
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

End-to-end AI framework for interpretable
prediction of molecular and crystal properties
To cite this article: Hyun Park et al 2023 Mach. Learn.: Sci. Technol. 4 025036

View the article online for updates and enhancements.

You may also like
Microfabricated Acetylcholinesterase-
based Electrochemical Biosensors for
Detection of Organophosphorus Nerve
Agents
Chelsea Monty, Ilwhan Oh, Richard Masel
et al.

-

The 2022 applied physics by pioneering
women: a roadmap
Begoña Abad, Kirstin Alberi, Katherine E
Ayers et al.

-

Elastic modulus scaling in graphene-metal
composite nanoribbons
Kaihao Zhang, Mitisha Surana, Richard
Haasch et al.

-

This content was downloaded from IP address 122.163.64.247 on 11/07/2023 at 13:35

https://doi.org/10.1088/2632-2153/acd434
https://iopscience.iop.org/article/10.1149/MA2007-01/35/1255
https://iopscience.iop.org/article/10.1149/MA2007-01/35/1255
https://iopscience.iop.org/article/10.1149/MA2007-01/35/1255
https://iopscience.iop.org/article/10.1149/MA2007-01/35/1255
https://iopscience.iop.org/article/10.1088/1361-6463/ac82f9
https://iopscience.iop.org/article/10.1088/1361-6463/ac82f9
https://iopscience.iop.org/article/10.1088/1361-6463/ab7329
https://iopscience.iop.org/article/10.1088/1361-6463/ab7329

Mach. Learn.: Sci. Technol. 4 (2023) 025036 https://doi.org/10.1088/2632-2153/acd434

OPEN ACCESS

RECEIVED

21 December 2022

REVISED

11 April 2023

ACCEPTED FOR PUBLICATION

10 May 2023

PUBLISHED

29 June 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

End-to-end AI framework for interpretable prediction of molecular
and crystal properties
Hyun Park1,3,8, Ruijie Zhu2,3, E A Huerta3,4,5,∗, Santanu Chaudhuri3,6, Emad Tajkhorshid1,7,8

and Donny Cooper9
1 Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, United States of America

2 Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America
3 Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
4 Department of Computer Science, The University of Chicago, Chicago, IL 60637, United States of America
5 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
6 Multiscale Materials and Manufacturing Lab, University of Illinois Chicago, Chicago, IL 60607, United States of America
7 Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
8 Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of
America

9 Computational Science and Engineering, Data Science and AI Department, TotalEnergies EP Research & Technology USA, LLC,
Houston, TX 77002, United States of America

∗ Author to whom any correspondence should be addressed.

E-mail: elihu@anl.gov

Keywords: AI, inorganic crystals, small molecules, metal-organic frameworks, interpretable AI

Abstract
We introduce an end-to-end computational framework that allows for hyperparameter
optimization using the DeepHyper library, accelerated model training, and interpretable AI
inference. The framework is based on state-of-the-art AI models including CGCNN, PhysNet,
SchNet, MPNN, MPNN-transformer, and TorchMD-NET. We employ these AI models along with
the benchmark QM9, hMOF, and MD17 datasets to showcase how the models can predict
user-specified material properties within modern computing environments. We demonstrate
transferable applications in the modeling of small molecules, inorganic crystals and nanoporous
metal organic frameworks with a unified, standalone framework. We have deployed and tested this
framework in the ThetaGPU supercomputer at the Argonne Leadership Computing Facility, and in
the Delta supercomputer at the National Center for Supercomputing Applications to provide
researchers with modern tools to conduct accelerated AI-driven discovery in leadership-class
computing environments. We release these digital assets as open source scientific software in
GitLab, and ready-to-use Jupyter notebooks in Google Colab.

1. Introduction

With the explosion of AI models [1–5] developed to predict various material properties over the recent years,
it has become difficult to keep track of the available AI models and the datasets that are used for training and
inference. Numerous efforts [6, 7] have been made toward the integration of AI models and their associated
datasets in one place to streamline their use for a wide range of applications and a broad community of
users [8–10]. AI models and datasets are often available through open repositories, in the best scenario, so a
user can download, deploy and reproduce their putative capabilities. Unfortunately, this is a time-consuming
and laborious process, which can be further complicated when tools and libraries used to develop the AI
models are not available, deprecated, or non-backwards compatible in computing environments of new
users. Furthermore, most of the existing packages are specialized in predicting quantum mechanical
properties of small molecules, few of them support crystals.

In order to address these shortcomings, here we report the construction of a computational framework
that consolidates libraries, AI models and AI interpretability tools to study molecules, crystals, and

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/acd434
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/acd434&domain=pdf&date_stamp=2023-6-29
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5550-5610
https://orcid.org/0000-0001-9316-7245
https://orcid.org/0000-0002-9682-3604
https://orcid.org/0000-0002-4328-2947
https://orcid.org/0000-0001-8434-1010
https://orcid.org/0000-0002-2432-972X
mailto:elihu@anl.gov

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

metal-organic frameworks. The framework enables hyperparameter tuning through the open source library
DeepHyper [11], model training, and interpretable inference of small-molecule quantum mechanics (QM)
properties from public datasets such as QM9 [12], and crystal properties from datasets such as hMOF [13]. Key
aspects of this computational framework include:

Novel features of AI models. The node and edge embedding schemes of two graph neural network models,
PhysNet [2] and CGCNN [5], were modified from the original adjacency matrix format to an adjacency list
format to reduce redundant information and enable faster training. We also adapted small-molecule
property prediction models to take in crystal structures as input such as the crystal version of SchNet [1].

Transferable AI applications.We demonstrate the transferability of the learned force fields by training
TorchMD-NET [3] model using selected molecular dynamics (MD) trajectory data of a given set of molecules
in the MD17 dataset [14] to perform MD simulations of similar molecules. In particular, we show that a
model trained based on ethanol is transferable to both n-propanol and iso-propanol, and a model trained
based on uracil is transferable to pyrimidine and naphthalene. All of the results are automatically logged to
weights and biases (WandB) [15], a machine learning tracking tool, for simple access.

Interpretable AI inference. Interpretation methods provide a novel pathway to deepen the understanding of
the structure-property relationships of materials. Previous work [16] has shown great success in applying
interpretation methods to identify key functional groups in molecules that contribute to toxicity, including
Excitation Backpropagation [17], CAM [18] and Grad-CAM [19] and Contrastive gradient [20]. Moreover,
The uniform manifold approximation and projection (UMAP) method has also been applied to effectively
visualize the distribution shift of sampled molecules on a 2D plane with and without transfer learning [21].
To gain a better understanding of model predictions, we provide two interpretation methods to explain the
learned features. The first method, Grad-CAM, highlights selected atoms of molecules that are significant for
model predictions. The second method, uniform manifold approximation and projection [22], or UMAP,
maps the last hidden layer of the model onto a 3D plane. In this way, we can make more sense of the
molecular clusters with similar properties.

This AI suite and scientific software are released with this manuscript, and may be found in GitLab [23].
To facilitate the use of these resources, we have prepared Jupyter notebooks in Google Colab [24], which have
been tested independently by researchers not involved in this work to ensure that these resources are easy to
follow and use. To ensure that all the resources used in this article are self-contained, we have also published
the datasets used for these studies in Zenodo [25]. We expect that this collection of state-of-the-art graph
neural networks, transformer models, and analysis methods for small molecules and crystals will empower
AI practitioners to seamlessly perform hyperparameter optimization, accelerated training, and interpretable
AI inference in modern computing environments with a unified, standalone computational framework.

2. Related work

Graph neural networks have shown great success for modeling molecular and crystal structures. For small
molecules, a suite of models have been proposed, including DimeNet [4], GemNet [26], SphereNet [27],
ComENet [28], SchNet [1] and PhysNet [2]. These models take in atomic coordinates and atomic numbers
as input, and represent atoms as nodes and bonds as edges. Typical target properties for these models are QM
properties of molecules such as internal energy, heat capacity and zero point vibrational energy (ZPVE). For
crystal structures, periodic boundary conditions need to be considered, therefore crystal graph
representations are typically used. Example graph neural networks that take in crystal structures as input
include ALIGNN [29], CGCNN [5], and MEGNet [30]. These models first extract crystal graphs from the
structures, then generate atom and edge embeddings for the center atoms and their neighbors. The bond and
edge information is then updated via message passing. The target properties for these models are typically
QM properties of crystals, e.g. formation energy and band gap.

The growing number of the graph neural networks available for this purpose pushes the need for an
end-to-end AI framework. Previous efforts toward such a goal typically missed one or more important
aspects. For example, MatDeepLearn [7] integrates a suite of graph neural networks, including CGCNN,
MEGNet, MPNN [31], GCN [32] and SchNet. Although it can be used for hyperparameter tuning, model
training, and inference, it lacks the explainability feature, which limits the amount of chemical insights that
could be extracted from the results. Another example is dive in graphs [6], which enables model training and
explanation. However, it does not allow for hyperparameter tuning, therefore only models with preset
hyperparameters can be used. A complete package offering all of the aforementioned functionalities is
therefore needed.

2

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Our AI framework also offers the functionality to perform MD simulations for small molecules, enabled
by TorchMD-NET, an SE3-equivariant transformer interatomic potential model that establishes a
relationship between atomic configurations and potential energies and forces. The MD trajectories of
selected molecules taken from the MD17 dataset were used for training the TorchMD-NETmodels.

3. Methods

Here we describe the key building blocks of our general-purpose AI framework:

(i) It provides built-in datasets and neural networks that we modified to take in adjacency list format node
and edge embeddings, a more memory efficient embedding scheme than adjacency matrix format

(ii) It enables distributed hyperparameter tuning of neural networks via the scalable and computationally
efficient library DeepHyper

(iii) Model training and interpretable inference are performed by specifying a few command line arguments
(iv) Results are auto-logged to WandB, a machine learning tool for easy tracking and visualization
(v) MD simulations can be performed for small molecules using TorchMD-NET if trained with MD

trajectories from the MD17 dataset, enabled by the atomic simulation environment (ASE) library [33].

This framework has been deployed and tested in leadership computing platforms to reduce the overhead
for researchers that require access to hyperparameter tuning, model training and explainable inference tools
in a single, unified framework. Below we describe each of these components in further detail.

3.1. Hyperparameter tuning
This feature was done using the DeepHyper [11] library. In this method, hyperparameters of interest are
given prior distributions and their posterior distributions are adjusted based on the centralized Bayesian
optimization (CBO) algorithm with a given acquisition function and a surrogate model. The graph neural
networks in this framework are coupled with DeepHyper to enable faster hyperparameter tuning.

3.2. Datasets
QM9 and MD17 datasets were used as input to graph neural networks. The QM9 dataset consists of molecular
structures and QM properties of 133 885 molecules with up to nine atoms of type H, C, O, N and F. For
demonstration purposes, the selected QM properties in this work include the highest occupied molecular
orbital (HOMO), and ZPVE. The MD17 dataset consists of ab-initioMD trajectories of ten molecules at different
levels of theory. Both datasets are available in the PyTorch Geometric library.

3.3. Node and edge embedding schemes
Instead of using the original adjacency matrix format for node and edge embeddings, we modified it to
adjacency list format. The term embedding, for both molecular and crystal graphs, refers to the information
attached to a node (an atom) or an edge (a bond). Both node and edge embeddings can be scalars, vectors or
higher order tensors. Node embeddings encode information such as mass, charge and orbital hybridization,
whereas edge embeddings encode information such as interatomic distance and bond order. Depending on
the model architecture, some embeddings are physics- or chemistry-based while others are learned. For
physics- or chemistry-based embeddings, fixed information such as hybridization, mass, atomic radius, and
whether the fragment is a part of an aromatic ring is encoded. On the other hand, learned embeddings refer
to embeddings that are iteratively optimized by a neural network model via stochastic gradient descent.

In adjacency matrix format edge embeddings, the adjacency matrix is encoded into a fixed-size matrix,
whose size is determined by the largest molecule in the dataset. For other molecules, their vectors are padded
to be the same dimension as the largest one. Each element in the adjacency matrix indicates whether the two
corresponding nodes are connected, as determined via some distance-based criteria. Since padding is applied
to smaller molecules in the matrix, users need to know a priori the largest molecule size, then perform
masking to obtain the padding values, which can be burdensome for graphics processing units (GPU)
memories. By using the adjacency list format, however, only the information for connected atoms is
preserved, thereby avoiding the need for padding and taking less memory to load. In this case, faster loss
convergence and higher prediction accuracy are expected. The adjacency list format has been implemented
in a number of Python libraries such as Deep Graph Library (DGL) [34] and PyTorch
Geometric [35]. In this work, we use CGCNNmodel as an example to demonstrate a boost in model training
performance when an adjacency list format is used in place of an adjacency matrix format.

Our AI framework allows users to perform hyperparameter tuning, model training and interpretable
inference for pre-trained models or train new models with a few arguments passed. The main improvements

3

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

over previously proposed general-purpose machine learning model libraries is the explainability feature,
which consists of two parts. First, by extracting high dimensional hidden layer information from the learned
models and projecting it onto low dimensions via the UMAP method, we can effectively visualize the
clustering of molecules, with similar practice as in [36–38]. Second, Saliency Map [39], CAM and
Grad-CAMmethods are used to highlight important atoms in molecular graphs, as described in [40].

4. Results

Below we present a comprehensive analysis of our results, from hyperparameter optimization to
interpretable AI inference.

4.1. Hyperparameter optimization
The DeepHyper library is used for hyperparameter optimization of graph neural networks. DeepHyper is
easy to use and can be readily deployed on GPU-based high-performance computing platforms. central
processing units (CPUs) can be used if GPUs are not available. However, if the user has access to multiple
GPUs, then the GPU option will be automatically chosen, with each core performing hyperparameter search
using the CBO algorithm, given an acquisition function such as the upper confidence bound, and a surrogate
model, e.g. random forest.

The list of hyperparameters considered in this work along with their ranges are summarized in table 1.
Hyperparameter optimization results for PhysNet with ZPVE as target property are shown in tables 2 and 3.
It is worth mentioning that since DeepHyper tries to maximize the objective of search, the opposite number
of validation error was used as the objective, therefore a larger absolute value of objective corresponds to a
better combination of hyperparameters. The hyperparameter tuning results for PhysNet with HOMO as the
target property are shown in tables A1 and A2. For hyperparameters with integer or floating number values,
the ranges represent the lower and upper bounds. For hyperparameters amp and optimizer, the ranges
represent all available options.

Among the hyperparameters, agb, or accumulated grad batches, helps overcome memory constraints;
amp, or automatic mixed precision, speeds up neural network training; and gradient clip, a machine
learning technique where the gradients of neural network parameters are rescaled to between 0 and 1, is
known to stabilize neural network training by avoiding sudden changes in parameter values (also known as
the exploding gradient problem) [41].

The optimal hyperparameter combinations found by DeepHyper are listed in the top rows of tables 2
and 3, with the optimal objective being−0.9226. We notice that this set of hyperparameters include f32
precision (amp= ‘false’), a standard learning rate (0.002 96), and a low gradient norm clipping value
(0.002 45). These result in small gradient accumulation, which may help mitigate sudden gradient updates.

We have tested multiple sets of hyperparameters with varying ranges and prior distributions. Our
hyperparameter tuning configuration input file is prepared in YAML format. Discrete hyperparameter values
such as the number of epochs and the batch size are sampled from uniform distributions whereas continuous
hyperparameters such as the learning rate and the gradient clip are sampled from normal distributions
with/without log scale. The ranges of hyperparameters along with the prior distributions for sampling are
both user-customizable.

Once the hyperparameter configuration and the prior distributions are in place, DeepHyper can use
multiple GPUs to perform hyperparameter tuning, taking full advantage of GPU parallelization. Next, all the
optimization results will be saved and automatically logged to Weights and Biases. If the tuning step is
interrupted, it can be resumed from the last saved checkpoint by specifying the ----resume tag.

For the PhysNetmodel with HOMO and ZPVE as target properties, we compared hyperparameter tuning
performance of DeepHyper with a naive algorithm that performs random selection of hyperparameters.
Since DeepHyper utilizes the CBO algorithm to optimize hyperparameters, the target property values are
used for decision making. For the naive algorithm, however, hyperparameters were randomly selected from
the hyperparameter grid in table 1. A total of 20 models were trained for 30 epochs with hyperparameters
given by the two methods. The distributions of the losses (mean squared error) are compared in figure 1, and
the metrics are summarized in table 4.

Key findings: For the prediction of HOMO and ZPVE, DeepHyper yields better hyperparameter combinations,
which accelerate convergence and provide optimal performance.

4.2. AI model training
We trained PhysNet, SchNet, MPNN and MPNN-transformer (with attention mechanism) with HOMO and
ZPVE as target properties from the QM9 dataset. The models were trained for 1500 epochs to ensure
convergence of validation loss. A new model is saved when the validation loss drops. The model training

4

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Table 1. List of hyperparameters and their ranges.

Hyperparameter Log scale Range

agb True [1, 20]
amp False [True, False]
batch size / [128, 512]
epochs True [10, 100]
gradient clip True [1× 10−05, 2]
learning rate True [1× 10−3, 1]
optimizer / [SGD, TorchAdam, Adam, LAMB]
weight decay True [2× 10−6, 0.02]

Table 2. Top ten DeepHyper hyperparameter combinations for PhysNet with ZPVE as target property.

agb amp batch_size gradient_clip

4 TRUE 190 0.002 45
3 TRUE 190 0.000 22
1 TRUE 397 0.000 32
4 TRUE 196 0.001 22
3 TRUE 174 1.60× 10−05

4 TRUE 154 3.25× 10−05

4 TRUE 300 0.732
4 TRUE 228 0.003 89
2 FALSE 359 0.725 37
11 TRUE 168 0.002 43

Table 3. As table 2 for the rest of parameters optimized through DeepHyper.

learning_rate optimizer weight_decay objective

0.002 96 torch_adam 1.03× 10−05 −0.9226
0.751 69 torch_adam 5.14× 10−06 −6.7526
0.000 15 lamb 2.69× 10−06 −6.7925
0.322 74 lamb 1.45× 10−05 −7.1168
0.176 73 lamb 7.80× 10−06 −12.31
0.001 44 torch_adam 1.13× 10−05 −15.394
0.029 86 lamb 3.57× 10−06 −26.13
0.009 66 torch_adam 7.16× 10−06 −27.627
0.024 91 sgd 1.04× 10−05 −29.335
0.001 24 torch_adamw 0.000 11 −30.203

Figure 1. Comparison of the loss distributions of PhysNet with hyperparameters found by DeepHyper (blue) and a naive
random selection algorithm (gray). Two outliers for the DeepHyper_HOMO box were neglected to retain details.

5

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Table 4. Performance of 20 models with hyperparameters found by DeepHyper and a naive random selection algorithm with HOMO and
ZPVE as target properties. For both properties, the minimum loss and the standard deviation of loss are reported.

HOMO ZPVE

min_loss std_loss min_loss std_loss

DeepHyper 1.604 74.871 0.923 31.771
Naive Algorithm 6.632 52.43 1.751 65.117

Figure 2. From left to right, model inference performance of PhysNet, SchNet, MPNN and MPNN-transformer with HOMO (top
row) or ZPVE (bottom row) as the target property.

Figure 3.Model training performance of PhysNet with HOMO (left) and ZPVE (right) as target properties, initialized with five
random seeds.

results are summarized in figure 2. We found that ZPVE is an easier property to learn compared to HOMO for
all four models, as indicated by significantly lower losses. Moreover, the addition of attention layer in the
MPNNmodel (MPNN-transformer) further lowers the mean absolute error (0.09 eV for HOMO and 0.01 eV for
ZPVE) compared to the original MPNNmodel (0.15 eV for HOMO and 0.03 eV for ZPVE).

Model uncertainty quantification was performed for PhysNetmodel with HOMO and ZPVE as target
properties. Five PhysNetmodels with randomly initialized weights were generated using the random seeds
method. The optimal hyperparameter combinations found by DeepHyper in section 4.1 were used. The
models were trained for 100 epochs to achieve convergence of loss function. Figure 3 shows that PhysNet
makes consistent predictions regardless of the random initial weights. The standard deviations of losses for
the five models with HOMO and ZPVE as target properties are 0.0379 eV and 3.9646× 10−05 eV, respectively,
and the mean absolute errors are comparable with those reported in the literature [42].

Key findings: Our suite of AI models provide state-of-the-art results. Novel features that we added to the
models, such as attention in MPNN-transformer, further improve model performance. We have also
demonstrated that hyperparameter optimization leads to stable, statistically robust AI predictions.

6

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Figure 4. Left panel, comparison of the original CGCNN model (black) with adjacency matrix format node and edge embedding
schemes and the modified CGCNN model (red) with adjacency list format node and edge embedding schemes. Right panel,
inference performance of the modified CGCNN model on a test set of 500 MOFs of the hMOF dataset.

4.3. Model improvement via modified node and edge embedding schemes
We modified the node and edge embedding schemes of CGCNNmodel from the original adjacency matrix
format to an adjacency list format. There are two main advantages in using the adjacency list format. First,
compared to the adjacency matrix format, it takes up less memory for loading, which speeds up model
training. Second, the redundant information (zero paddings) in the representation is removed, resulting in
higher training accuracy and stability. As an example, CGCNNmodels with the two embedding schemes were
trained on a subset of the hMOF database [43], which contains 5000 randomly selected MOF structures along
with their CO2 working capacities at 2.5 bar. The 5000 MOFs are splitted into 80% training set, 10%
validation set and 10% test set. The mean absolute error on the test set as a function of training steps for both
models are shown in left panel of figure 4. To smooth out local fluctuations, thirty point moving averaging
was performed on both curves. We notice that the modified CGCNNmodel achieved faster convergence speed,
higher training stability, and a lower mean absolute error compared to the original model.

From the right panel of figure 4, we show that the modified CGCNNmodel predicts CO2 working capacity
with an R2 score of 0.93 and a mean absolute error of 0.53 mmol g−1. To better understand the predictive
performance of the modified CGCNNmodel, we benchmarked it against two recently proposed machine
learning models for predicting CO2 working capacity of MOFs, namely ALIGNN [44] and random forest
regressor [45].

When trained on the entire hMOF dataset, ALIGNN predicts CO2 working capacity at 2.5 bar with a
mean absolute error of 0.48 mmol g−1 [44]. ALIGNN uses both normal graph and line-graph embedding
schemes for training and inference of working capacity prediction. For a normal graph, it uses physical and
chemical features for node embedding, and distances between atoms as edge embedding; for a line graph,
distances correspond to nodes whereas bond angles correspond to edges. This scheme, however, can cause
occasional CUDA memory issues and training batch size may have to be reduced (64 in [44]; 32 in our
independent experiment), hence slower training. On the other hand, our modified CGCNNmodel only takes
in crystal structures as input (i.e. atomic species and Cartesian coordinates) with larger batch size (256 in our
model).

The random forest regression model takes in topological, structural, and word embedding features as
input. When trained on the entire hMOF dataset, it achieves an R2 and root mean squared error (RMSE)
score of roughly 0.95 and 0.65, respectively, for the prediction of CO2 working capacity at 2.5 bar. We show
some of the predictions of our modified CGCNNmodel, and compare them to ground truth carbon dioxide
adsorption values, in figure 5.

In other papers, extensive physical and chemical featurization schemes were used [46, 47] to feature the
MOF structures, whereas our modified CGCNNmodel captures MOF information solely from atom species
and coordinates.

It is worth noting that we trained the modified CGCNNmodel on 5000 randomly selected MOFs instead
of all of the structures, therefore lower prediction error is expected if the model is trained on the entire
hMOF dataset. Overall, the modified CGCNNmodel achieves competitive predictive performance compared
to state-of-the-art machine learning models.

Key findings: Adopting adjacency list format node and edge embedding scheme improves the predictive
capabilities of our modified CGCNNmodel. When making inference on a test set of 500 MOFs from the hMOF

7

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Figure 5. Sample MOF structures in the hMOF database along with the AI predicted and ground truth CO2 working capacities at
2.5 bar.

Figure 6. Example molecules used to demonstrate the transferability of TorchMD-NET. MD trajectories of molecules on the left
are used to train the TorchMD-NET models, which are then used to perform MD simulations for the molecules on the right.

dataset, we have found that our modified CGCNNmodel provides state-of-the-art predictions for CO2

working capacities at 2.5 bar.

4.4. Transferable AI applications
MD simulations of two sets of small molecules were performed to demonstrate the transferability of
TorchMD-NET: from ethanol to n-propanol/iso-propanol, and from uracil to pyrimidine/naphthalene.

In figure 6, within each set, the TorchMD-NETmodel trained with MD trajectories of the molecule on the
left was used to perform MD simulations of the molecules on the right. The NVE ensemble was used, where
the total number of particles in the simulation box and the box volume are fixed, and the total energy is
conserved. For all molecules, the timestep and the total simulation time were chosen to be 0.1 fs and 10 ps
(100 000 timesteps), respectively. Figure 7 shows that the C–C and C–O bond length distributions of ethanol,
propanol and iso-propanol have similar means, whereas the latter two have a larger spread. It is worth noting
that for propanol, the C–C bond length closer to the oxygen atom has a similar distribution to that of ethanol,
which is expected because their local environments are similar. For bond angles, The C–C–O bond angle
distribution of ethanol exhibits two peaks, whereas the other two only have one peak. For uracil, pyrimidine
and naphthalene, the C–C bond length distribution of naphthalene is shifted to a higher range compared to
the other two, which may be due to the absence of N atoms in its ring structure. The C–N bond length
distributions of uracil and pyrimidine have similar means, whereas the latter has a larger spread. Similarly,
we observe comparable C–C–C bond angle distributions in uracil and pyrimidine, whereas the same

8

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Figure 7. Top row, distributions of select bond lengths and angles in ethanol, n-propanol, and iso-propanol. Bottom row,
distributions of select bond lengths and angles in uracil, pyrimidine, and naphthalene. Propanol_close and propanol_far of C–C
bond correspond to bonds that are close and far away from the oxygen atom in propanol.

distribution for naphthalene is shifted to a higher range, again an effect which may be due to the absence of N
atoms in naphthalene’s ring structure. The similarity and differences of bond length and angle distributions
demonstrate that TorchMD-NET trained on one type of molecule is transferable to other similar molecules.

Key findings:We present a novel application of TorchMD-NET, in which this AI model was fine-tuned to
describe a given small molecule by accurately predicting its potential energy and forces and perform NVE
MD simulations, and then seamlessly used to describe other molecules with different structures, while still
capturing physically realistic bond length and angle distributions.

4.5. Interpretable inference
Here we explore the use of explainable AI and dimension reduction techniques. This is motivated by recent
studies in which explainable AI approaches, such as Excitation Backpropagation [17], CAM [18] and
Grad-CAM [19] and Contrastive gradient [20], were used to identify key functional groups in molecular
structures which contribute to toxicity [16]. Similarly, dimension reduction has been used to visualize the
distribution shift of sampled molecules in the feature space with or without transfer learning [21]. We
explore the use of these tools to gain new insights into the information that our AI suite extracts from input
data to produce reliable predictions.

Model performance attribution. By projecting the second last layer’s high dimensional vector representation
of graph neural network onto molecular structure and visualizing the projection, we can better understand
the physical and chemical properties of the input data that affect predictions of our AI models. The top
panels of figure 8 present model interpretation results of how PhysNetmodel predicts HOMO based on
molecular structures via the Grad-CAMmethod. The N atoms and the H atoms connected to them are
highlighted, possibly indicating that for PhysNet, these atoms carry more weight in the prediction of HOMO.
We do not claim that explanations found by our deep learning model are the definite reasons for accurate
prediction of QM properties such as HOMO or ZPVE, since these QM properties may not be simply determined
by atomic species and coordinates. However, AI-explained visualization can help us better make sense of the
patterns of complex molecular property predictions.

Dimension reduction. To reveal the correlation between model features and target properties, we applied the
UMAP dimension reduction technique to find the distributions of small molecules by projecting their
high-dimensional structural and chemical data onto low-dimension spaces. UMAP has been shown to
achieve comparable or even better performance than other dimension reduction techniques such as principal
component analysis [48] and t-distributed stochastic neighbor embedding [49] on non-linear datasets [50].
Dimension reduction results for PhysNetmodel with HOMO as target property is shown in the bottom panel
of figure 8, where each dot in the plot represents a molecule, color-coded based on its HOMO value. A 10%
randomly selected subset (13.4 k molecules) of the QM9 dataset was used to produce these results, which

9

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Figure 8. Top panels: exploration of the PhysNet model prediction using Grad-CAMmethod. The N atoms and the H atoms
connected to them are highlighted in red, indicating that they carry more weight in HOMO prediction. Bottom panel: UMAP
dimension reduction results for the PhysNet model with HOMO as target property. Gold and purple dots represent molecules with
high and low HOMO values, respectively.

consists of stable small molecules composed of CHONF. From the scatter plot we know that molecules with
similar HOMO values are clustered together and there is clear separation of molecules with low and high HOMO
values. We present additional illustrative results in appendix B.

Roughness of molecular property landscape. For molecular property prediction, the predictive
performance of graph neural networks has been shown to correlate to the roughness of molecular property
landscape [51–53]. We adopted the recently proposed state-of-the-art roughness index (ROGI) [54] to
measure how rough the HOMO and ZPVE landscapes are for four graph neural network models: PhysNet,
SchNet, MPNN, MPNN-transformer. The calculation of molecular landscape roughness involves specifying a
molecular representation and a distance metric. Molecular representations can be either learned by the graph
neural network, with values extracted from the second last layer, or calculated based on molecular structures,

10

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Figure 9. Roughness of the HOMO landscape (gray) and mean absolute error of model predictions (blue) for PhysNet, SchNet,
MPNN and MPNN-transformer.

as represented by SMILES strings or 3D Cartesian coordinates. The distance metrics are used to measure how
different two molecular representations are. Example distance metrics include Tanimoto similarity,
Euclidean distance, cityblock distance and cosine distance. To calculate the ROGI values, learned molecular
representation and one of the aforementioned distance metrics are used. Using Euclidean distance as the
distance metric and HOMO as the target property, we show the ROGI values and mean absolute errors of four
graph neural networks in figure 9. We observe that a lower ROGI value in general corresponds to a lower
mean absolute error, that is, higher predictive performance. We attribute this trend to the direct relation of a
higher performing model to the smoothness of the resulting molecular property landscape. The exception is
MPNN, which corresponds to a lower ROGI value despite a higher MAE as compared to the
MPNN-transformer, which may be because the addition of transformer layers roughens the molecular
property landscape while facilitating model training.

Key findings: Our proposed approach brings together disparate interpretability AI tools to explore and make
sense of AI model predictions, encompassing model performance attribution and scientific visualization;
dimension reduction with UMAP to explore clustering of molecules with similar properties; and metrics
such as the roughness index to quantify the predictive performance of our AI models for QM properties.
These complementary tools provide valuable insights into the features and patterns of input data that are
relevant for AI inference.

5. Conclusion

The rise of AI in the early 2010s was possible by a combination of elements, including disruptive technologies
and computing approaches, as well as the desire to advance state-of-the-art practice through collaborative
and friendly competitions in which high-quality datasets and AI models were freely shared. Similar
approaches have been mirrored in science and engineering in recent years. These efforts are now being
formalized through FAIR (findable, accessible, interoperable and reusable) initiatives [55, 56] in the context
of scientific datasets [57], research software [58] and AI models [8, 59]. This study represents yet another
significant step in this direction. We have assembled benchmark datasets, added novel features to
state-of-the-art graph neural networks and transformer models, coupled them with robust libraries for
hyperparameter tuning to improve their capabilities for scientific discovery, and developed and adapted a set
of visualization and interpretability tools to make sense of the AI predictions. All these elements are unified
within a single computational framework that has been deployed and extensively tested on leadership-class,
high-performance computing platforms. Researchers using this computational framework will be able to
conduct scientific discovery combining state-of-the-art AI models with datasets that are coupled with
advanced supercomputing platforms. We expect that this approach will catalyze the sharing of AI knowledge
and tools in the context of molecular and crystal property prediction applications.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://doi.
org/10.5281/zenodo.7758490.

11

https://doi.org/10.5281/zenodo.7758490
https://doi.org/10.5281/zenodo.7758490

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Acknowledgments

This work was supported by the FAIR Data program and the Braid project of the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research, under Contract Number DE-AC02-06CH11357.
It used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357. This work was supported by Laboratory Directed
Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director,
Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This
research used the Delta advanced computing and data resource which is supported by the National Science
Foundation (Award OAC 2005572) and the State of Illinois. Delta is a joint effort of the University of Illinois
at Urbana-Champaign and its National Center for Supercomputing Applications. We thank Prasanna
Balaprakash and the DeepHyper team for their expert support and guidance as we coupled their library into
our computational AI framework.

Code availability

The AI models presented in this article are open source in GitLab [23]. We also provide a stand alone Colab
tutorial [24] that shows users how to use our framework, i.e. loading data and AI models, doing AI inference,
and interpreting AI model predictions. Following best practices, the datasets used in these studies are
published in Zenodo [25]. We provide an exemplary case of our published AI suite in appendix B.3.

Appendix A. Hyperparameter optimization results of PhysNet with HOMO as target
property

Table A1. Top ten DeepHyper hyperparameter combinations for PhysNet with HOMO as target property.

agb amp batch_size gradient_clip

3 TRUE 235 1.36× 10−01

1 TRUE 349 1.10× 10+00

14 FALSE 130 5.40× 10−05

3 FALSE 159 1.79× 10−02

5 TRUE 404 8.24× 10−02

4 TRUE 460 7.21× 10−02

13 TRUE 160 3.42× 10−05

4 FALSE 147 6.16× 10−02

7 TRUE 163 1.90× 10−01

1 TRUE 258 3.58× 10−02

Table A2. As table A1 for the rest of parameters optimized through DeepHyper.

learning_rate optimizer weight_decay objective

1.15× 10−03 sgd 2.94× 10−05 −1.604
8.69× 10−04 sgd 2.30× 10−06 −2.454
1.49× 10−04 lamb 1.17× 10−03 −2.976
5.64× 10−01 lamb 2.09× 10−04 −3.323
1.38× 10−03 sgd 4.83× 10−05 −6.474
2.33× 10−02 sgd 2.84× 10−04 −7.214
4.61× 10−04 lamb 1.74× 10−04 −12.494
5.99× 10−04 torch adamw 1.59× 10−03 −14.5111
5.26× 10−01 lamb 1.44× 10−04 −18.0449
6.95× 10−01 lamb 8.62× 10−05 −29.505

12

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Appendix B. Examples of model explainability features

We present results to complement the interpretable AI analysis presented in section 4.5. Figure B1 illustrates
what information AI models may extract from input data to make predictions that are consistent with
state-of-the-art knowledge on QM properties.

B.1. Grad-CAM interpretation

Figure B1.Molecular graphs (top row) and Grad-CAM interpretations (bottom row) of PhysNet with HOMO as target property
for three example molecules. The N atoms and the H atoms attached to them are highlighted in red, indicating that they carry
more weight in model predictions.

B.2. UMAP interpretation
Figure B2 shows that we can turn our AI predictors into feature extractors to explore clustering of molecules
with similar properties.

13

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

Figure B2. UMAP dimension reduction results for SchNet (top left panel), MPNN (top right panel) and MPNN-transformer
(bottom panel) with HOMO as target property. A randomly selected 10% subset (13.4 k molecules) of the QM9 dataset was used for
analysis, which consists of stable small organic molecules composed of CHONF.

B.3. Example code
Here we provide an exemplar of our released AI suite [24]. The scientific software below shows, step-by-step,
how to download the hMOF dataset that we published in Zenodo [25], and then how to use our CGCNNmodel
to infer CO2 adsorption for a variety of MOF structures.

Listing 1. Exemplar of our step-by-step tutorials, published in [24], which shows how to combine the hMOF
dataset and our CGCNNmodel to compute CO2 adsorption for a variety of MOF structures.

1
2 #Below pip install all necessary packages
3 !pip install torch torchvision torchaudio --extra-index-url https://download.

pytorch.org/whl/cu116
4 !pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv

torch_geometric -f https://data.pyg.org/whl/torch-1.13.0+cu116.html
5 !pip install pytorch-lightning
6 !pip install dgl -f https://data.dgl.ai/wheels/cu116/repo.html
7 !pip install dglgo -f https://data.dgl.ai/wheels-test/repo.html
8 !pip install rdkit

14

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

9 !pip install einops curtsies p_tqdm transformers pathlib scikit-image argparse
wandb cairosvg h5py pynvml jupyter

10 !pip install persim ripser ray PyCifRW fairscale ase fast-ml
11 !pip install pymatgen timm captum
12 !pip install MDAnalysis
13 !pip install scikit-tda umap-learn plotly dash
14
15 #Below import relevant packages
16 import torch, torch_geometric, torch_cluster, pytorch_lightning, dgl, ray,

rdkit, ripser, sklearn, transformers, timm, h5py, cairosvg, ase, os, sys,
pymatgen, os

17
18 #Below set variable names
19 ROOT="/content"
20 os.chdir(ROOT)
21 DATA_ROOT=os.path.join(ROOT,"data")
22 CRYSTAL_DATA_ROOT=os.path.join(ROOT, "hMOF/cifs")
23 SAVE_ROOT=os.path.join(ROOT, "pretrained_models")
24 os.makedirs(SAVE_ROOT, exist_ok=True)
25 os.makedirs(DATA_ROOT, exist_ok=True)
26
27 #Below get tar-zipped gitlab repository
28 !wget https://zenodo.org/record/7758490/files/ai4molcryst_argonne-0.0.1.tar.gz?

download=1 -O ai4molcryst_argonne-0.0.1.tar.gz
29 !tar -xvf ai4molcryst_argonne-0.0.1.tar.gz
30 !ls ai4molcryst_argonne-0.0.1/
31
32 #Below move some necessary files
33 os.chdir("ai4molcryst_argonne-0.0.1")
34 !mv main/main_pub.py .
35 !mv main/config_pub.py .
36 !mv main/dlhub.py .
37 os.system("mv dlhub.py dlhub.yaml")
38
39 #Below import modules and define dictionary
40 import main_pub
41 import config_pub
42 from train.dist_utils import *
43 from main_pub import *
44 import yaml
45
46 with open("dlhub.yaml","r") as f:
47 d = yaml.safe_load(f)
48 class obj(object):
49 """dict to object"""
50 def __init__(self, d):
51 for k, v in d.items():
52 if isinstance(k, (list, tuple)):
53 setattr(self, k, [obj(x)if isinstance(x, dict) else x

for x in v])
54 else:
55 setattr(self, k, obj(v) if isinstance(v, dict) else v)
56 opt = obj(d)
57
58 #Below download hMOF dataset
59 os.chdir(ROOT)
60 !wget https://zenodo.org/record/7758490/files/cifs.zip?download=1 -O cifs.zip
61 !unzip cifs.zip
62 os.chdir("ai4molcryst_argonne-0.0.1")

15

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

63
64 #Below download pretrained CGCNN model from Zenono
65 !mkdir pretrained_models
66 !wget https://zenodo.org/record/7758490/files/cgcnn_pub_hmof_5000.pth?

download=1 -O $SAVE_ROOT/cgcnn_pub_hmof_5000.pth
67 ckpt = torch.load(os.path.join(SAVE_ROOT, 'cgcnn_pub_hmof_5000.pth'),

map_location=torch.device('cpu'))
68 model = config_pub.BACKBONES["cgcnn"](∗∗config_pub.BACKBONE_KWARGS["cgcnn"])
69 print(model.__class__.__name__)
70 model.load_state_dict(ckpt['model'])
71
72 #Below define dataloader
73 opt.log = False
74 opt.backbone = "cgcnn"
75 opt.gpu = True
76 opt.name = "cgcnn_pub_hmof_5000"
77 opt.epoches = 1000
78 opt.batch_size = 16
79 opt.optimizer = "torch_adam"
80 opt.data_dir = DATA_ROOT
81 opt.data_dir_crystal = CRYSTAL_DATA_ROOT
82 opt.use_tensors = True
83 opt.load_ckpt_path = SAVE_ROOT
84 opt.dataset = "cifdata"
85 opt.task = "homo"
86 opt.which_mode = "infer"
87 opt.smiles_list = None
88 opt.crystal = True
89 opt.num_oversample = 0
90 train_loader, val_loader, test_loader, mean, std = call_loader(opt)

#Loader and data sets
91
92 #Below define inference
93 import tqdm
94 def one_inference(dataloader: torch.utils.data.DataLoader):
95 device="cpu" #torch.cuda.current_device()
96 model.to(device)
97 model.eval()
98 return_preds = collections.defaultdict(list)
99 props, diffs, targs = [], [], []
100
101 for pack, _in tqdm.tqdm(dataloader, total=len(dataloader)):
102 atom_fea, nbr_fea, nbr_fea_idx, crystal_atom_idx, batch, dists,

targetE = pack.x, pack.edge_attr, pack.edge_index, pack.cif_id,
pack.batch, pack.edge_weight, pack.y

103 pack = atom_fea, nbr_fea, nbr_fea_idx, batch, dists, targetE
104
105 atom_fea, nbr_fea, nbr_fea_idx, batch, dists, targetE = to_

cuda(pack)if device !="cpu"else pack
106 pred=model.forward(atom_fea.to(device), nbr_fea.to(device),

nbr_fea_idx.to(device), dists.to(device), crystal_atom_idx.to(device),
batch.to(device))

107 props.append(pred.view(-1).detach().cpu().numpy()) targs.
append(targetE.view(-1).detach().cpu().numpy()) diffs.append(pred.view(-1).
detach().cpu().numpy() - targetE.view(-1).detach().cpu().numpy())

108
109 return_preds["property"] = np.concatenate(props, axis=0)
110 return_preds["targets"] = np.concatenate(targs, axis=0)
111 return_preds["property_difference"] = np.concatenate(diffs, axis=0)

16

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

112 return return_preds
113
114 #Below run inference
115 def run_inference(input_data):
116 predictions: dict = one_inference(input_data)
117 return predictions
118 preds = run_inference(test_loader)

ORCID iDs

Hyun Park https://orcid.org/0000-0001-5550-5610
Ruijie Zhu https://orcid.org/0000-0001-9316-7245
E A Huerta https://orcid.org/0000-0002-9682-3604
Santanu Chaudhuri https://orcid.org/0000-0002-4328-2947
Emad Tajkhorshid https://orcid.org/0000-0001-8434-1010
Donny Cooper https://orcid.org/0000-0002-2432-972X

References

[1] Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A and Müller K R 2018 J. Chem. Phys. 148 241722
[2] Unke O T and Meuwly M 2019 J. Chem. Theory Comput. 15 3678–93
[3] Thölke P and De Fabritiis G 2022 arXiv:2202.02541
[4] Klicpera J, Groß J and Günnemann S 2020 arXiv:2003.03123
[5] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
[6] Liu M et al 2021 J. Mach. Learn. Res. 22 1–9
[7] Fung V, Zhang J, Juarez E and Sumpter B G 2021 npj Comput. Mater. 7 1–8
[8] Ravi N, Chaturvedi P, Huerta E A, Liu Z, Chard R, Scourtas A, Schmidt K J, Chard K, Blaiszik B and Foster I 2022 Sci. Data 9 657
[9] Huerta E A et al 2020 J. Big Data 7 88
[10] Huerta E A et al 2021 Nat. Astron. 5 1062–8
[11] Balaprakash P, Salim M, Uram T D, Vishwanath V and Wild S M 2018 DeepHyper: asynchronous hyperparameter search for deep

neural networks 2018 IEEE 25th Int. Conf. on High Performance Computing (HiPC) (IEEE) pp 42–51
[12] Ruddigkeit L, Van Deursen R, Blum L C and Reymond J L 2012 J. Chem. Inf. Model. 52 2864–75
[13] Wilmer C E, Farha O K, Bae Y S, Hupp J T and Snurr R Q 2012 Energy Environ. Sci. 5 9849–56
[14] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T and Müller K R 2017 Sci. Adv. 3 e1603015
[15] Biewald L 2020 Experiment tracking with weights and biases software available from wandb.com (available at: www.wandb.com/)
[16] Pope P, Kolouri S, Rostrami M, Martin C and Hoffmann H 2018 arXiv:1812.00265
[17] Zhang J, Bargal S A, Lin Z, Brandt J, Shen X and Sclaroff S 2018 Int. J. Comput. Vis. 126 1084–102
[18] Zhou B, Khosla A, Lapedriza A, Oliva A and Torralba A 2016 Learning deep features for discriminative localization Proc. IEEE

Conf. on Computer Vision and Pattern Recognition pp 2921–9
[19] Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D and Batra D 2017 Grad-CAM: visual explanations from deep networks

via gradient-based localization Proc. IEEE Int. Conf. on Computer Vision pp 618–26
[20] Tieleman T 2008 Training restricted Boltzmann machines using approximations to the likelihood gradient Proc. 25th Int. Conf. on

Machine Learning pp 1064–71
[21] Moret M, Friedrich L, Grisoni F, Merk D and Schneider G 2020 Nat. Mach. Intell. 2 171–80
[22] McInnes L, Healy J and Melville J 2018 arXiv:1802.03426
[23] Park H, Zhu R, Huerta E A, Chaudhuri S, Tajkhorshid E and Cooper D 2023 AI Suite for small molecules and inorganic crystals

(available at: https://gitlab.com/hyunp2/ai4molcryst_argonne)
[24] Park H, Zhu R, Huerta E A, Chaudhuri S, Tajkhorshid E and Cooper D 2023 Colab AI tutorial for small molecules and inorganic

crystals (available at: https://tinyurl.com/49reb4su)
[25] Park H, Zhu R, Huerta E A, Chaudhuri S, Tajkhorshid E and Cooper D 2023 End-to-end AI framework for interpretable prediction

of molecular and crystal properties (available at: https://doi.org/10.5281/zenodo.7758490)
[26] Gasteiger J, Becker F and Günnemann S 2021 Advances in Neural Information Processing Systems vol 34 pp 6790–802
[27] Liu Y, Wang L, Liu M, Lin Y, Zhang X, Oztekin B and Ji S 2022 Spherical message passing for 3D molecular graphs Int. Conf. on

Learning Representations
[28] Wang L, Liu Y, Lin Y, Liu H and Ji S 2022 ComENet: towards complete and efficient message passing for 3D molecular graphs

Advances in Neural Information Processing Systems ed A H Oh, A Agarwal, D Belgrave and K Cho
[29] Choudhary K and DeCost B 2021 npj Comput. Mater. 7 1–8
[30] Chen C, Ye W, Zuo Y, Zheng C and Ong S P 2019 Chem. Mater. 31 3564–72
[31] Gilmer J, Schoenholz S S, Riley P F, Vinyals O and Dahl G E 2020Machine Learning Meets Quantum Physics (Berlin: Springer) pp

199–214
[32] Schlichtkrull M, Kipf T N, Bloem P, Van Den Berg R, Titov I andWelling M 2018 Modeling relational data with graph convolutional

networks The Semantic Web: 15th Int. Conf., ESWC 2018 (Heraklion, Crete, Greece, 3–7 June 2018) vol 15 (Springer) pp 593–607
[33] Larsen A H et al 2017 J. Phys.: Condens. Matter 29 273002
[34] Wang M et al 2019 arXiv:1909.01315
[35] Fey M and Lenssen J E 2019 Fast graph representation learning with PyTorch geometric ICLR Workshop on Representation Learning

on Graphs and Manifolds
[36] Leow Y Y, Laurent T and Bresson X 2019 GraphTSNE: a visualization technique for graph-structured data ICLR Workshop on

Representation Learning on Graphs and Manifolds
[37] Gelman S, Fahlberg S A, Heinzelman P, Romero P A and Gitter A 2021 Proc. Natl Acad. Sci. 118 e2104878118

17

https://orcid.org/0000-0001-5550-5610
https://orcid.org/0000-0001-5550-5610
https://orcid.org/0000-0001-9316-7245
https://orcid.org/0000-0001-9316-7245
https://orcid.org/0000-0002-9682-3604
https://orcid.org/0000-0002-9682-3604
https://orcid.org/0000-0002-4328-2947
https://orcid.org/0000-0002-4328-2947
https://orcid.org/0000-0001-8434-1010
https://orcid.org/0000-0001-8434-1010
https://orcid.org/0000-0002-2432-972X
https://orcid.org/0000-0002-2432-972X
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1021/acs.jctc.9b00181
https://arxiv.org/abs/2202.02541
https://arxiv.org/abs/2003.03123
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1038/s41524-021-00554-0
https://doi.org/10.1038/s41524-021-00554-0
https://doi.org/10.1038/s41597-022-01712-9
https://doi.org/10.1038/s41597-022-01712-9
https://doi.org/10.1186/s40537-020-00361-2
https://doi.org/10.1186/s40537-020-00361-2
https://doi.org/10.1038/s41550-021-01405-0
https://doi.org/10.1038/s41550-021-01405-0
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1039/c2ee23201d
https://doi.org/10.1039/c2ee23201d
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015
https://www.wandb.com/
https://arxiv.org/abs/1812.00265
https://doi.org/10.1007/s11263-017-1059-x
https://doi.org/10.1007/s11263-017-1059-x
https://doi.org/10.1038/s42256-020-0160-y
https://doi.org/10.1038/s42256-020-0160-y
https://arxiv.org/abs/1802.03426
https://gitlab.com/hyunp2/ai4molcryst_argonne
https://tinyurl.com/49reb4su
https://doi.org/10.5281/zenodo.7758490
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://arxiv.org/abs/1909.01315
https://doi.org/10.1073/pnas.2104878118
https://doi.org/10.1073/pnas.2104878118

Mach. Learn.: Sci. Technol. 4 (2023) 025036 H Park et al

[38] Mnih V et al 2015 Nature 518 529–33
[39] Simonyan K, Vedaldi A and Zisserman A 2013 arXiv:1312.6034
[40] Pope P E, Kolouri S, Rostami M, Martin C E and Hoffmann H 2019 Explainability methods for graph convolutional neural

networks Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition pp 10772–81
[41] Meta Platforms, Inc. 2021 Papers with code—gradient clipping explained (available at: https://paperswithcode.com/method/

gradient-clipping)
[42] Glavatskikh M, Leguy J, Hunault G, Cauchy T and Da Mota B 2019 J. Cheminform. 11 1–15
[43] Bucior B J, Rosen A S, Haranczyk M, Yao Z, Ziebel M E, Farha O K, Hupp J T, Siepmann J I, Aspuru-Guzik A and Snurr R Q 2019

Cryst. Growth Des. 19 6682–97
[44] Choudhary K, Yildirim T, Siderius D W, Kusne A G, McDannald A and Ortiz-Montalvo D L 2022 Comput. Mater. Sci. 210 111388
[45] Krishnapriyan A S, Montoya J, Haranczyk M, Hummelshøj J and Morozov D 2021 Sci. Rep. 11 1–11
[46] Burner J, Schwiedrzik L, Krykunov M, Luo J, Boyd P G and Woo T K 2020 J. Phys. Chem. C 124 27996–8005
[47] Moosavi S M et al 2022 Nat. Mater. 21 1419–25
[48] Jolliffe I T and Cadima J 2016 Phil. Trans. R. Soc. A 374 20150202
[49] Van der Maaten L and Hinton G 2008 J. Mach. Learn. Res. 9 2579–605
[50] Wang Y, Huang H, Rudin C and Shaposhnik Y 2021 J. Mach. Learn. Res. 22 1–73
[51] Peltason L and Bajorath J 2007 J. Med. Chem. 50 5571–8
[52] Guha R and Van Drie J H 2008 J. Chem. Inf. Model. 48 646–58
[53] Golbraikh A, Muratov E, Fourches D and Tropsha A 2014 J. Chem. Inf. Model. 54 1–4
[54] Aldeghi M, Graff D E, Frey N, Morrone J A, Pyzer-Knapp E O, Jordan K E and Coley C W 2022 J. Chem. Inf. Model. 62 4660–71
[55] Wilkinson M D, Sansone S A, Schultes E, Doorn P, da Silva Santos L O B and Dumontier M 2018 Sci. Data 5 180118
[56] Wilkinson M D et al 2016 Sci. Data 3 160018
[57] Chen Y et al 2022 Sci. Data 9 31
[58] Barker M et al 2022 Sci. Data 9 622
[59] Duarte J et al 2022 arXiv:2212.05081

18

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1312.6034
https://paperswithcode.com/method/gradient-clipping
https://paperswithcode.com/method/gradient-clipping
https://doi.org/10.1186/s13321-019-0391-2
https://doi.org/10.1186/s13321-019-0391-2
https://doi.org/10.1021/acs.cgd.9b01050
https://doi.org/10.1021/acs.cgd.9b01050
https://doi.org/10.1016/j.commatsci.2022.111388
https://doi.org/10.1016/j.commatsci.2022.111388
https://doi.org/10.1038/s41598-021-88027-8
https://doi.org/10.1038/s41598-021-88027-8
https://doi.org/10.1021/acs.jpcc.0c06334
https://doi.org/10.1021/acs.jpcc.0c06334
https://doi.org/10.1038/s41563-022-01374-3
https://doi.org/10.1038/s41563-022-01374-3
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1021/jm0705713
https://doi.org/10.1021/jm0705713
https://doi.org/10.1021/ci7004093
https://doi.org/10.1021/ci7004093
https://doi.org/10.1021/ci400572x
https://doi.org/10.1021/ci400572x
https://doi.org/10.1021/acs.jcim.2c00903
https://doi.org/10.1021/acs.jcim.2c00903
https://doi.org/10.1038/sdata.2018.118
https://doi.org/10.1038/sdata.2018.118
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41597-021-01109-0
https://doi.org/10.1038/s41597-021-01109-0
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41597-022-01710-x
https://arxiv.org/abs/2212.05081

	End-to-end AI framework for interpretable prediction of molecular and crystal properties
	1. Introduction
	2. Related work
	3. Methods
	3.1. Hyperparameter tuning
	3.2. Datasets
	3.3. Node and edge embedding schemes

	4. Results
	4.1. Hyperparameter optimization
	4.2. AI model training
	4.3. Model improvement via modified node and edge embedding schemes
	4.4. Transferable AI applications
	4.5. Interpretable inference

	5. Conclusion
	Appendix A. Hyperparameter optimization results of PhysNet with HOMO as target property
	Appendix B. Examples of model explainability features
	B.1. Grad-CAM interpretation
	B.2. UMAP interpretation
	B.3. Example code

	References

