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Abstract
Continuum robots in robot-assisted minimally invasive surgeries provide adequate
access to target anatomies that are not directly reachable through small incisions. Achieving precise
and reliable shape estimation of such snake-like manipulators necessitates an accurate navigation
system, that requires no line-of-sight and is immune to electromagnetic noise. Fiber Bragg
grating (FBG) shape sensing, particularly eccentric FBG (eFBG), is a promising and cost-effective
solution for this task. However, in eFBG sensors, the spectral intensity of the Bragg wavelengths
that carries the strain information can be affected by undesired bending-induced phenomena,
making standard characterization techniques less suitable for these sensors. We showed
in our previous work that a deep learning model has the potential to extract the strain information
from the eFBG sensor’s spectrum and accurately predict its shape. In this paper, we conducted
a more thorough investigation to find a suitable architectural design of the deep learning
model to further increase shape prediction accuracy. We used the Hyperband algorithm to search
for optimal hyperparameters in two steps. First, we limited the search space to layer settings of
the network, from which, the best-performing configuration was selected. Then, we modified the
search space for tuning the training and loss calculation hyperparameters. We also analyzed various
data transformations on the network’s input and output variables, as data rescaling can directly
influence the model’s performance. Additionally, we performed discriminative training using
the Siamese network architecture that employs two convolutional neural networks (CNN) with
identical parameters to learn similarity metrics between the spectra of similar target values. The
best-performing network architecture among all evaluated configurations can predict the shape of a
30 cm long sensor with a median tip error of 3.11 mm in a curvature range of 1.4 m−1 to 35.3 m−1.

1. Introduction

Minimally invasive surgeries (MISs) are delicate operations performed through small incisions or natural
orifices on anatomical structures of the human body. Such interventions are beneficial compared to
conventional open surgeries, as they reduce patient trauma, shorten recovery time [1], and are cost-effective
[2]. In traditional MIS procedures, surgeons often have to adapt themselves to counterintuitive ergonomic
principles, as haptics, dexterity, and visual-motor coordination of the human hand are replaced by rigid
instruments. The integration of robotic technologies to assist surgeons during such interventions enables
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enhanced dexterity, manipulability, stability, and motion accuracy [2]. In addition, small, flexible, and strong
manipulators, also known as continuum robots, are particularly of interest, especially for MIS procedures in
which adequate and direct access through small incisions to target anatomies is not available [1, 3–8].
However, the inherent snake-like and deformable designs of continuum robots make it difficult to accurately
estimate their shape using model-based approaches [9, 10]. Therefore, a precise and accurate navigation
system is desirable for enabling closed-loop control to better follow the planned pathways and alleviate safety
concerns.

The most common and commercially available medical tracking systems include optical trackers [11, 12],
electromagnetic (EM) sensors [11], intraoperative imaging technologies [13], and fiber Bragg grating
(FBG)-based sensors [14]. Optical trackers are state-of-the-art technology for tracking medical tools and
patients inside the operating room (OR). Wireless tracking, accurate measurement, and stable performance
are the key advantages of this technology. However, they require a line-of-sight and are best suited to use with
large rigid tools. EM tracking systems do not require a line-of-sight and can be embedded or placed at the tip
of flexible tools. However, EM tracking systems are less accurate than optical trackers and have a smaller
working volume. Adding multiple sensors along the endoscope is often impossible, as the sensors must be
wired. Furthermore, they are sensitive to environmental EM interferences (e.g. the EM field of the robot) and
the presence of conductive or ferromagnetic metals. Intraoperative imaging modalities, including
fluoroscopy, cone-beam CT, and ultrasound, can be alternatives to EM sensors for intracorporeal tracking.
Some imaging modalities like biplane fluoroscopy can achieve even higher accuracy compared to EM
sensors [13], but are challenging to handle in crowded OR settings. In addition, imaging modalities have
limitations such as high doses of radiation (e.g. X-ray-based imaging), high computational cost (e.g.
cone-beam CT), and low resolution (e.g. ultrasound).

FBG-based shape sensors, on the other hand, are easily integrable into medical devices, can carry an array
of FBGs to extract shape information along the length of the fiber, and are immune to EM interferences. The
coating layer of the optical fiber can be a bio-compatible material, which makes it suitable for tracking
catheters as well [15]. Although different configurations for FBG-based shape sensors have been studied in
recent years [16–21], the only fiber shape sensors that have been commercialized work based on multicore
fibers (e.g. [22, 23]). Multicore fiber shape sensors are able to track themselves with a millimeter range
accuracy (e.g. an average error of 1.13 mm for a 38 cm long sensor [19]). However, the cost of such systems is
quite high, as a multichannel interrogator and a fan-out device would be needed for reading the signal from
each core [24, 25].

Recently, a new configuration for fiber shape sensors, based on eccentric FBGs (eFBGs) [26–29], has been
proposed by Waltermann et al [30]. In this configuration, several highly-localized FBGs are inscribed off-axis
inside the core of a single-mode fiber at different angular positions. Unlike standard FBG shape sensors,
which rely on changes in the Bragg wavelength, eFBG sensors are based on changes in the spectral intensity at
Bragg wavelengths [26, 28–30]. Currently, shape deformations in eFBG shape sensors are calculated based on
the mode-field displacement method (MFD) [27, 30]. In this approach, the shift of the mode-field’s center at
each sensing plane is calculated by the ratio between the spectral intensity of the eFBGs. To simplify the
analysis, the MFD approach assumes that bending-induced birefringence [31] and cladding mode coupling
[28, 32, 33] do not significantly affect the spectral intensity of the eFBGs. Therefore, the shape prediction
accuracy can be relatively high [34] when low-cost readout units with grating-based spectrometers are used
for eFBG sensor.

The authors showed in [35] that despite the complicated impact of bending-induced phenomena on the
signal of eFBG sensors, it is feasible to use a deep learning model to predict the shape of a 30 cm long sensor
based on the full spectra of eFBGs and were able to achieve a median tip error of 6 mm. In this paper, we
investigated the design of such deep learning models in more detail. First, we identified a good set of tuning
parameters, known as hyperparameters, for our deep learning algorithm to extract relevant features from the
eFBG sensor. We performed this hyperparameter tuning when the model’s input (the sensor’s spectra) and
output data (the sensor’s spatial shape) were preprocessed using different rescaling methods. Ultimately, we
employed the most suitable data rescaling approach and the optimized feature-extracting network to
perform discriminative training using the Siamese network [36].

2. Methodology

The importance of choosing a good set of hyperparameters for a deep learning algorithm is well-known. The
Hyperband, as one of the most common hyperparameter optimizers, considers several possible resource
allocations (e.g. the total number of epochs used during evaluation) and invokes Successive Halving [37] on
randomly sampled hyperparameter configurations [38]. Compared to black-box approaches like Bayesian
optimization, the Hyperband is 5× to 30× faster and evaluates an order-of-magnitude more configurations
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Figure 1. The data acquisition experimental setup of the eFBG sensor. Five tracking cameras (Oqus 7+, Qualisys AB, Sweden)
were used to monitor the sensor’s shape. The sensor was inserted into a Hytrel furcation tubing to protect the fiber during shape
manipulation.

[38]. In addition to the hyperparameter configuration, rescaling the input and the output variables before
being presented to the deep neural networks greatly affects the model’s performance [39]. When input
variables have large values, the model learns large weights, which may cause numerical instability, poor
performance during training, and generalization error in the network. Large-scaled target values result in
significant update rates in weight values, making the learning process unstable. In common practices,
preprocessing transformations are applied to input variables prior to training the networks, and
postprocessing steps are introduced to the model’s predictions for calculating the desired target values [39].
Therefore, we investigated different rescaling methods on the input and output variables to identify the most
suited data preprocessing steps.

2.1. Training setup
The dataset used in this work is from [35] and [40] with almost 53 000 samples. Each sample consists of three
consecutively measured eFBG spectra, the intensity values of 125 wavelength components from 812 nm to
871 nm, as the input and the spatial coordinates of 21 discrete points along the fiber’s length as
corresponding target values. These discrete points are the positions of reflective markers that are attached to
the sensor and monitored using a motion capture system. Figure 1 shows a schematic of the experimental
setup. The sensor’s spectrum contains the reflected signal of 15 eFBGs from five sensing planes. Each sensing
plane has three eFBGs with∼90◦ angular separation inside a single-mode fiber’s core (SM800p from
FIBERCORE company, UK).

We used the Hyperband algorithm, built in the Keras tuner [41], to perform hyperparameter
optimization in two steps. First, we defined a bigger search space to optimize the settings of 1D convolutional
layers (conv1D) and pooling layers (search criteria can be found in table 3 in appendix). The number of
conv1D layers was set to seven for this hyperparameter tuning step, as we observed that the network with
seven conv1D layers is deep enough for feature extraction. Then, we fixed these layer settings and modified
the search space to tune the loss function, the optimizer, and the dropout rate (more detail on the search
criteria is available in table 4 in appendix). The model’s input and output data were preprocessed using
various data rescaling methods in this hyperparameter tuning step. The objective of the Hyperband was set
to be the root-mean-square error (RMSE) on the validation set so that the scale of the scores, assigned to
suggested configurations, would not be affected when different loss functions were selected. As the
Hyperband is based on a random search, we repeated each hyperparameter search three times for statistical
robustness before selecting the final settings. To evaluate the predictive performance of the proposed model
in an unbiased way, the dataset was split into mutually disjoint Train-Validation-Test subsets: 80% for
training, 10% for validating, and 10% for testing.

We investigated various configurations in the first hyperparameter tuning step. Figure 2 shows the
best-performing architecture among the suggested configurations, in which, each conv1D layer is followed by
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Figure 2. The architecture of the best-performing configuration after the first step of hyperparameter search. For this network, the
input data is three consecutive eFBG spectra, normalized using one-dimensional z-scaling (see section 2.2 for more detail), and
the output data is the absolute coordinates of 21 discrete points along the sensor’s length. The channel sizes of the seven 1D
convolution layers (conv1D) are 176, 120, 48, 96, 48, 232, and 224, respectively. The pooling sizes of the four max pooling layers
are 2, 2, 2, and 3, respectively.

a Sigmoid activation function and batch normalization. The kernel size for the conv1D layers is 10. Four max
pooling layers are placed after the conv1D layers number two, three, five, and seven for downsampling the
features. The final layer is a fully connected layer with a linear activation function to map the extracted
features into desired target values. These hyperparameters were fixed for the remainder of this paper.

2.2. Input data preprocessing
As mentioned earlier, the ratio of spectral intensities between eFBGs at each sensing plane carries the
strain information. Therefore, the input variables should not be normalized/standardized independently.
We investigated two preprocessing transformations on the input variables, one-dimensional and
multi-dimensional z-scaling [42]. In the first method, we applied the standard scaling technique by
considering the input data as a one-dimensional vector. The data distribution after rescaling has a zero mean
value, and its standard deviation is one. Figures 3(a) and (b) show the data distribution before and after
rescaling. In the second method, we applied multi-dimensional standard scaling [42] by subtracting each
wavelength component from its mean value and dividing them over the square root of the covariance matrix

Z= UD−1/2Ut(X−µ), (1)

where U and D are the Eigenvectors and the Eigenvalues of the covariance matrix, X is the input data
(sensor’s spectra), and µ is the mean spectral intensity value at each wavelength component over the training
dataset. With this approach, we achieved an approximately Gaussian density distribution (see figure 3(c)).

2.3. Output data preprocessing
This section examines the measured coordinates of each marker as a point cloud and evaluates the model’s
performance under various preprocessing transformations applied to these point clouds (for more details,
refer to appendix). In the first method (M1), we translated each point cloud to the origin of the global frame
by subtracting the mean coordinate values from the original coordinates. We calculated the radial distance of
the points from the cloud’s center in all markers and computed its mean value. We then divided the
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Figure 3. The histogram of the flat original input data (a), normalized input data using one-dimensional (b), and multi-
dimensional z-scaling (c). The density distribution when using multi-dimensional z-scaling is approximately Gaussian, with
skewness of∼0.003 and kurtosis of∼− 1.2.

Figure 4. The histograms of the original x-, y-, and z-coordinates, their normalized values using M1 and M3, and the relative
values using M4 for the point cloud number 10 are shown. The histogram of processed values using M2 is not depicted, as the
distributions of x-, y-, and z-coordinates are similar to M1.

translated coordinates by this calculated mean radial distance. In this method, the spatial coordinate
elements for each marker have different scaling from the original data, but the ratio between the markers’
coordinates remains unchanged (see figure 4). In the second approach (M2), each already translated point
cloud was rescaled based on the mean of the radial distance of its own points, and therefore, the scaling
factor is different for each point cloud. For the third method (M3), we applied a three-dimensional standard
scaling to each point cloud. This way, the transformed data is uncorrelated, and the density profiles are
different from the original ones. Lastly, as the fourth method (M4), we used the relative coordinates between
the markers instead of absolute coordinate values. Figure 4 shows how the distribution of the coordinate
elements changes when applying different preprocessing transformations to the target values.

2.4. Siamese network
A further improvement of the network’s performance is possible by guiding the feature-extracting part of the
network in selecting relevant features for a given spectral sample [43, 44]. The Siamese network [36] is an
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Figure 5. The architecture of the Siamese model. The feature extractor subnetworks have a similar architecture to what is shown
in figure 2, but without the dropout and the fully connected layers.

architecture, designed for learning similarity metrics, which is well known from face recognition [45, 46] and
handwritten forgery detection applications [36, 47]. A Siamese network usually takes two inputs, compares
them in the feature space, and provides a similarity measure between the two feature vectors. Siamese
architectures consist of two identical subnetworks (the feature extractors) with shared weights that are
trained using paired samples corresponding to similar (genuine) or dissimilar (imposter) outputs/pairs.
During training, the feature extractor subnetworks are forced to provide vectors close to each other when the
inputs belong to the same group and are far away from each other if they are from different groups.

In our implementation, shown in figure 5, we used the same layer settings for feature extraction as in the
architecture explained in section 2.1. In this setting, the Euclidean distance between the two feature vectors is
batch normalized and passed through a single-unit fully connected layer with a Sigmoid activation function.
The output of the Sigmoid activation function gives a value close to one for distant feature vectors and a
value close to zero for close vectors. In parallel, the feature vectors are also passed into two fully connected
layers. The first one has 1344 units followed by a Sigmoid activation function, and the second one is similar
to the last layer of the previous architecture (see figure 2), in which, the preprocessed coordinates are
calculated. We grouped the samples using the RMSE, which is the root-mean-square of the Euclidean
distance between the corresponding shapes. First, we calculated the RMSE for all possible pairs in the
training dataset. We then defined the 1st and the 25th percentiles in the RMSE’s histogram as thresholds for
labeling the samples. These limits were selected after studying various combinations. Samples were labeled as
zero (genuine pairs) if the calculated RMSE between two samples was less than the lower limit and as one
(imposter pairs) if it was within a 1% range around the upper limit.

The following loss function was used for this Siamese network:

Loss=mean
(
α
(
(1− ytrue)y

2
pred + ytruemax(0,M− ypred)

2
)

+(1−α)
(
L(yA − ya)+ L(yB − yb)

))
,

(2)
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where,

L(a) =

{
0.5 a2

δ |a|⩽ δ,

0.5δ+(|a| − δ) otherwise.
(3)

In these equations, α is a scalar coefficient to weight the contributions of the loss values, calculated from the
three outputs. δ is a hyperparameter, defining the range for mean-absolute-error, and mean-square-error in
L, a modified version of the Huber loss function [48].M is the margin, ytrue is the true label of paired samples,
ypred is the output of the right arm, yA and yB are the true relative coordinates, and ya and yb are the predicted
relative coordinates in the left and the middle arms of the network (figure 5). The partial loss, calculated
from ypred, is the Contrastive loss [49]. Depending on whether the inputs are a genuine/imposter pair, the
first or the second part of the Contrastive loss is applied to the output of the network’s right arm. The two L
loss functions are calculated from predicted relative coordinate values in the left and the middle arms of the
network (figure 5). For a genuine pair, the network pushes ypred towards zero, such that the first part of the
Contrastive loss also gets closer to zero. If the inputs are an imposter pair, ypred is forced to be larger than the
value ofM, such that the feature vectors stay separated in the feature space. Similar to sections 2.2 and 2.3,
the training hyperparameters for this network, including the optimizer’s parameters,M, α, and δ, were tuned
using the Hyperband algorithm (refer to table 5 in appendix for the search criteria). We ran the
hyperparameter search multiple times and selected the best-performing architecture for final training.

3. Results

Evaluating the performance of the configurations suggested by the Hyperband was done by calculating the
shape evaluation metrics between the true and the predicted shapes. Shape evaluation metrics include the tip
error (the Euclidean distance between the true and the predicted coordinate of the sensor’s tip) and the
RMSE. The best-performing architecture among the three hyperparameter search attempts for each
normalization method was selected based on the median values of the shape evaluation metrics in the
validation dataset.

Table 1 shows the error values for the two input normalization methods. The one-dimensional
normalization method, which preserves the distribution profile of the input data, results in a median tip
error and a median RMSE of 4.46 mm and 2.74 mm, respectively. In the multi-dimensional normalization
approach, the median values are 13.38 mm and 8.11 mm, respectively, which are significantly higher
compared to the one-dimensional normalization method. This might be due to the validation loss reaching
its plateau quicker when the input data distribution is approximately Gaussian (shown in figure 6). The
one-dimensional normalization method was therefore selected as the input data preprocessing step for the
remainder of this paper.

The error statistics for shape evaluation metrics when using different preprocessing methods on the
target data are shown in table 2. Among the three preprocessing approaches applied to the absolute
coordinate values (M1, M2, and M3), the first method (M1) shows the lowest error values with a median tip
error of 4.68 mm and a median RMSE of 2.83 mm. However, the network performs better in predicting
relative coordinates (M4) compared to absolute values by resulting in the median value of 4.36 mm for
the tip error and 2.78 mm for the RMSE. Therefore, the relative coordinate values were selected as the
best-performing target data preprocessing. The last row in table 2 shows the shape evaluation parameters of
the Siamese network when using the best-performing data preprocessing on both input and target data,
one-dimensional normalization, and M4. As can be noted, there is a significant improvement in all error
values, and the median tip error is reduced by almost 1.25 mm to 3.11 mm compared to M4 (more
information on the significance test is provided in appendix). The median value of RMSE is also reduced to
1.98 mm compared to the M4 method, which is 2.78 mm.

The designed Siamese network uses the RMSprop as the optimizer with a learning rate of 1−4, a
momentum of 0.9, and a decay factor of 0.7. The loss function’s hyperparameters, includingM, α and δ, are
0.5, 0.7, and 2.2, respectively. A typical case of predicted shapes using the designed Siamese network is shown
in figure 7. The error statistics based on the Euclidean distance between the true and the predicted shapes are
shown in figure 8. It can be noticed that the median of the Euclidean distance between the true and the
predicted shapes increases towards the sensor’s end. This accumulative error may be due to inaccuracies in
predicting the sensor’s initial orientation that is caused by a small gap between the V-clamp and the first
eFBG sensing plane (as shown in figure 1). The reader is referred to [35] for more details.
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Table 1. Shape evaluation errors on the test dataset when the input data were preprocessed using one-dimensional and
multi-dimensional normalization methods. IQR: interquartile, one-dim.: one-dimensional normalization, multi-dim.:
multi-dimensional normalization.

Tip error (mm) RMSE (mm)

Method Median IQR Median IQR

One-dim. 4.46 4.30 2.74 2.39
Multi-dim. 13.38 11.34 8.11 5.76

Figure 6. Training histories when the input data was preprocessed using (a) multi-dimensional and (b) one-dimensional
normalization methods. The model was trained with early stopping conditions.

Table 2. Shape evaluation errors on the test dataset when the target data were processed using four different methods and when the
network architecture was modified based on the Siamese design (indicated in bold). The model’s output was first scaled back to absolute
coordinates for each method, and then the error values were computed.

Tip error (mm) RMSE (mm)

Method Median IQR Median IQR

M1 4.68 4.29 2.83 2.20
M2 6.73 5.46 3.97 2.69
M3 6.85 5.37 3.98 2.69
M4 4.36 4.46 2.78 2.56
Siamese 3.11 3.38 1.98 1.97

Figure 7. A typical case of predicted shapes using the designed Siamese model. The five sensing planes of the eFBG sensor are
illustrated with× signs. The true shape (ground truth) of the sensor is shown with green circles, and the predicted shape using
the deep learning model is shown with the orange solid line.

8
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Figure 8. The error statistics are based on the Euclidean distance between the true markers’ absolute coordinates and the
predicted relative coordinates that are scaled back to the absolute values (the first marker is excluded). On each box, the median is
indicated with a central mark, and the 25th and 75th percentiles are indicated with the bottom and top edges of the box,
respectively. The whiskers show the minimum and maximum values within each group (outliers are not considered), and the
outliers are marked with ⋄ symbols. The total number of outliers are∼400, out of∼5300 samples. Some outliers were excluded
for better visualization of the median values.

4. Conclusion

In this work, we designed a deep learning-based model to extract the shape information of an eFBG sensor
based on its full spectrum. We used the Hyperband algorithm to optimize the hyperparameters of our neural
networks. We performed the hyperparameter tuning in two steps to avoid a large search space. First, the
parameters related to the conv1D and the pooling layers were optimized. The best-performing architecture
contains seven conv1D layers with Sigmoid activation function and four max pooling layers. In the second
step, optimization and loss calculation hyperparameters were defined in the Hyperband search space to
optimize the network when differently scaled input and output data were used. We showed that the model
performs better when the input data is normalized with the one-dimensional z-scaling method and when
relative coordinates instead of absolute values are used as the target data. Upgrading the selected architecture
to the Siamese design significantly improved the shape prediction accuracy of a 30 cm long sensor, with a
median tip error of 3.11 mm and a median RMSE of 1.98 mm in a curvature range of 1.4 m−1 to 35.3 m−1.
We achieved an improvement of almost 2.7 mm in the median value of the tip error, and 1.4 mm in the
median value of the RMSE using the proposed model, compared to the previously designed network
architecture in [35], which showed a median tip error of 5.8 mm and a median RMSE value of 3.4 mm.
Compared to the MFD method [30, 34], our proposed model can accurately predict the sensor’s shape with
an order of magnitude lower tip error.

In future work, we will add temporal shape information to the input data to further improve the
prediction accuracy. We also tend to continue investigating different architectural designs, including Siamese
networks with triplet loss.
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Appendix A. Hyperparameter optimization

This section presents the search criteria for all three hyperparameter optimizations performed in this work.
Table 3 shows the search space settings for the first step of hyperparameter optimization, in which, the
number of conv1D layers was set to seven. Each conv1D layer was followed by a Sigmoid activation function
and batch normalization. For the second step of hyperparameter optimization, the settings of the conv1D
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Table 3. Search criteria for the first step of hyperparameter optimization. The optimized kernel size, channel sizes, and pooling layer
settings, resulting from this hyperparameter tuning step, are fixed in the next hyperparameter search step.

Hyperparameter Search space

Dropout rate min: 0, max: 0.3, step: 0.1
Optimizer SGDW, AdamW
Learning rate 0.1, 0.01, 0.001, 0.0001
Weight decay 0.1, 0.01, 0.001, 0.0001, 0.00 001
Momentum min: 0, max: 0.9, step: 0.1
Kernel size (similar for all conv1D layers) min: 2, max: 10, step: 1
Channel size (different for each conv1D layer) min: 8, max: 256, step: 8
Choice of max pooling (different after each conv1D layer) true, false
Pooling size (different for each max pooling layer) min: 2, max: 3, step: 1

Table 4. Search criteria for the second step of hyperparameter optimization. In this step, the hyperparameter search was performed three
times for each data preprocessing approach.

Hyperparameter Search space

Dropout rate min: 0, max: 0.3, step: 0.1
Optimizer SGDW, AdamW, RMSprop, Adadelta, Adamax
Learning rate 0.1, 0.01, 0.001, 0.0001
Weight decay 0.1, 0.01, 0.001, 0.0001, 0.00 001
Momentum min: 0, max: 0.9, step: 0.1
Loss function mean absolute error, mean squared error,

mean squared logarithmic error, Huber loss,
mean absolute percentage error, cosine similarity

Table 5.Hyperparameter search criteria for the Siamese network. α, δ, andM are the loss function’s hyperparameters, defined in
equations (2) and (3).

Hyperparameter Search space

α min: 0, max: 1, step: 0.1
δ min: 0.1, max: 5, step: 0.1
M min: 0.5, max: 1, step: 0.1
rho min: 0.5, max: 0.9, step: 0.1
Momentum min: 0.5, max: 0.9, step: 0.1

and the pooling layers were fixed. Table 4 shows the search space settings for this hyperparameter tuning. The
search criteria for tuning the Siamese network’s hyperparameters are presented in table 5.

Appendix B. Point cloud rescaling

This section explains the output data transformation approaches in more detail. Figure 9 shows a 3D shape
example of the fiber sensor with 21 markers. For illustration purposes, we only focus on three highlighted
markers (numbers 7, 12, and 17) and study their point cloud modifications as we apply M1–M4 rescaling
methods. Figures 10 and 11 depict the scatter plots (point clouds) of measured coordinates of the selected
markers in∼5800 different shape examples. To compare the size of the point clouds after rescaling, an
estimated sphere of each point cloud is depicted with a black mesh plot. Each sphere is centered at the mean
coordinate of the original/rescaled points and has a radius of r. The radius r, in each point cloud, is the mean
value of the calculated radial distance between the points and the cloud’s center.

In method M1, the rescaling factor is the same for all spheres. Therefore, as can be seen in figures 10
(b1−3), the relative size between the spheres is similar to their original versions (figures 10(a1−3)). In method
M2, the rescaling factor for each point cloud is the average of calculated r values in that point cloud.
Therefore, all point clouds have sphere mesh plots with a radius of one (figures 10(c1−3)). In the third
method (M3), applying three-dimensional standard scaling to the point clouds makes the transformed data
uncorrelated (figures 11(d1−3)). Using relative coordinates between the markers (M4), greatly changes the
point clouds’ appearance. As the markers are fixed on the sensor, the maximum relative distance between two
neighboring markers is limited. It can be seen in figures 11(e1−3) that the coordinate points, especially for the
markers closer to the sensor’s tip, are constrained in terms of volume, and therefore, better form a sphere.
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Figure 9. A 3D shape example of the fiber sensor with 21 attached reflective markers is depicted. The three highlighted markers,
numbers 7, 12, and 17, are selected for scatter plotting. The remaining reflective markers are shown with gray circles. The
coordinate system is rotated for better visualization.

Figure 10. The scatter plot of measured coordinates in∼5800 shape examples. The estimated sphere of each point cloud is shown
with a black mesh plot. The original coordinate values of marker numbers 7 (a1), 12 (a2), and 17 (a3). The rescaled point clouds
using M1 method for marker numbers 7 (b1), 12 (b2), and 17 (b3). The rescaled point clouds using M2 method for marker
numbers 7 (c1), 12 (c2), and 17 (c3).
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Figure 11. The rescaled point clouds using M3 method for marker numbers 7 (d1), 12 (d2), and 17 (d3). The rescaled point clouds
using M4 method for marker numbers 7 (e1), 12 (e2), and 17 (e3).

Figure 12. The tip error statistics of the designed networks when different data preprocessing methods and the Siamese
architecture were employed. On each box, the median is indicated with a central mark, and the 25th and 75th percentiles are
indicated with the bottom and top edges of the box, respectively. The whiskers show the minimum and maximum values within
each group (outliers are not considered), and the outliers are marked with ⋄ symbols. Some outliers were excluded for better
visualization of the median values.

Appendix C. Significance test

In this section, the significance test results, comparing the evaluated models, are presented. Figure 12 shows
the tip error box plots of all seven methods evaluated in this paper. As can be clearly noticed, the Siamese
network has the least median tip error. We performed Tukey’s HSD pairwise group comparisons on the seven
methods. The Siamese method shows p-values close to zero compared to the other seven methods, proving
that the shape prediction’s improvement is statistically significant.
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