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Abstract
Analytic continuation maps imaginary-time Green’s functions obtained by various
theoretical/numerical methods to real-time response functions that can be directly compared with
experiments. Analytic continuation is an important bridge between many-body theories and
experiments but is also a challenging problem because such mappings are ill-conditioned. In this
work, we develop a neural network (NN)-based method for this problem. The training data is
generated either using synthetic Gaussian-type spectral functions or from exactly solvable models
where the analytic continuation can be obtained analytically. Then, we applied the trained NN to
the testing data, either with synthetic noise or intrinsic noise in Monte Carlo simulations. We
conclude that the best performance is always achieved when a proper amount of noise is added to
the training data. Moreover, our method can successfully capture multi-peak structure in the
resulting response function for the cases with the best performance. The method can be combined
with Monte Carlo simulations to compare with experiments on real-time dynamics.

1. Introduction

Analytic continuation is an important problem in computational quantum many-body physics [1, 2]. For
quantum many-body systems, a variety of methods, ranging from perturbation approximations to quantum
Monte Carlo algorithms, are performed in imaginary time and only produce imaginary-time Green’s
function [3–5]. Nevertheless, to compare with real-time responses measured in experiments, we need the
response function or the closely related spectral functionA(Ω) from which the response function can be
calculated. On the other hand, the spectral function and the Matsubara frequency representation of the
imaginary-time Green’s function, G(iωn), are related by [6, 7]

G(iωn) =

ˆ
A(Ω)

iωn −Ω
dΩ . (1)

Hence this relation is crucial to analytically continue the imaginary-time Green’s function to real time that
connects numerical results to experimental observations.

However, extractingA(Ω) form the above relation, equation (1), is a difficult problem. Although the
mapping fromA(Ω) to G(iωn) is linear, the coefficients decrease and approach zero as Ω increases, making
the inverse of such mapping ill-conditioned [8–10]. That is to say, a small noise embedded in G(iωn) can be
significantly amplified and lead to huge errors in the evaluatedA(Ω). Since G(iωn) obtained by various
numerical methods inevitably contains noise, thus obtainedA(Ω) always has large errors, which makes the
comparison with experimental measurements unreliable. This is the intrinsic difficulty in the analytic
continuation [8–10].
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Many methods have been developed to address this problem. One of the most popular approaches is the
maximum entropy (MaxEnt) method which aims to find the most probable A(Ω) that maximizes an entropy
functional [11–18]. However, the method is biased toward Gaussian type spectral functions, and sharp peaks
or edges in the spectral function can be easily missed. Several stochastic methods have then been proposed to
recover these singular features [19–25]. Nevertheless, these stochastic methods are usually time-consuming
[28]. Many of the existing methods also rely on prior physical information. For instance, relying on the
conjecture of holographic duality and the insight from gravity physics, the analytic continuation has also
been applied to study quantum critical dynamics [26].

The fast development of applying machine learning methods to physics problems offer a new route to
address this problem. The neural network (NN) is a useful tool to express functional mapping that can also
tolerant errors. Nevertheless, the neural-network-based methods have only been discussed in few recent
works on the analytic continuation problem [27–30]. While these method offer new promise, lots of issues
remain open. Especially, since the difficulty of the analytic continuation roots in the amplification of the
noise, one basis question is whether we should add noise into the training data and, if so, what is the proper
amplitude of the noise. To the best of our knowledge, this issue has not been well studied before. In this
work, we systematically study the noise effect in the training dataset. The key finding is that the NN’s
performance can be significantly enhanced when a proper amount of noise is added to the data.

2. Framework

Below we first introduce our general framework that includes both the training data preparation and the
training scheme.

To prepare training data, we need to include a variety of spectral functionsA(Ω). For each given type of
A(Ω), the corresponding imaginary-frequency Green’s function G(iωn) can be generated according to
equation (1). Each pair of {G(iωn),A(Ω)} contributes one sample in the dataset. Since both the input and
the output of NN are discrete, we shall first discretize G(iωn) andA(Ω). We discretize Ω into Nout number
of points Ωj,{j= 1, . . . ,Nout} in a proper range of Ω, and we normalizeA(Ωj) to Ā(Ωj) such that∑Nout

j=1 Ā(Ωj) = 1. Then, the output spectral function Ā(Ω) is represented by a discretized vector

{Ā(Ωj)|{j= 1, . . . ,Nout}}. For the input Green’s function, ωn = (2n+ 1)π/β where n= 1, . . . ,Nin and β is
set as unity. G(iωn) is generally a complex number. To mimic the inevitable noise in the calculated G(iωn)
from various numerical methods, we add a randomly sampled noise individually for each point ωn, i.e.

G̃(iωn) = G(iωn)(1+ δ+ iδ ′), (2)

where noise δ and δ ′ satisfy a Gaussian distribution with zero mean and standard deviation η. The input
Green’s function G(iωn) is then represented by a discretized vector
{Re[G̃(iωn)], Im[G̃(iωn)]|{n= 1, . . . ,Nin}}.

The multi-layer fully connected NN used in this work is depicted in figure 1. The input layer is the
discretized G(iωn), and the output layer is the discretizedA(Ω). The training process is carried out with the
Adam optimizer [31], and the Kullback-Leibler divergence is used as the training loss function, which is
defined as

KLD=
∑
t

∑
j

Āt(Ωj) log
[
Āt(Ωj)/Āt

NN(Ωj)
]
, (3)

where t labels samples in the dataset. {Ā(Ωj)} are the labels and {ĀNN(Ωj)} are the outputs of the NN. After
training, the mean absolute error on the testing set is chosen to evaluate the performance, which is defined as

L=
1

N
∑
t,j

∣∣Āt
NN(Ωj)−Āt(Ωj)

∣∣ . (4)

Here the summation runs over all samples in the testing dataset, andN is the product of the dimension of
the output and the number of samples in the testing dataset. For all training processes, 105 number of
training samples and 5× 103 testing samples are prepared.

3. Results

Below we will present our results on two cases, one on synthetic spectral functions and the other on the
transverse field Ising model.
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Figure 1. Schematic of the fully-connected NN for the analytic continuation problem. The first layer (red) denotes the input of
discretized imaginary-time Green’s function Re/Im[G(iωn)]. The last layer (blue) denotes the output of discretized spectral
function Ā(Ωj). In between, there are five hidden layers (green) with the same number of neurons as the output layer.

Figure 2. The performance is measured by the mean absolute error L when the trained NN are applied to the testing dataset. The
NN are trained with a given training dataset with noise strength ηtrain, and L is plotted against ηtrain. (a) Synthetic spectral
function. Different curves correspond to different noise strength ηtest of the testing dataset. (b) The transverse field Ising model.
The quantumMonte Carlo simulation generates the testing dataset with unknown noise strength.

3.1. Synthetic spectral functions
We generate the synthetic spectral function as a summation of Gaussian distributions.

A(Ω) =
∑
i

λiN (Ω|µi,σi). (5)

HereN (Ω|µ,σ) denotes a Gaussian distribution centered at µ with width σ, that is

N (Ω|µ,σ) = 1√
2πσ2

exp

{
− 1

2σ2
(Ω−µ)2

}
. (6)

The coefficients λi take random value in [0,1] under the constraint
∑

iλi = 1, which ensures the
normalization condition

´
dΩA(Ω) = 1. Here the maximum number of Gaussian components is three. The

mean value µ of each Gaussian distribution ranges from [−6,6] and the width σ ranges from [0.1,4]. Since
these synthetic spectral functions are made of Gaussian components, their corresponding
imaginary-frequency Green’s function G(iωi) can be exactly calculated according to equation (1).

After training, the performance of the NN is measured by the mean absolute value L on the testing
dataset. Here we add noise with amplitude ηtest into the testing dataset in order to mimic the inevitable noise
in numerical simulations. L is plotted in figure 2(a) for different values of ηtest. Smaller of L indicates better

3
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Figure 3. Predictions of the NN. Red solid lines are the exact spectral functions. Blue dashed lines are the result of NN trained
with the dataset with optimal noise. Green dot-dashed lines are the result of NN trained without noise. The brown dotted lines
are the result of the maximum entropy method. (a) Shows an example from synthetic spectral functions, and (b) shows an
example from the transverse field Ising model.

performance of the trained NN. Figure 2(a) shows that, if ηtrain is below ηtest, L becomes large and the NN
does not perform well. L approaches the optimal performance when ηtrain ≈ ηtest. Then, L slowly increases
when ηtrain > ηtest.

Figure 3(a) shows a concrete typical example in the testing dataset with noise amplitude ηtest = 0.015 .
Here we show the NN results with and without noise in the training data, and we also show results from the
MaxEnt method for comparison. As one can see, both the MaxEnt method (brown dotted line) and the NN
results without noise (green dot-dashed line) miss the first peak. The MaxEnt method tends to generate a
smooth and simple distribution with minimal singularities. In contrast, the results can be significantly
improved when noise is added into the training data and when the noise amplitude is comparable with that
in the test data. The blue dashed line shows that the NN result with ηtrain = ηtest = 0.015 can successfully
capture both positions, amplitudes, and widths of two peaks in the spectral function, with tiny error
compared with the exact results (solid red line). Hence, we show that our NN can successfully predict the
spectral function, and the performance of the NN can be enhanced by adding noise properly into the
training dataset.

3.2. The transverse field Ising model
For synthetic spectral functions, we know precisely the amount of noise we add into the testing dataset.
However, noise is always unavoidably generated from numerical simulations and its amplitude is generally
not precisely known. To address such situations, we consider the one-dimensional transverse field Ising
model, whose Hamiltonian reads

Ĥ=−J
∑
l

σ̂z
l σ̂

z
l+1 − g

∑
l

σ̂x
l , (7)

where σ̂l are the standard Pauli operators on site l. Here g is the transverse field strength, J is the coupling
along z-direction which will be set as a unit below, and the boundary condition is taken to be periodic. Since
this model can be solved exactly by mapping to free fermions using the Jordan–Wigner transformation,
closed analytic forms of both G(iωn) andA(Ω) can be obtained (see appendix A for details). Because the
system is translational invariant, the calculation is mostly easily done in momentum space. Nevertheless, to
keep our notation clean and consist, the dependences of physical quantities on the momentum quantum
number q and the parameter g have been suppressed. In this way, a different choice of q and g generates a
separate set of {G(iωn),A(Ω)}, which contributes one sample to the training dataset. For the testing dataset,
the imaginary-time Green’s function G(iωn) is computed using a Worm-type quantumMonte Carlo method
(see appendix B for details) [32], where noise with unknown strength is intrinsically embedded. As labels,
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their correspondingA(Ω) are still obtained by the exact mapping to free fermions under the same
parameters q and g.

Figure 2(b) shows L as a function of ηtrain. In this case, it also shows a clear minimum around
ηtrain ≈ 0.01. This result means that the most proper noise strength also exists, even though the intrinsic
numerical noise in the testing dataset may not be Gaussian type. With the optimum noise strength, the
trained NN outputs the best prediction for the testing dataset produced by the quantumMonte Carlo
simulations. One example is shown in figure 3(b). Compared with the synthetic spectral function shown in
figure 3(a), the spectral function of the transverse field Ising model is much more singular and contains
sharp edges. Moreover, a dark continuum [33], a finite region with vanishingA(Ω), exists between the two
peaks. With the optimal noise strength, the trained NN correctly resolves both the positions and height of the
two peaks, the locations of the sharp edges and the dark continuum. In comparison, the MaxEnt method
fails to capture these features of the spectral function. The NN trained without noise also produces two
peaks, but the fluctuations are much stronger, especially in the dark continuum.

4. Summary and outlook

In summary, we have developed a NN-based method for analytic continuation. The training data is
generated either from synthetic Gaussian type spectral functions or by the exact solution of the transverse
field Ising model, where the analytic continuation can be done analytically. The validity of this method is
demonstrated with data obtained from quantumMonte Carlo simulations. The main finding of this work is
that a proper amount of noise has to be added to the training data in order to reach optimal performance.
Our NN-based method can be easily applied to perform analytic continuation of Monte Carlo results from
other models, such as the Bose–Hubbard model and the anisotropic Heisenberg models, and compare the
analytic continuation results with experimental measurements of real-time dynamics, such as quantum
simulation experiments with ultracold atomic gases.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://github.com/jy19Phy/Noise-Enhanced-Neural-Networks-for-Analytic-Continuation.
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Appendix A. Exact solution for the transverse Ising model

For the transverse Ising model, it is possible to obtain the analytic expressions of both the imaginary-time
Green’s function and the spectral function. The first step is to rotate the spins along the y-axis for negative 90
degrees which defines the following new spin operators π̂l,

π̂x
l = σ̂z

l , π̂
y
l = σ̂

y
l , π̂z

l =−σ̂x
l . (A1)

The next step is to perform the standard Jordan–Winger transformation that maps spin operators to fermion
operators â†l and âl 

π̂+
l = (π̂x

l + iπ̂y
l )/2= (−1)

∑
m<l n̂m â†

l ,

π̂−
l = (π̂x

l − iπ̂y
l )/2= (−1)

∑
m<l n̂m âl, ,

π̂z
l = 2â†

l âl − 1,

(A2)

where n̂m = â†mâm is the fermion occupation operator at sitem. In terms of these fermionic operators, the
resulting Hamiltonian of equation (7) is quadratic,

Ĥ=−J
∑
l

(
â†
l − âl

)(
âl+1 + â†

l+1

)
+ g

∑
l

(2n̂l − 1). (A3)
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The boundary condition becomes â†L+1 =−η̂â†1 where L is the number of sites and η̂ = (−1)
∑

l n̂l is the
fermion parity operator. After a phase rotation of the operator âl by π/4, in momentum space the
Hamiltonian assumes the form

Ĥ=
′∑
k

[
â†
k â−k

][2g− 2Jcos(kd) 2J sin(kd)
2J sin(kd) 2Jcos(kd)− 2g

][
âk
â†
−k

]
(A4)

where the prime means summation over different pairs of k and−k except for k= 0, d is the lattice spacing,
and âk = ei

π
4

1√
L

∑L
l=1 e

ilkdâl with L being the lattice size. One can then easily diagonalize the Hamiltonian by

the standard Bogoliubov transformation, resulting in a free fermion Hamiltonian

Ĥ=
′∑
k

ξk

(̂
f†k f̂k + f̂†−k f̂−k

)
, (A5)

where f̂†k (̂fk) is the new fermion creation (annihilation) operator of momentum mode k and

ξk = 2
√

J2 + g2 − 2gJcos(kd) is the corresponding quasi-particle energy. The explicit expression of the
Bogoliubov transformation reads [

âk
â†
−k

]
=

[
cosθk − sinθk
sinθk cosθk

][
f̂k
f̂†−k

]
(A6)

where θk is determined by tan2θk = J sin(kd)/[g− Jcos(kd)].
We choose to study the imaginary-time spin-spin correlation function along the x-direction,

G(l, τ) =−1

4
⟨Tτ σ̂x

l (τ)σ̂
x
0(0)⟩, (A7)

where σ̂x
l (τ) = eτ Ĥσ̂x

l e
−τ Ĥ is the imaginary-time Heisenberg operator and T denotes the time-ordering

operator. This correlator corresponds to the density-density correlation function in terms of the
Jordan–Wigner fermion âl. Since the Hamiltonian equation (A3) or (A5) is quadratic, the correlator can be
evaluated using Wick’s theorem. After a tedious but straightforward calculation, the momentum and
frequency representation of the correlator G(q, iωn),

G(q, iωn) =
1

L

∑
l

e−iqld

ˆ β

0
G(l, τ)eiωnτdτ, (A8)

which takes the following explicit form

G(q ̸= 0, iωn) =
∑
k

( fk+q + fk − 1) sin(θk+q + θk)

×
iωn sin(θk − θk+q)+ (ξk+q + ξk) sin(θk + θk+q)

ω2
n +(ξk+q + ξk)2

+
∑
k

( fk+q − fk)cos(θk+q + θk)

×
iωn cos(θk − θk+q)+ (ξk+q − ξk)cos(θk + θk+q)

ω2
n +(ξk+q − ξk)2

. (A9)

Here f k is the Fermi–Dirac distribution function fk = 1/(eβξk + 1) and ωn = 2πn/β is the even Matsubara
frequency where n= 1, . . . ,Nin. With the analytical formula of G(q ̸= 0, iωn), we can then analytically
perform the analytic continuation and read out the spectral function,

A(q ̸= 0,Ω) =− 1

π
ImG(q ̸= 0, iωn → Ω+ i0+)

=
∑
k

(1− fk+q − fk)

×
[
sin(θk+q + θk)cosθk+q sinθkδ(Ω− ξk − ξk+q)

− sin(θk+q + θk) sinθk+q cosθkδ(Ω+ ξk + ξk+q)
]
+
∑
k

( fk − fk+q)

×
[
cos(θk+q + θk)cosθk+q cosθkδ(Ω+ ξk − ξk+q)
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+cos(θk+q + θk) sinθk+q sinθkδ(Ω− ξk + ξk+q)
]
. (A10)

In conclusion, both the Green’s function or the correlator G(q, iωn) and the spectral functionA(q,Ω) can be
evaluated exactly according to equations (A9) and (A10) for each g, with J being the energy unit. For
preparation of the training dataset, setting temperature β = 2.0/J and interaction strength g ranging from
0.5 J to 2.0 J with interval 0.1 J. For each parameter g, the momentum q will be discretized into (0,0.01,2π]
and setting d as the unit length. Here in this transverse problem,A does not obey the normalization relation´
dΩA(Ω) = 1. Thus the mean-square error is adopted for the training process.

Appendix B. QuantumMonte Carlo simulation of the transverse Ising model

We closely follow reference [32] to map spin operators into hard-core boson operators such that the resulting
partition function can be efficiently sampled by the Worm algorithm [34, 35]. We first perform a spin
rotation around the y-axis for 90 degrees and the spin rotational operators π̂l is defined as

π̂x
l =−σ̂z

l , π̂
y
l = σ̂

y
l , π̂z

l = σ̂x
l . (B1)

For the negative rotation, the corresponding boson Hamiltonian in this time can be written as a sum of the
kinetic term K̂ and the potential energy term Û,

Ĥ= K̂+ Û , (B2)

where

K̂≡ K̂1 + K̂2 (B3)

≡−J
∑
l

(â†l âl+1 + h.c.)− J
∑
l

(â†l â
†
l+1 + h.c.) (B4)

and

Û=−2 g
∑
l

â†l âl . (B5)

Here we have omitted unimportant constants. Employing the expansion

e−βĤ = e−βÛTτ exp

[
−
ˆ β

0
K̂(τ)dτ

]

= e−βÛ
∞∑
n=0

(−1)n
ˆ β

0
dτn · · ·

ˆ τ2

0
dτ1

(
K̂1 (τn)+ K̂2 (τn)

)
· · ·

(
K̂1 (τ1)+ K̂2 (τ1)

)
,

where Tτ is the imaginary time ordering operator and K̂(τ) = eτ ÛK̂e−τ Û. In the Fock basis a typical term
(out of 2n terms) in the nth order expansion of the partition function reads

Jn

 n∏
j=1

ˆ
dτj

 · exp

[
−
ˆ β

0
U(τ)dτ

]
, (B6)

since the matrix element of the both hopping and pair creation/annihilation is one. Here U(τ) is the
potential energy of the hard-core bosons at imaginary time τ . As is clear from equation (B6), the weight of
the configuration is positive and can be sampled by the Monte Carlo method. Following the detailed update
procedures in [32], the partition function can be efficiently sampled by Worm-type algorithms. The
imaginary-time Green’s function G(l− l ′, τ) defined in equation (A7) just corresponds to−⟨Tτ n̂l(τ)n̂l ′(0)⟩
asides from unimportant constants. Since n̂l(τ) is diagonal in the Fock basis, the statistics can be easily
accumulated in Monte Carlo simulations. We perform the simulation with system size L= 100 at various
values of transverse field g to prepare the training and testing datasets.
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