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Abstract

This paper presents the derivation and implementation ofck bitegrator for the solution @
stiff and oscillatory first-order initial value problensf Ordinary Differential Equation
(ODEs). The integrator was derived by collocation @meérpolation of the combination g
power series and exponential function to generate a continoguigit Linear Multistep
Method (LMM). The basic properties of the derived integrat@re investigated and the
integrator was implemented on some sampled stiff andlaiscy problems. From the results
obtained, it is obvious that the block integrator gives befipraximation than some existing
ones.
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1 Introduction

This paper considers the numerical solution of stiff and lesmiy first-order differential
equations of the form,

y'=f(xy, %)=y X[ah @)

where X, is the initial point, Y, is the solution at the initial point anfl is assumed to satisfy
Lipchitz condition stated below.

Theorem 1 [1]: Let f(X,y) be defined and continuous for all poin{x, y) in the regionD
defined bya < x< b, —0 < y<oo, a and b finite, and let there exist a constaht such

that, for everyX, Y, Y such that(X, y) and (x, y") are both inD ;
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[f o y) - f(xy)<Ly-yd

Then, if Y, is any given number, there exists a unique solugi¢x) of the initial value problem
(1), wherey(X) is continuous and differentiable for gk, y)in D.

According to [2], equation (1) is used in simulating the growthpapulation, trajectory of
particles, simple harmonic motion, deflection of a beam, Few equations that are modeled in
higher order differential equations are first reducedywstems of first-order before appropriate
method of solution is applied. Most often, these problemaatidave a closed form solution;
hence appropriate methods are adopted to solve such prolidéfesent methods have been
proposed ranging from predictor-corrector methods to blockheds. Despite the success
recorded by the predictor-corrector method, its majdrasdt is that the predictors are in reducing
order of accuracy especially when the value of the Istegth is high and moreover the results are
at overlapping interval, [3]. Block methods which haveaadage of being more efficient in terms
of cost implementation, time of execution and accuraayg developed to cater for some of the
setbacks of predictor-corrector methods, see [4,5,6,7,8%nd

Definition 1 [10]: A differential equation is said to be stiff Re(d, )< 0j = 1(1jn, where A
is the eigen value of the differential equation

Definition 2 [11]: A nontrivial solution (function) of an ODE is called oscillatiiigt does not
tend either to a finite limit or to infinity (i.e. if ias an infinite number of roots). The differential
equation is called oscillating, if it has at least one bsting solution.

In search for a method that gives better stability caorditwe develop a block integrator for the
solution of stiff and oscillatory differential equations ngsian approximate solution which
combines power series with exponential function.

2. Methodology

2.1 Derivation Technique of the Block I ntegrator

We consider an approximate solution that combines powigrssend exponential function of the
form,
r+s-1 r+s ai Xi

y(¥=> ax+a,

T @
i=0 j=o I’
Interpolation and collocation procedures are used by choosergafation pointSat a grid point
and collocation pointst at all points giving rise tof =S+ r system of equations whose
coefficients are determined by using appropriate proceduiresfirst derivative of (2) is given
by,

2472



British Journal of Mathematics & Computer Scien€g7, 2471-2481, 2014

r+s-1 r+s yiyi—1
. i a’ X
y'(0=> jax*+a

w) T ©)
=0 = (-

where &, ,a' 00 for j=0(1)7 and y(X)is continuously differentiable. Let the solution of
(1) be sought on the partitidf), : @ = X< X< X,<. .. <X < X <...<X= b, of the
integration interval[a, b] with a constant step-size, given byh =X ,, = X, n=0,1,...,N

Then, substituting (3) in (1) gives,

resl - s iyt
f (X! Y) = Z Jaj X7+ a+sz.—l (4)
i=0 = (D!

Now, interpolating (2) at poink., ., S= 0 and collocating (4) at point ., I = 0(1)6, leads to
the following system of equations,

AX=U (5)
where

A=[a, a & a a a @ g

U :[yn fn fn+l fn+2 fn+3 fr%4 fﬁ-5 fﬁ(';lT
andi

1% % X % % £ [1+a>§'+¥+ﬁ+04>§f+ﬁ+aﬁx§+gﬂj
3 3
01 2 3¢ & 5 6 [amsz’*z»fﬁJ,ﬁﬂ%ﬁ”%]

aﬁ 2+ ad 3+ 05 4+ ae 5+ a? 6
R I e e

03 2+ 04 3+ 054 065 076

01 2(n$3 3((2\—*3 4@3 5&:‘3 6)6»3

a+a2)$»3+ 03&{3 + aA)%a*C! + as)%‘*ﬁ + asx??*3 + a7>§i3j
20 3 a4 s e

03 2+ aA 3‘ a54 aGS 076
R A e m

ad 2+ a* 3+ asxt ab 5+ a’ 6+
R T e e

2! 3! 4! 5! 6!

3,2 4,3 5,4 6,5 7,6
01 2%*6 3<+6 4&6 5)4‘6 6>€»6 [a+az)ﬁ’»5+a)<’“6+a X’H6+a XHG-'—U X?*G_'.a X»SJ

Solving (5), for @;'s, j=0(1)7 and substituting back into (2) gives a continuous linear
multistep method of the form:

YO =a() %+ DB (3 1, )

where the coefficients of/, and f,, j are given by,
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a,=1

B, =—L (127 - 204°+ 2946 15438+ 45472 74088  608E(

60480

f=-—t

2520

(37 -7a°+ 651°— 3046'+ 73a8- 7560 )

B,=—> (60t -1330°+ 11506 - 48404+ 98280 75600 )

20160

B, =-—= (137 - 315°+ 2546~ 97@5+ TBA®- 12606 )

3780

B, =—L (607 -1100°+ 898€ — 32238+ 55460~ 37860 )

20160

=

2520

(37 -56°+ 399°- 1366'+ 2288- 1512 )

B, =—— (127 - 210°+ 1426 - 4728+ 7612~ 5060 )

60480

™)

wheret = (X— x,)/ h. Evaluating (6) at =1(1)6 gives a block scheme of the form:

AOY, =Ey,+hd(y,)+ htF(Y,)

(8)

whereY, =[Voa Yoz Vs Yoa Yos Yoo +Y o= Yos Yoo Yos Y%z %1 %

T
F(Ym)z[fnﬂ fn+2 fn+3 fn+4 fr+5 fne] ) f(yr)z[fns fn4f

A(O) -

(100000
010000
001000
000100
000010

(000001

00000O0
00000O0
cooooo01d
00000O0
00000O0
00000O0

00 OO
00 OO
00 OO

00 OO
00 OO
00 OO

f.,f

A3 A2 #1l

19087

0o —

60480
1139
3780
137
448
286
945
3715
12096
4L
140

]
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[2713 -15487 586 - 6737 263 — 863
2520 20160 945 20160 2520 6044
94 11 332 -269 22 - 37
63 1260 945 1260 315 3780
81 1161 34 -729 27 - 29
b=|56 2240 35 2240 280 2240
464 128 1504 58 16 - 8
315 315 945 315 315 945
725 2125 250 3875 235 - 27
504 4032 189 4032 504 196
54 27 68 27 54 41

135 140 35 140 35 140

3. Analysis of Basic Properties of the Block I ntegrator
3.1 Order of the Block Integrator

Let the linear operatoL{ y(X); l’} associated with the block (8) be defined as,

L{y(®:} = A”Y,~ Ey- hdf y- hbE Y ©

Expanding (9) using Taylor series and comparing the coefficiérifs gives,
L{yOd:B =gy 3+ ¢hy( ¥+ gh ¥ ye..+ ch x ¢ Ph PY()x... (10)

Definition 3 [12]:The linear operatot. and the associated continuous linear multistep method (6)
are said to be of ordepif ¢,=¢ =¢C,=...= G =0 andg,,# 0. C,,, is called the error
constant and the local truncation error is given by,

tho = Cp NPV YPI(x) + QU H*?) (11)

For our block integrator,

[10000 0| Y| [T [19087 2713-15487 586- 6737 263 - 863
60480 25 20160 945 20160 2520 6048( f,, (12)
010000 Y| |1 1139 94 11 332- 269 22 - 37
3780 63 1260 945 1260 315 3780 ¢
00100 aly.| |1 137 81 1161 34 - 729 27 - 29
L{y(%: } = - v 448 56 2240 35 2240 280 2240, |_,
286 464 128 1504 58 16 - 8 | 7

00010 0||y,,| |1 945 315 315 945 315 315 945

3715 725 2125 250 &5 235 -275| fru
00001 0Q|y.s| |1 12096 504 4032 1894032 504 12098
4 54 27 68 27 54 41| fus
1140 35 140 35 140 35 140

00000 1|y,,]|

L=
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Expanding (12) in Taylor series gives:

(& (! ;. 1908t . & L 2713, 1548 __ 6737, 2 o
=l ~ o1 0
2 jr "% goaso Z j! " {2520) 2016§y ) 20160 " 25 o 604%8} 13)
(), 113 ST L(94) 11 333 260 22

,Z:; j! %" 3780 ¥ Z; ji! 0 { 2 1260(2y é’ 1260 " 315(5) 37856)} 0
@'y M, S e 81 .3 729

,ZT SR VT 5; il ) { W 2240(2) * 3’ 22464) 65) 22456’)} B 0
40y 286 “’L A8y 128 oy @4 -

,Z;; TR YT Z) j! % {315(1) 3182 " oas¥ * §4)+ &(>5) 94@} 0
(6!, 81 L 725 212 250, , 3875, 235, 0
; j! Y =% 12006 % Zo j! % {504(1)] 4033” 3“ 203" * 50(4%) 1203 }

5 (6h)" iy -3 Ll 22y +-=£L = ! i 0
,Z; LT 140 ZD j! & {35(1) 140(2y (3’ 140(4) * 35“ } I

:C_C_C—C—CS c; c; 0,
cs :[0.0106 03) 0.006f¢ 03) 0.08( 03) 0.066( 03) 0.0€88) - 0.001¢ 03])T

Therefore, the block integrator is of order seven.

3.2 Zero Stability

Definition 4 [12]: The block integrator (8) is said to be zero-stable, if tres @, S=1, 2,...k
of the first characteristic polynomigb(2) defined by,0(z) = det(A® -E) satisfies|zs| <1
and every root satisfyin¢25| <1 have multiplicity not exceeding the order of the diffeednti

equation. Moreover, a§l - 0, p(z) = Z7( z=1)* where  is the order of the differential
equation,I is the order of the matriceA® andE , see [13] for details.

For our block integrator,

(100000 [0000O01
010000 |0OO00O0O
001000 |OOOOOL
p(2) =2 - =0 (14)
000100 |OOOOOL

000010 |O0OO0OO0O0DO

000001 (00000 ]
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p(2)=2(z1)=0,= z= z= z= Z= =0, ;z 1 Hence, the block integrator is
zero-stable.

3.3 Consistency
The block integrator (8) is consistent since it has ofder 7 > 1.

3.4 Convergence

The block integrator is convergent by consequence of Dahlhaisrem below.

Theorem 2 [14]: The necessary and sufficient conditions that a continuous LBlibhvergent
are that it be consistent and zero-stable.

3.5 Region of Absolute Stability

Definition 5 [15]: Region of absolute stability is a region in the complexplane, where
z=Ah. It is defined as those values af such that the numerical solutions ofy'=-Ay

satisfyy; — 0 as j — oo for any initial condition.
]

We shall adopt the boundary locus method to determine the refiabsolute stability of the
block integrator. This is achieved by substituting #st equation,

y'=-Ay (15)

into the block formula gives (8). This gives,

ACY, (W) =Ey, (W) - MDy,(W - WBY ( \y (16)
Thus,
FI(W) :_(A(O)Ym(M_Eyn(V\)J (17)
Dy, (w) +BY, (W

since h is given by h=Ah and w= &. Equation (17) is our characteristic/stability
polynomial. For the block integrator, equation (17) is gilkgn

(W) =—h6(l w-2 V&J— ﬁ(l Wit V@J- H(ig 22 vej
7 7 10 10 15 15 (18)

—hS(Zw%ZV\Pj— h{iSvf—isw]— {3 W+ 3 W)+ vi-
2 2 6 6

This gives the stability region shown in the figure below.
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Fig. 1. Showing Region of Absolute Stability of the Block Integrator

According to [12], stiff algorithms have unbounded RAS. ThuanfFig. 1 above, the extended
block integrator is suitable for solving stiff problems. &I§10] said that the stability region for
L-stable schemes must encroach into the positive halieoicomplex Z plane. Thus, the block

integrator is L-stable.

4. Numerical Experiments

We shall evaluate the performance of the block integratorsome challenging stiff and
oscillatory problems which have appeared in literature and aentpa results with solutions
from some methods of similar derivation. The followingations shall be used in the tables

below;
ERR- |[Exact Solution-Computed Solution|
ERO- Errorin [16]

ERA- Error in [17]
ERS- Error in [18]

4.1 Numerical Examples

Problem 1:

Consider the highly stiff ODE

y'=-10(y-1F, y(0)= 2

which has the exact solution,

X)=1+
y(X) TR

(19)

(20)
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This problem was earlier discussed by [10], he showedntlaaty predictor-corrector and block
methods become unstable with this problem, including the hybridoaetiiowever, the newly
derived block integrator is used for the integration ofs tbroblem within the interval

0< x< 0.1, Authors in [16] solved this stiff problem by adoptingiew 2-point block method
with step size ratio at =1. Authors in [18] also solved problem 1 by applying a-sadfting
block integrator.
Problem 2:
Consider the Prothero-Robinson oscillatory ODE,

y'=L(y—-sinx)+ cosx,L=- 1,y (OF | (21)
with the exact solution,

y(X) =sin x (22)

Authors in [17] solved this problem by adopting a generaliaéidnal approximation method via
Pade approximants with step numder=6.r =1. Authors in [18] also solved problem 2 by
applying a self-starting block integrator.

Table 1. Showing theresultsfor stiff problem 1

X Exact solution Computed solution ERR ERS ERO

0.0100  1.9090909090909092 1.9090909868074991 22832e-008 3.414671e-006 1.07e-03
0.0200  1.8333333333333335 1.8333334606188648 2784b6e-008 2.749635e-006 2.38e-03
0.0300  1.7692307692307692 1.7692307604778971 698 be-008 1.342943e-006 2.21e-03
0.0400 1.7142857142857144 1.7142857127875963 87383e-008 9.090648e-006 5.36e-03
0.0500 1.6666666666666665 1.6666666243797619 12428e-008 7.969685e-006 7.53e-03
0.0600 1.6250000000000000 1.6250000175525943 08182e-008 6.994886e-006 9.00e-03
0.0700  1.5882352941176470 1.5882352922979736 02002e-008 6.270048e-006 9.98e-03
0.0800  1.5555555555555556 1.5555555882520038 2916¥e-008 6.017101e-006 1.06e-02
0.0900 1.5263157894736841 1.5263157601947504 8302Be-008 5.411308e-006 1.10e-02
0.1000  1.5000000000000000 1.4999999213542157 5947Be-008 4.880978e-006 1.12e-02

Table 2. Showing the Resultsfor Prother o-Robinson Oscillatory Problem 2

X Exact solution Computed solution ERR ERS ERA

0.1000 0.0998334166468282  0.099833416646818222016e-014 3.703180e-012 2.0e-11
0.2000 0.1986693307950612  0.198669330795022771482e-014 6.102036e-012 3.0e-11
0.3000 0.2955202066613396  0.295520206661342241108e-014 1.733789e-012 1.0e-10
0.4000 0.3894183423086505  0.3894183423086113864169e-014 1.115490e-012 2.0e-10
0.5000 0.4794255386042030  0.47942553860425/802551e-014 2.226122e-011 1.0e-10
0.6000 0.5646424733950355  0.564642473395091003963e-014 5.567768e-012 2.0e-10
0.7000 0.6442176872376911  0.644217687237619951339%e-014 7.511613e-012 1.0e-10
0.8000 0.7173560908995228  0.717356090899571655093e-014 1.253389%e-011 2.0e-10
0.9000 0.7833269096274835  0.783326909627450221081e-014 1.501860e-012 3.0e-10
1.0000 0.8414709848078966  0.8414709848078%4857038e-014 1.803588e-011 3.0e-10

2479



British Journal of Mathematics & Computer Scien€&7, 2471-2481, 2014

4.2 Discussion of Results

We have considered two numerical examples in this paperfirst problem (which is stiff) was
solved by authors in [16] where they applied 2-point block methith step-size ratio at =1
while the second problem (which is oscillatory) wakved by authors in [17] where they adopted
generalized rational approximation method via Pade approximartsstepp numbek = 6. We
solved the two problems using the new block integrator develdjadades 1 and 2 above showed
that the block integrator gives better results than tistieg ones.

4. Conclusion

We have presented a block integrator for the solutiortiféfasid oscillatory first-order ordinary
differential equations. Our aim was to construct highlgbke block integrator which is
computationally more efficient than many of the existingnarical integrators for stiff and
oscillatory problems. The approximate solution (basis functidopted in this paper produced a
block integrator with L-stable stability region. This mat@ossible for the block integrator to
perform well on stiff and oscillatory problems. The bldokegrator proposed was found to be
zero-stable, consistent and convergent. The block integrat®ralso found to perform better than
some existing methods in view of the numerical resultsirudda
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