. In
this method, a set of possible beliefs about other robots in the system
are propagated using a Frontier-based planner to accomplish the coverage
objective. As disconnections occur, each robot tracks beliefs about the system
state and reasons about multiple objectives: i) coverage of the environment,
ii) dissemination of new observations, and iii) possible information sharing
from other robots. A task allocation optimization algorithm with gossip
protocol is used in conjunction with the epistemic planning mechanism to
locally optimize all three objectives, considering that in a partially unknown
environment, the belief propagation may not be safe or possible to follow and
that another robot may be attempting an information relay using the belief
state. Results indicate that our framework performs better than the standard
solution for communication restrictions and even shows similar performance
to simulations with no communication limitations. Extensive experiments
provide evidence of the framework’s performance in real-world scenarios.
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1 Introduction

Multi-robot systems (MRSs) have the potential to improve
efficiency, flexibility, and scalability in various tasks. However,
coordinating cooperation for multiple robots can be a challenging
problem, particularly in dynamic and uncertain environments with
limited communication. In application spaces where long-range
communication is often unreliable or unavailable, we observed a
current limitation in MRS research where most approaches assume
constant information sharing between robots (Hussein et al., 2014;
Liu et al., 2022). Generally, MRS applications with communication
constraints are high-stake scenarios such as finding a stranded hiker
in a remote location, recovering pieces of a downed aircraft in hostile
territory, or rescuing survivors after a natural disaster. Additionally,
MRSs have been applied to scenarios with limited communication
infrastructure such as subterranean pipeline inspection, marine
sample collection, or extra-planetary exploration, where range,
terrain, and environment can inhibit signals from being sent or
received by any entity (Yliniemi et al., 2014; Manjanna et al., 2018;
Kuang-wei et al., 2020). As humans, we cope with these constraints
by implicitly reasoning about other actors’ actions or beliefs while
not communicating. A person may empathize with what another
actor might believe in order to communicate and come to a
shared understanding of the environment as demonstrated in the
Sally–Anne test (Baron-Cohen et al., 1985) and (Krupenye et al.,
2016). In this work, we propose a similar construct, taking advantage
of local observations and constructing a framework for robots to
plan and communicate according to a set of higher-order beliefs
while disconnected.

In our previous work (Bramblett et al., 2023), we presented a
robust, failure-tolerant framework based on epistemic planning to
formalize logical planning considering knowledge and beliefs of
the MRS. This method allows for a distributed system to iteratively
reason about the location of other robots in the system and behave
according to that belief. Beliefs and knowledge were updated using
a static time rendezvous, creating inefficiencies if the environment
is known or only small deviations from any plan are required while
disconnected.Within this framework, only tasks requiring one robot
were considered, and each robot was able to accomplish tasks while
disconnected, considering reconnection only when triggered by the
artificial potential field.

We build on these ideas and formalize a problem in which the
goal is to cooperatively explore, find, and accomplish tasks in the
environment; however, the scenario is further complicated by tasks
at unknown locations that may require multiple agents (e.g., lifting
a heavy object or inspecting a large structure). Since the locations of
these tasks are initially unknown, calculating a distributed plan for
coverage while accounting for any combination of a robot system’s
actions, changes in the environment, or deviations is intractable
over long periods of disconnection. Alternatively, establishing a
reasoning framework for a finite set of possibilities for each robot
can reduce computational complexity and increase the mission

efficiency. Thus, we introduce an epistemic prediction and planning
method with gossip protocol in which a robot propagates a finite
set of belief states representing possible states of other agents in
the system and empathy states representing a finite set of possible
states from other agents’ perspectives. Each agent may attempt to
communicate and allocate found tasks by traveling to the believed
location of another agent.

Consider Figure 1 where two robots are canvassing an
environment. During disconnection, robot 1 maintains a set of
belief states for robot 2 (p2) and also a set of empathy states that
robot 2 might believe about robot 1 (p1). Once robot 1 finds a task
that also requires robot 2, it attempts to communicate by routing
to robot 2’s belief state shown in Figure 1B. Robot 1 travels to the
believed location of robot 2 and is able to communicate if p2 is a
close approximation of x2, illustrated in Figure 1C. We reason that
though robot 2 holds a false belief about robot 1’s state, there exists
an epistemic strategy that allows robot 1 to communicate with robot
2 (i.e., robot 1 propagating and checking the belief state for robot 2
and by robot 2 empathizing with robot 1’s belief).

The contribution of our approach is two-fold: i) an epistemic
planning and propagation formulation using dynamic epistemic
logic, formalizing beliefs, and knowledge for consensus-based
coverage while disconnected and ii) a generalized consensus-based
epistemic task assignment and gossiping protocol for multi-robot
tasks with considerations for connectivity constraints and team
member dynamics.

The rest of the paper is organized as follows: Section 2 provides
an overview of the current research in multi-robot coverage, task
allocation, and epistemic planning. Section 3 explains assumptions
for communication and control while introducing the fundamentals
of dynamic epistemic logic. Section 4 formally defines the problem,
followed by the framework for belief propagation, coverage,
epistemic planning, and task allocation in Section 5. Simulations
and experiments validating our method are presented in Section 6
and Section 7, respectively. Finally, the conclusion and future work
are discussed in Section 8.

2 Background

Multi-robot exploration, foraging, and coverage remain an
open problem in robotics literature (Zhou et al., 2019; Kwa et al.,
2022; Poudel and Moh, 2022). Recent works have expanded the
problem formulation to consider communication restrictions or
intermittent connectivity by modeling ways to maintain connection
while exploring (Capelli and Sabattini, 2020), accounting for
intermittent communication (Best et al., 2018), or by placing
markers where other robots have already explored (Cardona et al.,
2019). Matignon et al. (2012) used a decentralized Markov decision
process to predict the MRS future state for stochastically delayed
messages.

A related field of multi-robot research is multi-robot task
allocation (MRTA). MRTA assigns a subset of robots to a
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FIGURE 1
Pictorial depiction of the problem presented in this paper. The proposed framework enables a robot to reason from other robots’ perspectives as it
experiences a behavior change or observes that another robot is not where expected. (A) shows the initial plan. (B) shows robot 1 finding a task that
requires robot 2 and routing to robot 2’s belief state. (C) shows robot 1 and robot 2 communicating and routing to accomplish the task.

variety of tasks to complete a global objective (Kim et al., 2020).
The overarching taxonomy and various solution techniques are
described by Korsah et al. (2013); however, most of these algorithms
focus on solutions, given perfect and complete information.
Chen et al. (2022) included connection limitations and allocated
tasks using a consensus-based bundling algorithm (CBBA) with
robots within communication range, but assumed dynamic tasks
can be accomplished by the local team. Additionally, Schoenig
and Pagnucco (2010) used sequential-single item (SSI) auctions
for dynamic tasks, comparing different schemas for evaluating task
allocation when all tasks are not initially known.

Though recent works have included realistic constraints that
mirror real-world operations for coverage and task allocation,
there is little consideration for the combination of prolonged
disconnection with task discovery and allocation. Otte et al. (2020)
tackled a similar problem using an auction allocation algorithm
to assign tasks in a communication-limited environment, but
it is assumed that the number of robots present in the local
connected network is adequate to complete the discovered tasks. In
our previous work (Bramblett et al., 2022), we defined rendezvous
points at known locations to coordinate roles for any events
during exploration; however, we noticed robots back-tracking to
a predefined location reduced efficiency of exploration. Instead,
to decrease the need for unnecessary communication or laborious
rendezvous, this work applies dynamic epistemic logic (DEL)
(Van Ditmarsch et al., 2007) to allow a robot to reason about
higher-order beliefs among actors in a multi-robot system while
disconnected and allocate tasks with limited communication. DEL
is typically used in game theory applications to describe knowledge
and belief shifts for players in a game, but recently has been
integrated in robotics applications. Using robot and human actors,
the framework presented by Bolander et al. (2021) recreates the
Sally–Anne psychological test where a robot must reason about
the human’s beliefs. Moreover, DEL has been used to solve for
cooperative actions in multi-player games with implementation
on a multi-robot system, (Maubert et al., 2021). In this work,
we use DEL to allow robots to reason, given their respective
knowledge and beliefs, about the system’s state considering task

discovery, communication requirements, and partially unknown
environments.

3 Preliminaries

3.1 Notation, communication, and control

Let us consider a multi-robot system of Nr robots in the set A.
We note that initial positions of the robots are known. The system’s
connectivity graph is denoted as G = (A,E), where the set E ⊂A×
A represents edge connections between robots. An edge (i, j) ∈ E
indicates that robots i and j arewithin the communication range (i.e.,
connected). For ease, motivated by most wireless communication
modules with a limited range such as Wi-Fi, LoRa, and Bluetooth,
we abstract communication range as a disk centered on the robot.
Robots i and j are considered connected if they are within the
communication range, rc.

Additionally, a number of tasks Nt in the set T are located in
unknown positions within the operating environment. Initially, Nt
maybe knownor unknown.An element τ inT is defined by the tuple
identifying the location, number of required robots, and reward:
(xτ ,yτ , rτ ,λτ). We assume the tasks are stationary and completed
once a subset of robots navigate within a radius rt > 0.

The robots are assigned to search for the tasks in an environment,
W , that is partitioned intoNm cells, whichwe define as an occupancy
map M ⊆ ℝ2. When robots navigate to observe unexplored cells
Mu ⊆M, M is updated using recursive Bayesian estimation
(Asgharivaskasi and Atanasov, 2021), though any method can be
used. Subsequently, we define the Frontier set F ⊆MMu as the
set of explored cells adjacent to unknown cells. We assume that the
entirety of the exploration area is partially unknown.

Without loss of generality, each of the robots is modeled as a
linear time-invariant (LTI) dynamical agent such that

ẋi = Axi +Bui + νi, ∀i ∈A, (1)

where xi ∈ ℝn is the robot i’s state vector, ui ∈ ℝm is the control
input, and A and B are state and input matrices, respectively. The
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variable νi ∈ ℝn denotes zero-mean Gaussian process uncertainty.
We let a state of robot i, xi, represent not only the location and
dynamics of the robot but also its local occupancy map and status.
Status is defined as a robot’s current objective such as covering the
environment, communicating, or completing a task. We let robot i’s
status be denoted as proposition σi and represents which objective a
robot is executing.

3.2 Epistemic logic

In this work, epistemic and doxastic logic (Rendsvig and
Symons, 2019) is used to model distributed knowledge and
reasoning for system changes during disconnectivity. We define an
epistemic state with the following definition.

Definition 1. An epistemic state is classically described using a
tuple s = (W,Ri,V,Wd) for a countable set of atomic propositions, AP,
where

• W is a non-empty, finite set of possible worlds.
• Ri ⊆W×W is an accessibility relation for robot i.
• V→ 2AP is a valuation function.
• Wd ⊆W is the set of designated worlds from which all worlds in
W are reachable.

The formula vRiw means that though the actual world is w,
robot i ∈A believes the world is v. We also define s as the epistemic
state and set the initial epistemic state to s0 = (W,R,V,w0), where
Wd = {w0} means that s0 is the global epistemic state. A world, w,
signifies the set of true propositions, which in our application is the
status of each robot w = {σi∀i ∈A}.

To propagate the states of robots, we define beliefs as the set
of estimated locations of all robots in the system from each robot’s
perspective. The set P = {P1,…,PNa

} holds the distributed beliefs
of all agents, where an element in Pi represents possible states
from agent i’s perspective of robots j ∈A. Ψ is a set of functions
that describe the current state of the system. For this application,
the epistemic language, L(Ψ,P ,A), is obtained as follows in the
Backus–Naur form (Knuth, 1964):

ϕ⩴H (ω) | ϕ∧ϕ | ¬ϕ | Kiϕ | Biϕ,

where i, j ∈A, H ∈ Ψ is a function to describe a system state,
and ω broadly indicates function arguments. ¬ϕ and ϕ∧ϕ denote
that propositions can be negated and form logical conjunctions,
respectively. Biϕ and Kiϕ are interpreted as “agent i believes ϕ” and
“agent i knows ϕ, respectively.”

Dynamic epistemic logic is expanded from epistemic logic
through action models. These models affect how robots perceive an
event and its effects on the world.

Definition 2.An action model L = (A,RL
i ,pre,post) is a tuple with

the following definitions

• A is a non-empty, finite set of possible actions.
• RL

i ⊆ A×A is an accessibility relation for agent i in the action
model.
• pre is a precondition for an action to be performed.
• post is a post-condition or effects of an action.

As such, the epistemic product model is formally introduced
as s⊗ i: a = (W′,R′i ,V

′,W′d), where i:a indicates that an action a
has been executed by robot i. In this paper, we describe a robot’s
main actions that can occur as follows: perceive a robot or task and
announce a proposition or system state. The worlds that the system
can be in are described by the combinations of all possible statuses
of each robot in the multi-robot system.

4 Problem formulation

In this paper, we consider a scenario in which a multi-robot
system must coordinate in a decentralized fashion to efficiently
search for tasks at unknown locations in a communication-
restricted, partially unknown environment. We focus on a
subcategory of theMRTA problems known as the single-task, multi-
robot, time-extended allocation problem [ST-MR-TA], meaning
that each robot can only execute one task at a time, and tasks
may require multiple robots. There are several challenges that
arise to allow efficient and cooperative behavior, given limited
communication, including 1) how to efficiently cover a partially
unknown environment for tasks; 2) upon discovery, how should
tasks be ideally allocated to a subset of robots; and 3) how to
communicate necessary information to robots in the system if
disconnected. Formally, we define these problems as follows:

Problem 1 (Communication-restricted coverage): Find a
distributed policy to enable a multi-robot system to quickly perform
distributed and cooperative coverage of a partially unknown
environment with intermittent communication. The robots should
safely navigate the environment, given a set of unknown obstacles
that may cause the robot to deviate from an original plan.

Problem 2 (Communication-restricted task allocation): Find
a distributed policy to enable a multi-robot system to dynamically
solve a task allocation problem given that an allocation may
necessitate communication with a subset of disconnected robots.

To solveProblem1, we propose an epistemic planning approach
that consists of two main parts. First, we propagate a set of global
(common) belief states that inform the approximate location of
a robot cooperatively covering the environment. Then, we use
a common belief set to partition the environment for coverage,
which informs how belief particles are propagated in the next
iteration. To solve Problem 2, we propose a decentralized task
allocation algorithm that assigns robots to discovered tasks and
communication responsibilities.

5 Approach

In this section, we present the approach for the coordinated
epistemic prediction, planning, and allocation framework which
propagates belief and empathy states to inform Frontier assignment
and robot control, all while considering task discovery and unknown
obstacles. For ease of discussion, let us consider two robots i and
j. From robot i’s perspective, a belief state, pii,j ∈ Pi, represents a
possible state of robot j and an empathy state, pij,i ∈ Pi, describes
robot i’s belief of robot j’s belief about robot i’s state. Once robots
i and j disconnect, robot i holds a main belief about robot j and
empathizes with what robot j might believe, which we label as the
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FIGURE 2
Diagram of the proposed approach. The contributions of this work are shown within the green box.

common belief set, Ci. With this knowledge, robot i predicts and
tracks empathy states to maintain robot j’s belief of the state of
robot i. The common belief, Ci, is used for decentralized planning
if the robots have no updates for long periods of disconnection. The
diagram in Figure 2 summarizes this proposed architecture.

Coverage is accomplished via a cooperative multi-robot
Frontier-based method due to its simplicity, completeness, and
efficiency (Fox et al., 2006). As shown in Figure 2, the robot i
initially assesses whether communication is successful with a robot
j. As we will discuss in this section, if communication is successful,
robot i uses its current state xi and the state of robot j, xj, to compute
the Voronoi diagram, Vi (Cortes et al., 2004). The Voronoi diagram
informs a robot’s utility for traveling to any Frontier point, and
the robot selects the Frontier point with the highest utility, gi.
Travel to this goal point is conducted via a smooth A* planner and
artificial potential field (APF), though any applicable method can
be used. When connected, epistemic planning is reduced to direct
communication of states. If the robots disconnect, the common
belief set, Ci, acts as the state for any robot j ∈A from i’s perspective.
Predictions for these belief and empathy states are accomplished
using the same Voronoi partitioning and path planning methods.
Robot i then uses these predicted states to plan considering its belief
about robot j.

In both connected and disconnected conditions, the robot’s
objective is to search for tasks. If connected and a task is discovered,
the robots bid on and allocate the discovered tasks. If disconnected
or if enough robots are not present at the task, a single robot will
submit bids on behalf of other robots using its belief states.

In the following sections, we lay out the key components of the
planner including i) belief and empathy propagation, ii) coverage
assignments for disconnected robots, iii) epistemic planning for
belief consensus, and iv) epistemic task allocation.

5.1 Belief and empathy propagation

In our coordinated epistemic prediction, planning, and
allocation framework, the robots propagate belief and empathy
states for all robots in the multi-robot system. This allows robot
i to plan according to its belief of other robots and reason about
what other robots expect robot i to accomplish while disconnected.
As previously noted, to account for uncertainties over long periods
of disconnection, it is important to have a finite number of these

states. With this goal in mind, we define a finite set of particles, Pi,
to represent these belief and empathy states for the ith robot:

Pi = {pij,k ∀j ∈A,∀k ∈A} . (2)

The ith robot defines its empathy particles as Pe
i =

{pij,i ∀j ∈A} and its belief particles about other robots as P r
i =

{pij,k ∀j ∈A,∀k ∈A ⧵ {i}}, where Pi = Pe
i ∪P

r
i . The particle pij,k is

interpreted as a second-order belief (a belief about beliefs) and
represents robot i’s belief about robot j’s belief about robot k’s state.
To start, all particles are set as the robots’ initial state.

While not in the communication range of other robots, each
robot i propagates a subset of belief particles from the last globally
communicated state between robot i and robot j. We define this set
of particles as Ci ⊆ Pi and refer to it as robot i’s common belief set.
All robots track a second-order belief or empathy particle, pij,i, upon
disconnection, whose motion is planned using the common belief
set, Ci = {cij ∀j ∈A}. Each particle cij ∈ Ci propagates according to
the last global epistemic state. The common belief is reset when all
robots are within the communication range and new knowledge is
shared (i.e., coverage, unknown obstacles, and tasks).

Each particle, pij,k, is propagated toward its goal state, gij,k,
using the given vehicle dynamics and a smoothed A* path planning
algorithm (Mueggler et al., 2014). The goal selection is dependent
on a particle’s status. Within this paper, there are four main statuses
that each particle can be in: exploring, gossiping, completing a goal,
or going home, observing that these statuses are predefined and
mission-dependent. The go-to-goal behavior for each particle is
accomplished via an artificial potential field (APF) (Khatib, 1986)
because of its simplicity and calculation speed. When the APF is
coupled with the A* path planning algorithm, local minima are
avoided. The APF construct formulates a repulsive force around
threats such as obstacles and other robots, Frep, and an attractive
force, Fatt , toward the goal. The composite potential field for these
forces is formed by the following equations for a generic particle, p.

Uatt =
1
2
ηgρ

2
g (p) , (3)

Urep =
{{
{{
{

1
2
ηo(

1
ρ (p)
− 1
ρo
)
2
, ρ (p) ≤ ρo

0, ρ (p) > ρo

, (4)

Utotal = Uatt +Urep, (5)

where ρg and ρ are the distance functions from the target and threats,
respectively, with ηg and ηo representing the gain coefficients for
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FIGURE 3
This figure shows the initial stages of coverage for three robots using the proposed epistemic coverage method. (A) shows three robots connected and
partitioning the environment based on known states. (B) shows coverage using the epistemic belief to allocate frontiers in the environment. The actual
coverage accomplished by each robot is represented by the light shaded region.

attraction and repulsion, respectively. The subsequent composite
forces that govern the particles’ motion are.

Fatt = ηgρg (p) , (6)

Frep =
{{
{{
{

−ηo(
1

ρ (p)
− 1
ρo
)( 1

ρ (p)
)
2
▿ρ (p) , ρ (p) ≤ ρo

0, ρ (p) > ρo

, (7)

Ftotal = Fatt + Frep, (8)

where ▿ denotes the gradient.
A robot tracks an empathy particle, considering unknown

obstacles may cause deviations in the predicted path. Since the
robotwill be tracking an empathy particle, particle propagationmust
encourage efficient coverage of the environment.Thus, we introduce
an epistemic Frontier-based coverage algorithm to motivate motion
toward distinct, uncovered regions of the environment while
disconnected.

5.2 Epistemic coverage assignments

The majority of distributed coverage algorithms depend on
either a globally connected network or a limited, asynchronous
communication within a small, finite amount of time
(El Shenawy et al., 2020; Hu et al., 2020). Many overcome this
limitation by simply choosing the closest Frontier point to a robot
(Cesare et al., 2015) or retaining the last position of the robot and
only sharing information if the robots wander within range (Colares
andChaimowicz, 2016). In contrast, we introduce a partitioning and
coveragemechanism using the common belief set, C, for cooperative
robots, given a partially unknown environment while disconnected.

To begin, each robot updates its true local map using recursive
Bayesian estimation (Asgharivaskasi and Atanasov, 2021). Each
robot also simulates updates for each jth particle in the set Pi
with robot j’s respective sensor parameters. Using the common
belief particles in set Ci and their corresponding maps, each robot
determines its Frontier set, Fi, by assessing which explored cells are
adjacent to unknown cells. Additionally, the optimal partition of

Fi is the Voronoi partition Vi(Ci) = {Vi1,Vi2,…,ViNr
} generated by

common belief particles in Ci denoted as the points (ci1,ci2,…,ciNr
):

Vij = { f ∈ Fi| ‖ f − cij‖ ≤ ‖ f − cik‖,∀j ≠ k} . (9)

Using the common belief set versus the communicated location
of robots allows for decentralized coverage while disconnected by
implicitly reasoning about the assignments of other robots and their
individual motion plans.

After determining each common belief particles’ Frontier
partition, the utility of each Frontier point is assessed. The utility
of a Frontier point is user-defined (e.g., distance to Frontier
point, distance to other robots, and heading difference) while
incorporating a penalty for Frontier points outside of a particles’
partition such that the utility of each Frontier point is defined as
follows

υij,z = {
u( fz,αj) +Δ fz ∉ Vij

u( fz,αj) fz ∈ Vij
, (10)

where Δ is a penalty for Frontier points outside of a particles’
partition and u(⋅) is the utility function for assigning cij to f ∈ Fi.
Subsequently, the Frontier point thatminimizes the utility from (10)
is defined as

z* = argmin
z

υij,z, (11)

and

gcij = fz* . (12)

The variable gcij is the Frontier point goal for the common belief
particle, cij, which encourages the common belief to propagate
toward unique, uncovered portions of the environment. If a particle’s
status is exploring, it also shares the same goal as its respective
common belief particle: gij,j = g

c
ij∀j ∈A. Otherwise, the goal for each

particle depends on the particle’s status such as going to a task,
communicating with another robot, or traveling to home base.
Figure 3 shows an example of particles propagating in a partially
unknown environment. As shown in Figure 3A, the robots begin
in the communication range and establish goals along the Frontier
using (10). Figure 3B shows the robots disconnect as they move
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toward their respective Frontier goals and establish belief states.The
plotted belief states for an ith robot are the belief states of all other
robots and an empathy state from robot i’s perspective. The covered
area is shaded by the robot color that accomplished coverage, and
the plotted Frontier points are the Frontier points from each belief
states’ perspective, dynamically allocated using (9). As the robot is
traveling, unknown obstaclesmay appear, and the robot avoids these
obstacles while continuing to follow its main empathy particle.

5.3 Epistemic updates and planning

Epistemic planning is a modal representation of planning about
knowledge and beliefs when the environment changes. Under the
assumption that robots have limited communication capabilities,
the problem we are solving can be considered a game with
imperfect information.Maubert et al. (2019) pointed out that multi-
player games with imperfect information are undecidable, but
using epistemic planning and assuming cooperative robots, we can
tame the complexity of the problem to achieve consensus in most
disconnected scenarios.

5.3.1 Epistemic update logic

Belief update is the process of accepting new information
that may contradict initial beliefs. When robots communicate, any
necessary belief updates must take place rationally to ensure global
consensus is still retained. Thus, there are four cases in which belief
update occurs in this work: i) when globally connected to all robots,
ii) when locally connected to another robot, iii) when expecting to
connect with another robot, and iv) upon task discovery. Referring
to the previously established semantics for DEL in Section 3, we
introduce our action library A that can transform the epistemic
state. We let A = {perceive(ϕ),announce(ϕ)}. The action perceive is
when a robot perceives a generic proposition ϕ in the environment,
such as a task or robot, and the action announce is when a robot
communicates with its locally connected team. Also, we introduce
the set Ψ with one element such that Ψ = {present}, which is
interpreted functionally in our application for Kipresent(τ) as robot
i knows the location, required robots, and value of task τ.

The global belief update is relatively simple. All new information
is centrally known, so all particle states can be updated to
known robot states instantaneously. We assume because robots are
cooperative, all belief updates are accepted and do not become
outdated unless an event occurs in the environment such as
discovering a task; however, each robot may not know when/if the
information of the system becomes outdated when disconnected.
We formulate the logic for this framework using a series of worlds,
wt , which is the set of propositions of each robot’s status, σti ∀i ∈A.
Additionally, there exists one true world,w*

t , at time t and only exists
if

w*
tRiw

*
t , ∀i ∈A. (13)

In order for all robots to know with certainty the true world, all
robots’ states, σit ∈ w

*
t , must be common knowledge and announced

such that the epistemic state from robot i’s perspective at time t is

sit−1 ⊗ announce (x) = s
i
t ⊧ Kiσ

i
t⋀
j∈A

KiKjσ
j
t ⋀
(j,k)∈E

KiKjKkσ
k
t , ∀i ∈A,

(14)

where announce(x) is an action symbolizing the announcement of
all robots’ states. The common belief particles are updated from the
announcement of all states to the multi-robot system such that

pij,k← xk, ∀(i, j,k) ∈A3. (15)

Similarly, all particles are updated according to the most recent
public announcement, and the common belief set is updated so that

p*ij,i← xi, ∀(i, j) ∈ E . (16)

Since the common belief is updated to the world wt shared
according to (14), the particles in this set are propagated based on
each robot’s status propositions. For example, in a two-robot team,
if robot 1 communicates with robot 2 that it has found a task andwill
complete this task, robot 1 and robot 2 would propagate a common
belief particle that moved to complete the task before continuing to
cover the environment.

The local belief update is more complicated as all robots must
also retain the common belief, Ci, for partition consensus among
disconnected robots. As such, the common belief is not updated
upon receiving new information, but rather the second-order belief
about each robot. Given that a robot has a belief about the current
world, this belief is revised if an action changes robot i’s knowledge
of the world

sit−1 ⊗ i : announce(xi) ⇒ Kiσ
i
t, (17)

noting that knowledge and belief are equivalent (Biσ
i
t ≡ Kiσ

i
t). In

turn, a robot may communicate this action to only its connected
neighbors

sit−1 ⊗ i : announce(xi) = st ⊧ ⋀
(i,j)∈E

BiBjq
′
i ⋀
(i,j)∈E

BiBjBiq
′
i , (18)

noticing that disconnected robots’ knowledge is not impacted, nor
does robot i update its belief of the overall system and robot j updates
its belief about robot i such that

pji,i← xi. (19)

In this way, the system is able to maintain both local and global
beliefs, even while disconnected using this announcement protocol.
Also, the set qij,k ∈Qi holds the timestamp that information was
last shared between robot i and all other robots. Each particle in a
connected team is assessed and revised if another robot has a more
recent belief to ensure we can plan with the last shared belief. For
example, if robot j finds a task and shares a new state with robot i,
robot i will set all timestamps in the set qij,j to the current time and
update its particle propagation for particle pij,j according to the new
status of robot j, σjt, until assumed task completion.Then the particle
will propagate toward its common belief, cij ∈ Cj.

The maximum number of worlds in this epistemic model is the
combination of all possible statuses in the system or n ≤ 4Nr . Even
this number is too large to track for a small multi-robot system, but,
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FIGURE 4
Illustration of a local belief update. Both robot A and robot B are connected and update their local shared belief, but retain the global common belief
that achieves consensus with robot C.

using dynamic epistemic logic, each pij,k is only updated upon an
action in the action library, A.

Figure 4 illustrates the example of local belief update when a
task is found and two robots are communicating while a third
robot remains disconnected. For ease, in the figure, we display every
robot’s belief about only robot A. Originally, robot A planned to
follow the common belief, but upon discovering a task, it replanned
to complete the task before continuing to track the common belief
particle. Robot A and robot B are within communication range, and
so robot A communicates that it will travel to complete the task
before continuing to track the common belief. Robot B updates its
belief about robot A (and vice versa). Robot C is not able to receive
the updated information and continues to plan according to the
common belief. Robots A and B propagate robot C’s belief, and robot
A will eventually continue to track the common belief particle after
completing the discovered task.

5.3.2 Epistemic planning

With our epistemic states and actions defined in Section 3.2
and the previous section, we now describe how these concepts can
be used for planning. A planning task for robot i is defined by the
tuple Π = (sit,A,γ), where γ is a goal formula. In plain language, the
goal formula is completion of all tasks in the environment. The goal
formulas are considered to be commonknowledge, as each robotwill
act according to the same policies under the same conditions. Thus,
we seek the following joint policy implementation, π, to ensure the
completion of all tasks in the environment. The reason we use joint
policies is that robots need tomap indistinguishable epistemic states
to the same actions. Therefore, we define the following rulesets.

First, robot imay discover a task requiring two robots and seek
to communicate with robot j by traveling to its last shared belief.
Consequently, σit becomes gossiping and robot i travels to the particle
with the most recent timestamp in the set {qij,k∀k ∈A}. If robot j is

not at its last shared belief, robot i’s belief about j is incorrect, and
so additional worlds are possible and indistinguishable, given robot
i’s current knowledge. Except for exhaustively searching for robot
j, robot i does not have any way to find j. As a preface, we note
that in order for this ruleset to be guaranteed to find an available
robot, more robots than tasks need to be available because it may
happen that the same subset of robots are simultaneously needed
for different tasks. However, this ruleset will allow for effective
operations if tasks are found asynchronously. Thus, we define the
first ruleset as follows: if robot j is not found, j is excluded from its
policy options π as robot i’s belief that robot j is available is false.
Future planning excludes robot j as an option for completing the
task since it must be operating according to another status such as
gossiping to another robot or completing another task.

Second, robot imay discover a task, but believes robot j has also
discovered the task first based on robot j’s coverage assignments.
Therefore, robot i assumes the task has been accomplished by j.
Upon communication, this assumption is verified and the task is
designated for completion if it has not been accomplished.Thus, our
acceptable common knowledge policy rulesets are established. The
execution of π is defined as a maximal sequence satisfying the global
formula γ.The algorithm for this sequence is defined in the following
section.

5.4 Epistemic task allocation and gossiping

At the core of this framework is an epistemic-based multi-
robot information dissemination and task allocation algorithm. As
previously mentioned, in this paper, we focus on a subcategory
of the MRTA problems known as the single-task multi-robot
time-extended allocation problem. There are few mathematical
models from combinatorial optimization research that tackle this
further generalization of the assignment problem; however, the
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assignment problem can be modeled with joint, rather than per-
robot, constraints for each task such that the utility, u(⋅), is
maximized.The solution to the following assignment problem is the
execution sequence of policy π satisfying the epistemic goal formula
γ for completing all discovered tasks in the environment.

max∑
i∈A
∑
τ∈T

uiτ (tiτ (bi (yi)))yiτ, (20)

s.t. ∑
i∈A
∑
τ∈T

yiτ ≥ Nτ, ∀τ ∈ T

tiτ (bi (yi)) ≥ tiς (bi (yi)) + δςτ ∀(ς,τ) ∈ Si
tiτ (bi (yi)) ≥ 0 ∀τ ∈ T
xiτ ∈ {0,1} , (21)

where yiτ = 1 if robot i is assigned to task τ and yi = {yi1,…,yiNt
}.The

arrival time for the ith robot is a unique function, tiτ , that accounts for
the arrival time of Nτ necessary robots for task τ. The variable δςτ is
the duration between tasks ς and τ. The order of tasks is represented
by a directed graph, Si, created by the order of robot i’s path, bi, where
an edge in Si is (ς,τ), which indicates that task ς is performed before
task τ.

Additionally, when a task is discovered, a robot must consider
if any assistance is required to complete a task, any tasks that
are already in its queue, and prior communicated allocations of
tasks to other robots. If assistance is required, the robot must
disseminate the new information to neighboring robots, acting
as an ad hoc network by visiting a neighboring robot’s belief
state.

To account for these considerations, the following section
describes each of the three steps involved in our proposed algorithm:
i) initial task bundling to assign each task to a robot, ii) makespan
minimization to minimize the expected time to complete all tasks,
and iii) a gossip protocol algorithm to optimize the assignment of
information dissemination.

5.4.1 Task bundling
First, we require a valid initial solution for the task allocation

problem. We define a robot’s bundle as an ordered list of tasks to
complete. Given that each task may require more than one robot,
the allocation order requires that one task must be executed in the
bundle order before another is assigned. Thus, to accommodate
this temporal constraint, we use a modified sequential-single item
(SSI) auction for initial bundling as shown inAlgorithm 1. The task
bundling algorithm initializes an empty bundle for each robot, and
each robot bids on the first task in the set of locally discovered tasks,
D ⊆ T . The highest Nτ bidders incorporate the task at the end of
their bundle (lines 6–10).

If a robot is not connected to make a bid, the locally
connected team member with the highest confidence (i.e., most
recent information documented by the set Q) of the state of the
disconnected robot submits a bid on their behalf.The bid for adding
task τ to robot j is defined by marginal improvement of robot j’s
bundle score. As such, the bid is defined as

h(xj,τ) = λτ − S
Bj⊕end{τ}
j , (22)

where S
Bj

j is initialized to S∅j = 0 and denotes the cost of traveling,
given the original bundle, Bj, and the added task. The operator ⊕end

Require: Nτ ⊳ number required for task τ ∈D
1:  Bj = ∅,∀j ∈A ⊳ initial bundle

2:  for each τ ∈D do

3:   for each j ∈A do

4:    Bid on task with utility h(xj,τ)

5:   end for

6:   Wτ = {j ∈A: |{j′ ∈A:h(xj′) < h(xj)}| ≤ Nτ}

7:   for each j ∈A do

8:    if j ∈ Wτ then

9:     Bj← Bj⊕endτ

10:    end if

11:   end for

12:  end for

Algorithm 1. Initial Task Bundling Algorithm

Require: Bj ∀j ∈A; mbest = makespan(Bj)

1:  for each j ∈A do

2:   Btmp← Bj

3:   for each j′ ∈ Bj do

4:    Btmp← Bj j′

5:    for each n ∈ len(Bj) do

6:     Btmp← Btmp⊕nj′

7:     mtmp = makespan(Btmp)

8:     if mtmp < mbest then

9:      Bj← Btmp

10:      mbest← mtmp

11:     end if

12:    end for

13:   end for

14:  end for

Algorithm 2. Makespanminimization

adds the antecedent task τ to the end of its precedent bundle, Bj.This
decentralized algorithm allows connected robots to quickly create
a valid task allocation, but does not account for the completion
time of every task. Thus, minimizing the makespan of the
bundle order will reduce the task allocation’s estimated completion
time.

5.4.2 Makespan minimization
Makespan is the time taken for all robots to finish all of their

assigned tasks (Nunes and Gini, 2015). Attempting to minimize
the makespan of the bundled tasks accounts for a scenario where
a robot can complete a task “on the way” to another task and
complete all assigned tasks faster. Algorithm 2 gives an overview of
the makespan minimization algorithm.

The algorithm iterates through all tasks in each robot’s bundle
and places each task in each available path segment. Then, the
makespan is calculated for the robot’s new bundle order, Btmp. If the
new makespan, mtmp, is smaller than the best makespan, mbest , the
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Require: robots jg ∈ {Gj:Bj ≠ ∅}
1:  D = Rc, where Rc are the connected robots

2:  GBj = ∅ is the gossiping assignments for robot

j given bundle Bj

3:  while D ≠ Gj do

4:   for each jg ∉ D do

5:    for each jv ∈ D do

6:     bvg = bid(jv,jg)

7:    end for

8:   end for

9:   for each jv ∈ D do

10:    g* = argmaxg(bvg)

11:    if jg* ∉ D then

12:     GBjv
= GBjv⊕endjg*

13:     D← D⊕endjg
14:    end if

15:   end for

16:  end while

Algorithm 3. Gossip protocol auction

bundle Bj is replaced with Btmp. It should be noted that the order
of tasks that were previously communicated to now disconnected
robots must be maintained in Algorithm 2 by not reordering these
tasks in the makespan minimization (lines 3–13). To maintain this
order, valid j′s are tasks that have not been previously assigned
and ordered to disconnected entities (i.e., valid tasks have yet to be
gossiped to allocated robots).

The ordered bundle for each robot would typically be
the execution sequence for policy π to complete the NP-hard
problem defined in 20, but given the communication restriction,
communication assignments must also be allocated for every robot
to perform its sequence of tasks. For this reason, we introduce the
gossip protocol assignment algorithm.

5.4.3 Gossip protocol
If a robot is assigned to a task, but is not aware of the

new information, robots in charge of the allocation must deliver
the information, acting as an ad hoc network and informing
the necessary team of robots through a gossip protocol-based
algorithm, accounting for the cascading effect of communication
and adding nodes to the ad hoc network.Algorithm 3 steps through
the allocation of peer-to-peer communication tasks based on the
resulting task allocation from Algorithm 2. Similar to bids in
Algorithm 1, the robots with the most recent state information for
a disconnected robot will submit bids on their behalf.

First, the set Gj is defined as the robots who are assigned a
task in the bundle. The variable D represents the set of robots who
either know the information to be disseminated or a robot has been
assigned to communicate with them.The set GBj

is initialized as the
currently connected robots in Gj, and a new empty gossip bundle
is established for all robots (lines 1–2). Next, each required robot,
jg , is bid on by a robot, jv, in the D set (lines 4–8). The highest bid
for robot jg ∉ D is added to robot jv’s bundle, and jg is added to the
D set (lines 9–15). The while loop repeats until all necessary robots

for Bj have been assigned and accounts for the cascading effects of
communication (i.e., when a robot has communicated with another
robot, two robots are now available to gossip to other members).

After execution of these algorithms, the execution policy for
a robot i is represented as a sequence that is defined by the
concatenation of its gossip bundle GBi

and task bundle Bi. A robot
is responsible for its communication assignments before continuing
to its ordered task execution. The ordered sequence for every robot
is the execution of π satisfying the goal formula γ, given its current
epistemic state sit.

Task allocation, makespan minimization, and coverage of an
environment are all NP-hard problems. As such, we reflect on
the size of the solution space. Given a set of discovered tasks
TD with each τ task requiring Nτ robots, the system needs a
maximum number of ∑τ∈TD

(Na
Nτ
) to find the best solution to the

allocation problem. The problem increases in complexity as we
include the gossip protocol, which requires robots to communicate
tasks to allocated robots. In total, the number of solutions for any
number of tasks and robots with gossip protocol is (Na(Na +Nt))!.
The output of the proposed algorithms is a heuristic to find a
feasible solution. However, we note that as the number of robots
and tasks increases, the solution speed decreases and that a full
recompute is required if new information is made available to the
robots.

6 Simulations

In this section, we provide comparisons from MATLAB
simulations with our approach implemented on two case studies.
Case Study I is a simulated scenario where all robots know that
only one task exists in the partially known environment requiring
an unknown number of robots at an unknown location. Case Study
II is a simulated scenario similar to Case Study I, but there are an
unknown number of tasks that, in total, do not require more robots
than are available, ∑τ∈Nt

Nτ ≤ Na. Simulations were performed on
15 randomly generated cluttered 50 m× 50 m environments with
10–20 1 m× 1 m initially unknown obstacles. For repeatability, we
set ηg at 1 and ηo at 5 for the APF behavior introduced in (6) and
(7).

The proposed approach is compared against two other methods.
The first method applies a constant connectivity constraint, not
allowing agents to travel outside of a 10 m communication range.
The second method assumes ideal conditions, where robots can
communicate across the entire environment. In the following
section, we refer to the first method as the “flock” method and
the second method as the “ideal” method. Both methods use
smooth A* path planning and an artificial potential field technique
for controlling the robots toward uncovered regions and away
from obstacles. In all methods, the maximum velocity is 3 m/s,
simulated Lidar range is 5 m, and the robots’ motion is modeled
with a single-integrator model with ν ∼ N(0,0.2) from (1). All
videos of the simulations presented in this section are available in
Supplementary Material S1 and on our website1.

1 https://www.bezzorobotics.com/lb-frontiers23.
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FIGURE 5
This figure depicts the progression of the Case Study I simulation where there is a single task in the environment. (A) shows the starting state of the
robots after initial disconnection. (B) shows robot 3 finding the 3-robot task and deciding to communicate with robot 4. (C) shows successful
communication and replanning with robot 4 tasked with communicating to robot 5 and robot 3 to robot 2. (D) shows all robots with their final
assignment with robots 1, 2, and 3 assigned to the task, while robots 4 and 5 route to home base. (E) shows that with the task completed, all robots are
routed home.

FIGURE 6
Figure comparing the results of the simulated scenarios for Case Study
I. The proposed framework is measured against two other methods
and shown to decrease the variance over random environments and
decrease mission time as the robot team grows in size when
compared to the always connected flock.

6.1 Case study I: multi-robot single task

In Case Study I, all robots are aware that only one task is located
in the environment.This simulated scenario is similar to a search and
rescue mission, where the goal is to locate and rescue an individual
at an unknown location in a large environment.The robots begin by
covering the area and, upon discovery, calculate how many robots
are necessary for the rescue operation.Then, the robot disseminates
the information to the rest of the robot team, who either are tasked
with returning to home base or assisting in the rescue. An example
scenario is shown in Figure 5. The example showcases the proposed
method when only one task is in the environment.The robots begin
by disconnecting tomore efficiently cover the environment. Robot 3
finds a task, as shown in Figure 5B, and plans using its knowledge of
each robot’s epistemic state.The result is for robot 3 to communicate
with robot 4 via robot 4’s belief state. After communication is
successful, as shown in Figure 5C, robots 3 and 4 similarly plan to
communicate with robots 2 and 5 via their respective belief states.

Lastly, all robots are assigned to the final task shown in Figure 5D
and complete the task shown in Figure 5E before routing to home
base.

This scenario was implemented using two, three, five, and eight
robot teams in 15 varying environments.The results of the simulated
method comparisons are shown in Figure 6.

The figure illustrates the proposed framework’s performance,
given a variety of environments and team sizes. The proposed
method decreases the variance in the mission time with a two-
robot team, but is outperformed by the flock method since the
robots remain together and can become lucky, finding the task and
completing the mission. This method even outperforms our ideal
scenario in some cases since the robots must potentially travel a
longer distance to the task once found by a teammember. However,
as the robot teams become larger, the flock method is outclassed
by more efficient coverage of the environment, represented by the
ideal and proposed case. We also notice that the variance in mission
times of the proposed and ideal methods is similar with a standard
deviation of 11 s and 14 s, respectively, across all robot team sizes.
In comparison, the standard deviation of the flock method is 48 s.
Additionally, though initially outperformed with a team size of two
robots, the proposed method on average outperforms the flock
method by 13 s. The ideal method also is 11 s faster on average than
the proposed method.

6.2 Case study II: multi-robot multi task

In Case Study II, all robots do not know how many tasks are in
the environment, where the tasks are located, or how many robots
are required at each task. This simulated scenario is a recovery of an
asset that may be scattered across a large environment. The robots
begin by covering the area and, upon discovery of a task, calculate
how many robots are necessary for the rescue operation. Then, the
robot disseminates the information to the necessary members of
the robot team. If a robot is not able to be located at its believed
location, the robot considers this robot occupied and does not
consider it in the next iteration of assignments. The robots must
cover the entire environment in order to identify if any tasks lie in
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FIGURE 7
This figure illustrates the progression of the Case Study II simulation where the number of tasks is unknown. (A) shows the starting state of the robots
after initial disconnection. (B) shows robot 1 finding the 2-robot task and deciding to communicate with robot 2. (C) shows successful communication,
and (D) shows task completion and the robots route to their home base (E).

FIGURE 8
Figure comparing the results of the simulated scenarios for Case Study
II. The proposed framework is shown to decrease mission time
drastically when compared to the always connected flock and
perform similarly to the ideal method as team size increased.

the uncovered portions of the environment. Figure 7 presents an
example scenario from the comparison scenarios. Figure 7 exhibits
a scenario with three tasks at unknown locations. Two tasks require
one robot and one task requires two robots. The individual tasks
are completed upon discovery by the closest robot. When robot
2 discovers the two-robot task in Figure 7B, it routes to robot 1’s
belief state to ask for assistance. Both robots travel to complete the
task shown in Figure 7C, and robot 3 finds the last single robot
task in the environment shown in Figure 7D. After all portions of
the environment have been covered, all robots route to their home
base.

Case Study II was also implemented using two, three, five, and
eight robot teams in 15 varying environments.The results are shown
in Figure 8.

This Figure displays a strong argument for the proposedmethod
when compared to the flock and ideal methods. On average, the
proposedmethod performed only 16 s slower than the idealmethod,
even considering the communication limitation. Additionally, the
proposed method was 35 s faster than the flock method. Though
the variance for the proposed method was higher than that
of the flock and ideal methods, its worst case mission time is

approximately as good as the median performance of the flock
method.

7 Experiments

The proposed approach was also validated through laboratory
experiments with a multi-robot team. The team consists of two
to three Husarion ROSbot 2.0 UGVs using a Vicon motion
capture system. The experiments effectively demonstrate all parts
of the proposed approach, including intentional disconnections,
searching, and gossiping behaviors. In all experiments, the
UGVs start within communication range and are tasked to
cover the environment and complete any discovered tasks.
Experiments were performed in a 4 m × 5.5 m space containing
convex obstacles considering, as a proof of concept, a sensing
and communication range for each robot of 1 m. All videos
of the experiments presented in this section and more are
available in the provided Supplementary Material S1 and on our
website2.

7.1 Case study I: multi-robot single task

Displayed in Figure 9 are the results from an experiment with a
two-robot team. The columns of Figure 9 correspond to different
instances within the experiment, and each row from the top to
bottom shows snapshots of the robots at different times throughout
the experiment and the current map of the environment covered by
the team.

As shown in the figure, the robot team initially disconnects to
more efficiently cover the environment. As shown in Figure 9B,
robot 1 finds a task and plans to gossip the new information to
robot 2. Figure 9C shows the robots communicating and traveling
to complete the task. Lastly, as shown in Figure 9D, the robots
complete the task and return to their home base.

Additionally, we show an experiment with a three-robot team.
Unknown obstacles were not included in three-robot experiments

2 https://www.bezzorobotics.com/lb-frontiers23.
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FIGURE 9
This figure illustrates the progression of the Case Study I experiment where there is only one task. (A) shows the starting state of the robots after initial
disconnection. (B) shows robot 1 finding the 2-robot task and deciding to communicate with robot 2. (C) shows successful communication, and (D)
shows task completion and the robots route to their home base.

FIGURE 10
This figure illustrates the progression of the Case Study I experiment with a three-robot team and one task. (A) shows robot 3 finding a 2-robot task. (B)
shows robot 3 communicating to robot 1 and 2 and allocating robot 2 and 3 to the task while sending robot 1 home. (C) shows successful task
completion, and in (D) all the robots return to their home base.

due to limited space, but the method remained the same for
the entire duration of the experiment. The columns of Figure 10
correspond to different instances within the experiment, and each
row from the top to bottom shows snapshots of the robots at
different times throughout the experiment and the current map
of the environment covered by the team. As shown in the figure,
the robot team initially disconnects to more efficiently cover the
environment. As shown inFigure 10A, robot 3 finds a task and plans
to gossip the new information to robot 1. Figure 10B shows the
robots communicating and allocating robots 2 and 3 to complete the
task while robot 1 returns home. As shown in Figure 10C, the task
is completed, and, as shown in Figure 10D, all robots return to their
home base.

7.2 Case study II: multi-robot multi task

We also show an example experiment with a three-robot team
in Figure 11. Both the locations of the obstacles and the number
of tasks to complete are unknown here. Therefore, the robots are
tasked with covering the environment, gossiping to necessary team
members, and completing discovered tasks. The environment has
two tasks, one that requires two robots and one that requires three
robots to complete.

In this example experiment, robots intentionally disconnect to
cover the environment more efficiently. After a short time, robot 1
finds a task that requires two robots. Robot 1 plans to tell its believed
closest neighbor and gossips to robot 2, as shown in Figure 11A.
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FIGURE 11
This figure illustrates the progression of the Case Study II experiment where the number of tasks is not known. (A) shows robot 1 finding a 2-robot task
after initial disconnection and planning to communicate with robot 2. (B) shows robot 1 and robot 2 completing the task and planning to return to their
belief states. (C) shows robot 1 and robot 2 finding a 3-robot task while connected and planning for robot 1 to communicate with robot 3. (D) shows
the 3-robot task completed. Subsequently, all agents finish coverage of the environment and return to the home base.

Figure 11B shows that the robots who know about the task complete
it and travel back to their global belief states. Figure 11C shows
robot 1 finding a three-robot task while connected to robot 2.
Robot 2 is allocated immediately to the task, and robot 1 is tasked
with gossiping the new discovery to robot 3. All robots converge
to complete the task and finish covering the environment before
returning to home base, shown in Figure 11D.

8 Conclusion and future work

In this work, we have presented a novel framework for multi-
robot systems that leverage epistemic planning to allow for each
robot to incorporate depth-of-reasoning in its mission planning
framework. The proposed method allows a multi-robot system
to disconnect and cooperatively plan according to a set of belief
and empathy states. The beliefs are propagated using a Frontier-
based method for coverage of a partially unknown environment
and updated using dynamic epistemic logic and planning. The
dynamic epistemic task allocation algorithm utilizes these belief
states in allocating tasks discovered in the environment to satisfy
the epistemic planning task. This enables dynamic task allocation
to be performed while disconnected. A robot subsequently plans to
communicate the allocation by traveling to the belief state.

In the simulations and experiments, we show the validity
and applicability of our approach when compared with perfect
communication and a standard flock method, where a robot must
not travel outside of the communication of the multi-robot system.
Our results, given an unknown number of tasks in the environment,
show a drastic decrease in mission time when compared to the flock
method and comparable results to scenarios where communication
is always available. The results for the single-task case study also
showed improvement in overall mission time, but greatly decreased
to variance in mission time from the swarmmethod. Hence, thanks
to the proposed epistemic planning framework, it is possible to act

closely to the ideal case of always connected systems while letting
each robot explore the environment more efficiently.

From here, future theoretical work includes addressing the
challenges of dynamic task lengths and improving strategies
for additional considerations such as failures, disturbances, or
fully unknown environments. We also plan to decrease the
computation time for task allocation and optimize the necessary
belief propagation for a larger multi-robot system by dividing
the team into sub-teams. Further modeling of epistemic planning
using epistemic Markov decision processes to reach consensus,
given probabilistic communication models, failures, and complex
unknown obstacles, is also in our agenda.
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