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ABSTRACT

The paper describes a simple, small scale and low cost yet comprehensive approach to
quantifying the Coefficient of Rolling Resistance/Friction (Crr) also known as the Rolling
Resistance Coefficient in automobiles. Crr is usually defined as the amount of force
required to overcome the hysteresis of the material during tire rotation, where reduced Crr
tires can save 1.5–4.5% of automotive fuel consumption. Automotive Standards from the
Society of Automotive Engineers use to quantify Crr namely SAE J2452 and SAE J1269
were briefly introduced. Methods of coast down and speed trap tests were conducted
under varying body weighted conditions to find the coefficient value, where a high speed
camera monitored the motion of the vehicle. The experiment produced different equations
of motion which were then solved analytically by numerical analysis techniques to
converge on the rolling friction coefficient. A scaled model was used to run dynamic tests
and the Reynolds Number (Re) was used to establish a relationship between model and
full scale vehicle velocities. Initial guesses in the least square optimization iterations
provided coefficient values where drag forces were normalized by assuming constant drag
coefficient (CD of 0.40) and then neglecting its contribution during vehicle motion due to
the test model size, resulting in a mean Crr of 0.0116. The study results were compared
with 3 studies and also against an automotive Crr model. Schmidt 2010 Dynatest Green
Road report shares a high 43% error, while the National Academy of Sciences, 2006 and
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Gillespie, 1992 yielded errors of 10.5% and 7.2%. The recent mathematical model of
Ehsani 2009 yielded an average Crr value error of 2.3% (with individual test averages of
0.80%). Direct scaling and multiplying abilities were attributed for quantifying the
normalized value in the study.

Keywords: Coefficient of rolling resistance; curb weight; rolling friction; least square
optimization methods; vehicle fuel efficiency; aerodynamic drag coefficient.

1. INTRODUCTION

Vehicle motion is caused by axle rotation which is in turn powered by the combustion in the
automobile engine. As the power is cut from the source, the vehicle comes to rest due to
internal friction, aerodynamic drag and rolling resistance at the wheels. The external
frictional forces at the wheels are directly depended on the total vehicle weight, the traveling
velocity and a proportional constant called the coefficient of rolling friction. This constant,
denoted in this study as Crr, depends on the texture and structure of the road, vehicle weight
and the wheel dimensions, among other factors. Frictional forces caused by air movement
over the car are called drag forces [1].

In recent years, the automotive industry has conducted research on finding and minimizing
external forces hindering a car's motion. Better tire designs and threading techniques are
becoming prevalent design considerations as manufacturers are now shifting focus from
performance towards efficiency, striving to power more engine energy to the wheels and
incurring lesser losses in the process. Almost always a dynamic testing approach is
necessary for converging on the rolling friction coefficient. Coast down testing is a viable
experiment conducted universally to observe the effects of rolling friction in moving bodies.
In these testing, power from the engine is cut at a certain point, after which mostly external
forces work to slow down the body and ultimately bring the body to rest over a certain period
of time. This distance and time period is then observed, monitored and numerically treated
with fundamental vehicular motion laws of classical mechanics. With known parameters,
advanced numerical analysis is then conducted on the results to find pertinent information
key to the vehicle's performance. Although overall body mass is a great factor in reducing
wheel friction, rolling resistance coefficient can be reduced to optimize a vehicle's
performance and fuel efficiency [2]. In recent times, scientists and researchers have begun
testing the automobile computationally to find important design parameters. The tests
include Computational Fluid Dynamics (CFD) studies for fluid flow around an object [3] such
as the vehicle exterior or even modeling and testing exterior panels using Finite Element
Analysis (FEA) [4]. Tires can also be constructed and tested to analyze the relationship
between wheel design and the coefficient of rolling resistance in FEA with 2D and 3D
modeling [5].

The present investigation, however, is to introduce a coast down technique which further
utilizes a speed trap system by high speed imaging processes in a dynamic motion by a
scaled model. Due to geometric similitude principles, a 1:10th scale model of a 1974 Model
Volkswagen Super beetle will be used. Entry and exit points will be identified at which the
vehicle will pass during two different separate points of time, and the time required to cover
the distance in between will be numerically computed from video data. The overall body
weight will be varied throughout the experiment to generate multiple equation models which
will be solved analytically to converge on the constant after utilizing elementary numerical
least square optimization techniques. There exists other coast down technique where speed
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and deceleration values in tests are effectively eliminated and is based on the time–distance
function derived by new solutions of the coast-down equation that is free from speed and
deceleration. This enables a considerable group of measurement error sources to be
eliminated and the coast-down technique sensitivity to be increased; so the small drag
alterations due to the changes in vehicle aerodynamic configuration or tire parameters, such
as load, inflation pressure and temperature, can be detected [6].

2. MATERIALS AND METHODS

Asphalt is chosen as the terrain for all the tests to imitate actual driving conditions. A scaled
wireless model is used to run the tests. Due to principles of the Reynolds Number (Re) and
Similitude, the following assumptions were made to extrapolate to full scale results. To scale
the velocities for the car and the model, we use principles of geometric similitude by
comparing the Reynolds’s number, knowing that:

Re u A
v

 where u is the velocity, A is the cross-sectional area, D is the diameter, v 



(ν is the fluid viscosity, ρ is the fluid density, and μ is the kinematic viscosity). We assume

A D (in meters), hence the number now becomes Re uD


 , and we can establish

the relationship between the model and the full scale car by the respective Reynolds
numbers.

scaled full

uD uD 
 

   
   

   
where the vehicle velocity ratio is given by

full full scaled
scaled full

scaled scaled full

D
u u

D
 
 

    
              

, the densities ρ and kinematic viscosities μ

cancel out due to the fluids being the same (air under standard temperature and pressure) or
10scaled fullu u  ; meaning that for the scaled model to experience the same magnitude of

drag forces as full scaled vehicle, the speed at which it needs to run in would need to be 10
times the actual car speed. The entrance point (1) and the exit point (2) are spaced 103.5
inches (denoted in calculations as Xtrap) away from each other. Fig. 1. A 0.333 fps (frames
per second) high definition camera was placed at the midpoint of the track to monitor the
distances traveled with unit time. X1 and X2 refer to the exit first and second locations, while
L2 and L1 refer to the entrance first and second locations respectively. SCent and SCex were
manually computed and dimensionless scaling coefficients incorporated in the expressions
to account for the discrepancies in measurements due to the spacing of the camera and the
running track. Entrance and exit velocities respectively were calculated as

2 1
ent

fps

L LdlV
dt t


 


and 2 1

ex
fps

X XdlV
dt t


 


(where fpst = time lapse computed from the

camera frames) from where we say the mean velocity,  1
2 ex entV V V  from which the
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acceleration a, or 0V
t



was numerically computed with ΔV0 being the initial velocity and Δt

being the time required for the car to completely clear the distance. Figs. 2a and b. The
average acceleration:

ex entV Vdva
dt t


 


(where trapXt

V
  and the total track distance is Xtrap + X2 - X1 or Xtrap +

L2 - L1) data was computed and is shown in the results section. This gives us SuppliedF tm a
(where mt was varied by adding weights) where deceleration is caused due to drag and
rolling resistance and thus tm a can equated to Drag RollingF F and also RollingF = rrC WV
(Crr is the coefficient of rolling resistance; which is depended on wheel and road factors,
among other conditions), where the weight tW =m g ; a simplified force balance on the

vehicle body showed the since 0F  , Supplied Drag RollingF F F  ,

where 21=
2

air frontalDrag DF C A V . This model is built on the assumption that during coast

down, drag and rolling friction forces are all that acts on the car. Another assumption
pertaining to automotive drag would be neglecting any headwind or tailwind to the car. To
fully quantify FDrag, the drag coefficient CD for the vehicle needs to be experimentally
quantified, and any headwind or tailwind would produce an erroneous coefficient value if
they are not added or subtracted from the velocity. Although at speeds traveled by the car
during these speed trap tests, drag forces are negligible. In any case, for better convergence
on the coefficients of rolling friction, using drag coefficients would eliminate margins of error
within the equations of motion (force balance and mechanics equations).

Fig. 1. Experimental setup
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Fig. 2. a-b. Two frames of the camera imaging of dynamic speed trap tests

Drag forces (FDrag or FD) of a car are depended on CD, the coefficient of aerodynamic drag
for the certain shape, ρair, the mass density of the fluid through which the body is
traveling, Afrontal or the vehicle’s effective frontal area and most importantly u, the mean
velocity of the car. Afrontal is calculated both manually through photo pixelization and
computationally through taking a section view and measuring the enclosed area in a 3-D
CAD software. The value of Afrontal was 0.0221 m2. Moreover, vo is introduced as the fluid
viscosity.

Using the algorithms of the Pi Theorem, theory states that the drag forces which depend
on the five above parameters [7]; or , 0( , , , ) 0x D frontal airf F u A v  can be reduced using

two dimensionless parameters, culminating in the Reynolds number, where Re u A
v

 ,

and the Coefficient of Drag (CD), where
21

2

D
D

air frontal

FC
A u

 . Hence the function of five

variables can be effectively reduced by introducing a function of only two variables; where
fy is some function of two arguments:

2
, 01

2

D
y

air frontal

F u Af
A u 

 
 

 
 
 

, which finally yields 21
2D D air frontalF C A u , as noted in

[8]. This speed (u) would be noted on the venture meter height readings or H (cm) and
the changes in height (Δh) will correspond to changes in velocities u (mph) which in this
studies’ data analysis will be denoted as a V. Further theory also provides a direct method
of establishing a relationship between height readings and wind tunnel air speeds [9]. It is
now known universally as the Bernoulli’s Principle.
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It is suggested that the work-energy theorem can be used to derive Bernoulli’s principle

kW E  i.e the change in the kinetic energy Ek of the system is equal to the net work W
done on the system [10]; the system itself consists of a volume of incompressible fluid,
between two distinct cross sectional areas given by A1 and A2 moving over the distances
d1 and d2 respectively, where di=vi*Δt. The displaced fluid volumes are A1d1 and A2d2;
implying that the displaced masses are ρA1d1 and ρA2d2, hence 1 1 1 1A Av t md    
and 2 2 2 2A A v t md     (with ρ being the fluid’s mass density, Δt being the time
interval through which the masses are displaced and the displaced mass denoted by
Δm). The work done by pressure along the areas:

,1 1 ,2 2p p pW F Fd d  which equals 1 1 1 2 2 2p pdA A d which becomes 1 2p pm m
 

   the

work done mostly by gravity (the gravitational potential energy in the volume A1d1 is lost,
and at the outflow in the volume A2d2 is gained) can be written as

2 1gE mgz mgz    or 1 2g gW E mgz mgz     [11], the total work done in

this time interval Δt being gt pW W W  which means an increase in kinetic energy given

by 2 2
2 1

1 1
2 2kE um mu     . Hence putting all these together, the work-kinetic energy

theorem can be rearranged into the following term:
2 21 2

1 2 2 1
1 1
2 2

p pm m mgz mgz m mu u
 

          

or 2 21 2
1 1 2 2

1 1
2 2

p pm mgz m mu mgz mu
 

           and simplified (diving by the

mass, Δm) to 2 21 2
1 1 2 2

1 1
2 2

p pu gz v gz
 

     giving us 21
2

pu gz K


   , where K

is a constant. Multiplying by the fluid density (ρ) throughout the equation gives us
21

2
zu p Kg    or 0q gh p g z K     [12], where the dynamic pressure head

is given by 21
2

q u , the hydraulic head by
ph z
g

  and the total pressure is denoted

by 0p p q  . Finally, the velocity is solved to be  1/22 / airu SG g h   . Although the
velocity was measured by camera imaging techniques, this velocity (u) is the air velocity
in a wind tunnel. The wind tunnel gives drag forces which in turn gives the drag coefficient
of the vehicle. By experiment, the model’s drag coefficient was found to be 0.40 [13].

Total body weight was fluctuated with varying weights, to cause changes in friction forces
thereby keeping drag forces relatively constant. Then numerical analysis techniques were
used to converge on the coefficient of rolling resistance, by initially treating the drag
coefficient as an unknown, and then as neglecting it altogether  due to the low speeds of the
speed trap tests. Lastly, drag coefficient of the same car was found experimentally from wind
tunnel analysis and was substituted to the simplified equations of motions during the tests.
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At coast down, i.e. when the engine is not providing power to the axles any longer, the body
travels with the initial momentum and ultimately comes to a stop exclusively due to drag and
friction forces slowing the car down, i.e the forces involved are:

21=
2

frontalD aD g ira rC AF V and = rr carRolling C WF V respectively.

Both forces, FDrag and FRolling are depended on the velocity of the travelling car. Historically,
scientists and engineers, used various other methods to quantify the value using a velocity
dependent expression and a model that neglected the latter, i.e. it was not adjusted for
velocity [14]. These expressions can be said to be Rolling rr carF C W which can be

characterized for a slow rigid (minimum deformation) wheel as

1/2
depth

rr
wheel

z
C

d
 
  
 

with zdepth

as the depth of wheel sinkage and dwheel (rwheel is wheel radius) as wheel diameter. A length

dimension rolling friction coefficient was also introduced as car rr
Rolling

wheel

W CF
r

 . These simple

models however were used before complex expressions were experimentally developed and
do not directly correlate to recent data, but simply shows the relationships between the cars
weight, the corresponding rolling frictional forces it experiences and the size of its wheels. It
mainly leaves out any consideration for the travelling velocity. In effect, the rolling friction
coefficient of a metal wheel of the same dimensions as a rubber wheel with equal loading
and same rolling friction will give the same rolling resistance value. In this study, velocity was
taken into consideration.

3. RESULTS AND DISCUSSION

3.1 Experimental Results

Tables 1 – 4 show velocity, time and acceleration measurements at varied weight conditions.
Table 5. shows mean velocity and acceleration data from each of the weighted tests (Tables
1 – 4). Table 6. is the first iteration conducted by a numerical analysis package (Least
Square Linear Regression and Optimization Technique) utilizing a random initial guess,
while Table 7. is the second and final iteration.
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Tables 1-4. Distance, time, velocity and acceleration data

SCent
(in)

L1, L2 SCex
(in)

X1, X2 Vent
mph

Vex
mph V

mph

Δt
sec 0V

t



m/s2

Set 1
Trials 1-4
mt=2004.7 g

0.58 19, 30 0.63 24, 28 10.82 4.26 8.45 0.78 -8.41
0.58 14, 26 0.50 29, 33 11.80 3.41 8.30 0.77 -10.85
0.58 19, 28 0.75 19, 21 8.85 2.56 9.02 1.03 -6.10
0.63 20, 30 0.60 23, 28 10.65 5.11 10.87 0.75 -7.43
0.48 12, 26 0.45 27, 34 11.55 5.42 9.06 0.69 -8.84

Set 2
Trials 1-4
mt=1912.6 g

0.54 12, 25 0.56 23, 28 11.87 4.73 8.20 0.71 -10.08
0.68 17, 27 0.60 24, 29 11.62 5.11 8.95 0.70 -9.26
0.60 20, 31 0.60 28, 33 11.25 5.11 9.34 0.72 -8.54
0.63 24, 32 0.71 27, 29 8.52 2.44 8.96 1.07 -5.67
0.54 18, 28 0.56 24, 30 9.13 5.68 10.06 0.79 -4.34

Set 3
Trials 1-4
mt=1723.6 g

0.47 8, 22 0.31 14, 24 11.19 5.22 8.30 0.72 -8.32
0.50 14, 30 0.42 9, 15 13.64 4.26 8.37 0.66 -14.27
0.58 11, 24 0.58 12, 18 12.78 5.90 8.18 0.63 -10.94
0.79 17, 26 0.68 24, 29 12.11 5.81 5.48 0.66 -9.60
0.56 13, 26 0.42 8, 19 12.31 7.81 7.41 0.58 -7.70

Set 4
Trials 1-4
mt=1237.6 g

0.47 8, 23 0.29 7, 17 11.99 4.92 7.54 0.70 -10.16
0.52 14, 28 0.31 7, 15 12.34 4.26 7.60 0.71 -11.41
0.38 9, 29 0.21 5, 20 12.78 5.25 5.70 0.65 -11.55
0.60 7, 22 0.42 11, 20 15.34 6.39 7.88 0.54 -16.54
0.63 9, 22 0.42 9, 15 13.85 4.26 8.49 0.65 -14.76

Table 5. Overall data from all 4 data sets at varying total weights

Set mt
gram

W
kg m/s2 ) entV

mph
exV

mph
0V

mph m/s
t

sec
0V
t



m/s2 V
mph

1 1237.6 12.1 13.3 5.0 -8.2 -3.69 0.649 -5.68 9.14
2 1723.6 16.9 12.4 5.8 -6.6 -2.95 0.649 -4.55 9.10
3 1912.6 18.8 10.5 4.6 -5.9 -2.62 0.799 -3.28 7.55
4 2004.7 19.7 10.7 4.2 -6.6 -2.94 0.805 -3.66 7.44

0 ex entV V V   , where exV and entV are the mean set velocity readings from weighted
test runs, set 1-4. W = mt*g, where mt is the total vehicle mass and g is the gravitational
acceleration constant.

As mentioned before, SCent and SCex are scaling factors incorporated in calculation to
correctly take the board distance into consideration in the calculation of data in sets 1-4 in
Table 5. From the above data, we further quantify results into force components (Table 6.
and 7) and solve numerically for Crr and CD.
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Table 6-7. Total forces acting on vehicle model and subsequent iterations

FSupplied

0
t
Vm
t
 
  

FDrag
CD.α

FRolling
Crr.β

Σ (FDrag+
FRolling)
CD.α + Crr.β

Δ |FSupplied - Σ FD, R|

| 0
t
Vm
t
 
  

- CD.α -

Crr.β|
1st

Iteration
-7.02 -5.55 -0.009 -5.56 1.46
-7.84 -7.70 -0.009 -7.71 0.13
-6.27 -7.08 -0.006 -7.09 0.82
-7.33 -7.32 -0.006 -7.33 0.00

2nd

Iteration
-7.023 -4.507 -0.026 -4.53 2.49
-7.843 -6.276 -0.026 -6.30 1.54
-6.271 -6.965 -0.018 -6.98 0.71
-7.329 -7.300 -0.017 -7.32 0.01

Since 0F  , Supplied Drag RollingF F F  at coast down; or 0
t
Vm
t
 
  

-

 20
1
2 D air fC A V V  - rr tC m gV . Let  20

1
2 air frontalA V V    and WV  where

tW m g

The above two iterations of least square methods yield a coefficient of rolling resistance of
0.1119 and then 0.3712, while the coefficient of aerodynamic drag yields 0.0416 and 0.1165,
respectively. Other linear regression techniques such as Huber M, the least absolute
deviations and nonparametric regressions can be used but due to the analysis of simple non
skewed and non-high tailed data distributions in Tables 6 and 7, Least Squares optimization
technique was preferred [15].

This analysis however were conducted assuming the coefficient of drag is a variable or an
unknown, and an initial guess was selected to provide a starting point for the iterations,
resulting in possibly erroneous end result. The same analysis was conducted by eliminating
the drag coefficient, thereby only solving for the rolling friction constant, since at slow
speeds, the drag coefficient is effectively negligible. Similarly knowing that the drag
coefficient for the model is 0.40, we can treat Fdrag as a constant, thereby solving for the Crr
again as follows.

Table 8. Calculating Coefficient of Rolling Resistance with CD= 0 and CD= 0.40

FSupplied FDrag FRolling Crr
rrC

Fdrag= 0.0
(CD =0.0)

-7.02 0 49.6 -0.142 -0.117
-7.84 0 68.81 -0.114
-6.27 0 63.31 -0.099
-7.33 0 65.44 -0.112

Fdrag= αi*CD
(CD =0.40)

-7.02 -0.089 49.6 -0.140 -0.115
-7.84 -0.088 68.81 -0.113
-6.27 -0.060 63.31 -0.098
-7.33 -0.059 65.44 -0.111
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Knowing that the rolling resistance coefficient for a car, the size of the test model would lie in
between the ranges found, assuming drag forces to be negligible (i.e. FDrag~0.0 resulting in a
Crr of 0.117, (Table 8.). The coefficient is found experimentally after assuming that the model

has a known constant drag coefficient (i.e.  20
1
2Drag D air frontalF C A V V   , where CD is

a constant of value 0.40) resulting in a Crr of 0.115). The average coefficient of rolling
resistance for the experiment therefore would be 0.116. The mean Crr can be computed as:

, , 0

2
D Drr C K rr C

rr

f f
C M  
 

where K is approaching the value of the coefficient of aerodynamic drag, i.e. less than or

greater than CD ; Hence (K ≠ CD). Also, n is the total lines crossed, or more specifically, n is

the exit position with n-1 the entrance position in the speed trap set up and M is the model-

vehicle scale. Moreover,

, 1

, 1 1
1 1( )

2D

n n

t
rr C K n n n n D frontal

fps SC

mf X X L L C A SG h
t t


 



  

 
           
    

with

the wind tunnel automotive drag force at varying tunnel air velocities of u0 , where

 1/22 / airu SG g h   or just

, 1

, 1 1
1 1( )

2D

n n

t
rr C K n n n n D

fps SC

mf X X L L C
t t


 



  

 
        
    

,

Where

 20
1
2 air frontalA V V    and

, 1

, 0 1 1
1 ( )

2D

n n

t
rr C n n n n

fps SC

mf X X L L
t t



  

 
     
    

3.2 Comparative Literature Analysis

The above confirms findings from Ehsani et al. Since a 1:10 scaled model was used for this
dynamic testing, the full scale vehicle velocity is given by

full full scaled
scaled full

scaled scaled full

D
V V

D
 
 

    
              

meaning, that 10scale fullV V  , where

theoretical Crr for a full scale vehicle is given by ,
1.6090.01 1
100

fullrr theoreticalC V        
as

noted by Ehsani; however, it cannot be automatically used for a scaled model. Conversely,
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the velocity cannot be scaled up to that of a full sized vehicle and have the coefficients
match between the scaled entities.

Table 9. Comparison of full scale and model vehicle data and error analysis
(theoretical model)

V scaled
mph

rrC , ,rr th scC ,rr theoryC Error (%)

9.14 0.014 0.011472 0.11472 18.5
9.10 0.011 0.011465 0.11465 1.14
7.55 0.010 0.011216 0.11216 13.8
7.44 0.011 0.011198 0.11198 0.38

Table 10. Comparison of full scale and model vehicle data and error analysis with
patented model (Where

, ,
1.6090.01 1
100

scaledrr th scC V        
and ,rr theoryC = 10 * , ,rr th scC due to

scaling, and ,rr pC =10* , ,rr p scaledC . This scaling is independent of scaling factor

incorporated due to Reynolds Number and similitude for the two velocities V
themselves)

mt (kg)
rrC ,rr pC , ,rr p scaledC Error (%)

1.2376 0.014 0.014934 0.001493 6.67
1.7236 0.011 0.012655 0.001265 15.05
1.9126 0.010 0.012013 0.001201 20.13
2.0047 0.011 0.011734 0.001173 6.67

Here rrC represents the average experimental values of the coefficients with and without

considering the effects of drag at given speeds V scaled (in mph). Knowing that ,rr theoryC is

given for full scale vehicles, to scale down to the 1:10 ratio, we multiply the , ,rr th scC value by
10 to get data for the scaled model. The coefficient can be greatly changed by tire pressure,
speed u, loading (curb weight), wheel diameter and gap in data or measuring instruments,
which is why most dynamic analysis do not directly correlate to literature data and result in
errors [16]. A slight change of the consistency of the ground material (concrete, sandy soil,
loose soil, asphalt) changes the coefficient value dramatically [17]. Recent Studies also
show that Crr can range from a higher interval of 0.006 to 0.035 [18]. This is a direct
confirmation of the present study as the experimental range for the current study falls in this
interval; with, however, a high error of 43.416% for the mean values. Other studies
concluded that tires have a rolling resistance coefficient Crr of a range from 0.007 to 0.014
[19] (or a 10.47% error in the mean values). Common values for the rolling resistance
coefficient of a full sized vehicle travelling on concrete range from 0.010 to 0.015 [20], or a
mean of 0.0125. With respect to the current study, this yields a 7.2% error. See also Table 9.
The average , ,rr th scC [20] model values and the Crr values of the study share a 2.31% error
with each other. Although using the model-to-vehicle scaling ratio can be used to estimate
the rolling friction coefficient for the actual vehicle, there are a lot of variables in such real life
testing. To best optimize accuracy using this method, the curb weight for both the vehicles
would need to be maintained, in addition to both overall exterior scale and tire dimensions. A
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standard model known as SAE J1269 was developed by the Society of Automotive
Engineers (SAE) to quantify the coefficient in the United States. Crr measured in the study
using the Force, Torque and Power methods denote the rolling resistance coefficient being
measured as the proportion of energy that is lost to the hysteresis of the material as the tire
rolls [21]. The study results of the general coefficient and its comparison to the applied
forces at wheels are in agreement with secondary research [22]. Another standard, SAE
J2452 provided more accuracy for Crr value over a range of different vehicle loads (weight),
tire pressures and vehicle speeds [23]. The model expression for the standard is defined as:

 2       rrC P Z a bV cV      , where P is the tire inflation pressure (in kPa or psi),

Z is the applied load for vehicle weight (in N or lbs), V is the vehicle speed (in km/h or mph)
and α, β, a, b, c are the constant coefficients for the model (Society of Automotive Engineers
1999). In Europe, rolling resistance is tested using the standard ISO 8767 [24]. The SAE
standard is similar to a patented Crr calculated methodology, where the distance time data
during the coast down motion is effectively expressed by applying Newton’s Second law of

motion [25], or (1 ) T R a
W dVf D D D
g dt
    , where DT represent transmission loss,

given by 0( )TD W bV  and DR, Da represent Rolling friction loss and aerodynamic drag

loss respectively denoted by 2
2

( )w d
R

nI I gD W kV
WR

       
and 21

2
a DD C g V F    

 
.

The same expression can be written as 2dV a bV cV
g dt


   , where 1 f   ,

0 0a f  and c =
2

DC Fk
g W

  

 

. To obtain the velocity time data, the expression is

integrated to yield 1( ) ( ) tan(tan ( ) ( ))dS t hV t B B T t h
dt gc B

        
, where S(t) is the

distance travelled by the vehicle from rest till t, T is the time from arbitrary t till stop.

Accordingly,
2
gAB

    

, 24A ac b  and
2
gbh

    

. Similarly, the expression can be

further integrated to yield data for distance-time, i.e

1

1

cos tan
( ) ln

cos tan

h
BS t ht

gc h BT
B






   
   

    
          

, where substituting t=T gives

1

1

cos tan
( ) ln

cos tan

h
BS T hT

gc h BT
B






   
   

    
          

. Here S(T) denotes the distance travelled

from time T till the ultimate rest. The distance time data from the tests can be used in the
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expression to yield unknown coefficient values by least square optimization and curve fitting

techniques (Numerical Analysis). Using the equation, 0
0

dV bV
g dt
    , the transmission

loss can be effectively neglected. Here 0 2
w dmI Ig
WR

     
is the effective mass of the

rotating parts, with m being the total number of driving tires (usually 2). Integrating the

expressions twice gives 0({ } ) 10( ) ( ) e T t hdS t V t
dt b

        and

0 0( )0 0

0

( ) e eT h T t hS t t
bh b
          , where if it is assumed that T=t. Then

0
0

0

e 1( )
T h

S t T
b h
  
   

 
and neglecting transmission loss again, yields

0
0

0

e (e 1)( )
i o rT h T h

i iS T T
b h
   
   

 
, where I and r refers to the last point on the track to the

point next to it (closer to the vehicle) during travel and h0 and δ0 can be defined as

0
0

gbh

 and 0 2

( )w dmI I g
WR

 
 .Using test data, it can be said that

0 1 0
0

1
0

e {e 1}2 *
rT h T h

S S T
b h
   

      
 

and

0 2 0
0

2
0

e {e 1}*
rT h T h

S S T
b h
   

      
 

and
0 3 0

0
3

0

e {e 1}*
rT h T h

S T
b h
   

    
 

, where the

three variables τ0, b and Tr can be obtained from the three preceding equations. Let the short

distance coast down be

1

1

cos tan
( ) ln

cos tan ( )

r

i i

r i

h BT
BS T hT

gc h B T T
B






       
    

           

,

where
2
gAB

    

, 24A ac b  and
2
gbh

    

.Or it follows that
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1

1
1

1

cos tan
3 ln

cos tan ( )

r

r

h BT
BS hT

gc h B T T
B






       
     

           

,

1

2
1

2

cos tan
2 ln

cos tan ( )

r

r

h BT
BS hT

gc h B T T
B






       
     

           

and

1

3
1

3

cos tan
ln

cos tan ( )

r

r

h BT
BS hT

gc h B T T
B






       
     

           

Due to the behavior of drag and rolling

friction, we can now say

1

1
1

1

cos tan
3 ln

cos tan ( )

r

r

h BT
BS hT

gc h B T T
B






       
     

           

and

1

3
1

3

cos tan
ln

cos tan ( )

r

r

h BT
BS hT

gc h B T T
B






       
     

           

assuming that the tests determine the

total resistance of the vehicle in accordance with 2dV a bV cV
g dt

    , where ρ is the air

density and g is the gravitational constant. Additionally, coefficients a, b and c refer to rolling
and internal transmission resistance and subsequent losses, b is transmission loss and c is
aerodynamic drag and rolling loss. Coefficient b can determined from the expression

0
0

0

e (e 1)( )
i o rT h T h

i iS T T
b h
   
   

 
while coefficients a and c are determined from

1

1

cos tan
( ) ln

cos tan ( )

r

i i

r i

h BT
BS T hT

gc h B T T
B






       
    

           

, where Ti is the time taken for the vehicle to

travel to the ith position in the speed trap. Again,
2
gbh

    

,

0
0

gbh

 
  
 

,
2
gAB

    

and 24A ac b  . Recalling that, 1 f   , 2

( )w dnI I gf
WR


 ,
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0 2

( )w dMI I g
WR

 
 , 0 0a f  and finally

2
DC Fk
g W

  

 

. However, here in this study, we

multiply the coefficient value with the scales since this test is conducted on a trap regardless
of size, unlike the model by Ehsani et al 2009. This results in higher error due to the
precision of the tests, and negligence of the transmission losses. Still, the current study data
on average comes within 0.005 of the patented results as shown in Table 10. The
knowledge of this data has various applications in performance analysis and design of
locomotives, as lower Crr tires could save 1.5–4.5% of all gasoline consumption [26]. Even
correcting wheel sinkage during maneuvering through sandy terrains [27] or misalignment
correction by wheels aboard microsatellites during orbital maintenance [28] can be done.
Better designs have led to reduced coefficient values at the wheels in cars (around 0.0025)
[29]. In normal passenger vehicles, energy is wasted by rolling frictions effects on the
highways in which sound and heat is generated and given off to the surroundings as a by-
product by the tires [30].

4. CONCLUSION

Although industrial machines have been designed so as to have the ability to quantify the
rolling friction coefficient of a tire, such equipment is usually not within the reach of most
designers or scientists. The presented model is a small scaled and low cost technique that
not only gives the scaled coefficient value with an acceptable degree of accuracy, but can be
used to extrapolate the value to a full scaled car as long as weighted and scaled proportions,
i.e. vehicle curb weight and tire size are the same.
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