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Abstract
Accurate three-dimensional positioning of particles is a critical task in microscopic particle
research, with one of the main challenges being the measurement of particle depths. In this paper,
we propose a method for detecting particle depths from their blurred images using the
depth-from-defocus technique and a deep neural network-based object detection framework
called you-only-look-once. Our method provides simultaneous lateral position information for the
particles and has been tested and evaluated on various samples, including synthetic particles,
polystyrene particles, blood cells, and plankton, even in a noise-filled environment. We achieved
autofocus for target particles in different depths using generative adversarial networks, obtaining
clear-focused images. Our algorithm can process a single multi-target image in 0.008 s, allowing
real-time application. Our proposed method provides new opportunities for particle field research.

1. Introduction

Particle field positioning is a crucial task in various fields, such as biomedicine, materials science, and
environmental engineering [1, 2]. Despite its importance, determining the three-dimensional (3D) position
of each particle in a field remains a challenging task. While the lateral position can be obtained using
centroid localization or object segmentation algorithms [3, 4], obtaining the longitudinal position is more
challenging. Several methods have been proposed to address this problem, such as multiple particle-based
imaging methods [5], precise calibration methods for vision measurement [6], and digital holography [7–9].
However, these methods have their limitations and are not always efficient or accurate.

The depth-from-defocus (DfD) method has also been used to determine the longitudinal 3D positions of
the particle field. As early as 1987, Pentland used this method to investigate the depth of field [10].
Sometimes, there are defocus ambiguities in this method. Zhou et al used the DfD method with a single-lens
dual-camera system to achieve the 3D positioning of moving particles. It solved the defocus ambiguity
problem. However, the accuracy for the fuzzy particles was low [11]. Barnkob et al applied the
defocus-particle-tracking (DPT) method to derive the depth coordinates of the particle images from
different defocusing patterns. Two of the most common and widely used DPT approaches are based on the
model functions (MFs) and cross-correlation (CC), respectively. MF-based methods work very well in
low-concentration cases. CC-based methods have better robustness when the particle concentration is
significant, and particle image overlap is vital [12]. Rossi and Barnkob applied this method to identify
particles and estimate their 3D position. However, the iterative steps used here might reduce the processing
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speed [13]. There needs to be further research on how to determine the 3D position of the particle field
efficiently.

In recent years, deep learning (DL) has been applied for positioning. Franchini and Krevor used
convolutional neural network (CNN) to the blur images obtained by an astigmatic system to improve the
detection accuracy [14]. Nehme et al used CNN to extract the localization of 3D particles and dealt with 3D
fluorescent microscopy for particles [15]. Dreisbach et al have recently utilized neural networks to enhance
the rate of particle detection and reduce the occurrence of false positives, surpassing the capabilities of
traditional detection algorithms [16]. Sachs et al have presented deterministic algorithms and deep neural
networks that can recognize the size of up to four particle species simultaneously, with a particle diameter
ranging from 1.14 µm to 5.03 µm [17]. Leroy et al used both the soft-assignment encoding and the DfD
method to determine the intermediate depth for a single object from defocus blur images [18]. We have
combined the DfD method with an efficient CNN called EfficientNet, which has demonstrated exceptional
performance in image classification and object detection tasks [19]. However, a manual process is sometimes
needed for lateral positioning. In this paper, our method overcomes the challenge of manual processes for
lateral positioning by integrating you-only-look-once (YOLO), a state-of-the-art object detection framework
that enables accurate and efficient lateral positioning of particles [20, 21]. Autofocus is another crucial aspect
of particle field research [22–24], and we have incorporated generative adversarial networks (GANs) into our
method to obtain clear and focused images of particles at different depths [25]. By combining these
techniques, our proposed method enables accurate, efficient, and noise-robust 3D particle field positioning
and autofocus. We believe that our method has significant potential to advance microscopic particle research
and related fields.

2. Methods

2.1. Proposed method workflow and components
Our proposed approach for precise 3D particle field positioning, as illustrated in figure 1, utilizes the DfD
method in combination with a powerful deep neural network-based object detection framework, YOLOv5.
To prepare for training, we meticulously pre-processed the training images using labelImg software [26], a
widely recognized image annotation tool in DL. Employing labelImg, we annotated the category name and
location information for objects present in the training images. In this context, we considered depth as the
category name and manually drew an anchor box for each sample with a known depth in the images. The
lateral position was automatically derived from the box, and the corresponding information was converted
into XML-format files, ready for YOLOv5 network training.

Simultaneously, we trained a GAN to obtain remarkably clear and focused images of the particles. We
designated the defocus images as domain A and the focused images as domain B, utilizing both domains to
effectively train the GAN. The expertly trained YOLOv5 network outputs the 3D positions of the particles,
while the skillfully trained GAN generates focused images of the particle field. By seamlessly integrating
YOLOv5 and the GAN, our proposed method achieves accurate, efficient, and noise-robust 3D particle field
positioning and autofocus, representing a significant advancement in the field.

2.2. Experimental set-up
The experimental set-up for our proposed method involved obtaining micrographs of polystyrene particles
as training input under a commercial microscope (XSP-37XF, Shanghai Opt. Inst. Fty., China). These
particles were chosen for their mean diameter of approximately 10 µm and refractive index of 1.587. A 40×
objective lens was used to capture their micrographs, and images for particles at different depths were
obtained by carefully adjusting the longitudinal translation stage. The depths in focus were set to 0, while the
depths for over-focus and under-focus conditions were greater and less than 0, respectively. The particles
were placed under an Olympus objective lens oil during imaging, and some of the typical images obtained
can be seen in figure 2. We have also tested our method on other particle fields, including plankton and red
blood cells, and further details on the data collection process can be found in [19].

2.3. YOLO deep neural network and GANs
The YOLO network is a real-time object detection system that has shown great promise in accurately
detecting object positions [27]. YOLOv5 network was the latest product of YOLO when we were performing
our analysis, which has the advantages of fast detection and high accuracy [28]. It uses a one-stage neural
network to complete detection object positioning directly. The model used here was modified from the
YOLOv5s network. It has the smallest depth and width of the feature maps in the YOLO family [29], and the
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Figure 1. The workflow of the proposed method. (Step A) training neural network. (Step B) flow chart of the particle field
positioning and autofocusing.

Figure 2. Dataset examples. (a) Raw microscopic data of the polystyrene particles and blood cells; (b) the image of a single
polystyrene particle and (c) a single blood cell at different depths. Scale bar is 30 µm.

detailed network structure can be found in [30]. Two types of GANs were utilized in our method for
different conditions: Cycle-GAN and Pix2pix-GAN. Their structures and corresponding parameters can be
found in [31].

The entire process was conducted on an Ubuntu 18.04 system. We trained our modified YOLOv5s
network for 300 epochs using the Adam optimizer with a learning rate of 0.1 and a batch size of 2. The GANs
were trained for 300 epochs with a batch size of 1 and a learning rate of 0.0001. The code for both networks
was written in the Pytorch framework. We further processed the 3D images of the particles using MATLAB
2018a to enhance the clarity of the information presented. Our analysis was conducted on a desktop
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Figure 3. The variation curves of the loss values; val: validation set.

computer with an Intel Core processor i7-9700CPU, 3 GHz, GeForceGTX2060, and 8 GB video memory. The
training data set and network code are available on GitHub https://github.com/xiaolei0828/particle-field.

2.4. Performance evaluation
The trained model can be evaluated using several parameters to assess its target detection ability. These
parameters include precision (P), recall (R), average precision (AP), and mean average precision (mAP) [32].
The formulas for these metrics are defined as follows:

P=
TP

TP+ FP
(1)

R=
TP

TP+ FN
(2)

AP=

1̂

0

P(R)dR (3)

mAP=
1

N

N∑
i=1

APi. (4)

Here, true positive (TP) represents the number of correctly detected target particles in the image, while
false positive (FP) represents the number of false detections, and false negative (FN) represents the number
of particles in the image that were not detected by the network. Precision is a metric that measures the ratio
of correctly detected particles to all detected particles. It indicates how accurate the model is in detecting
targets. Recall, on the other hand, measures the ratio of correctly detected particles to all particles in the
sample. It shows how well the model can detect all instances of a target. AP is the average precision values
obtained for different recall levels, and it is calculated by computing the area under the precision-recall curve.
AP provides an indication of how well the model can detect targets at different levels of recall. mAP is the
mean of the AP values for all classes, and it gives an overall measure of the model’s performance.

2.5. Loss function of YOLOv5s
The YOLOv5s model employs a loss function consisting of three components: bounding box regression loss
(box-loss), classification loss (cls-loss), and objectness loss (obj-loss) [33]. During the training process,
monitoring the loss curves can indicate whether the network model is converging stably as the number of
iterations increases. As shown in figure 3, the loss values decrease as the number of iterations increases when
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Table 1. Comparisons of the training time and the parameters under different conditions.

Training Parameters

Number of particles Epochs Time (h) P R mAP

200 0.946 0.748 0.944 0.905
3361 300 1.358 0.858 0.917 0.926

600 2.758 0.864 0.935 0.905

200 1.611 0.872 0.900 0.922
5955 300 2.533 0.893 0.931 0.956

600 4.721 0.873 0.934 0.932

200 3.074 0.882 0.920 0.955
12 874 300 4.599 0.888 0.921 0.955

600 9.128 0.882 0.935 0.957

Note: Bold indicates the optimal performance values.

training and validating the model on polystyrene particles. The goal of this study is to estimate the depth
class of the particles. The cls-loss curves become stabilized after 300 epochs, indicating that 300 epochs are
sufficient for training the model to achieve stable convergence.

To determine the optimal number of iteration times and sample size for training, several tests were
conducted using polystyrene particles as an example. The study compared the training time and evaluation
indices of YOLOv5s using different amounts of data at different iteration times. As shown in table 1, the
model achieved excellent performance after completing 300 epochs using a training set of 5955 samples. The
P, R, and mAP were 89.3%, 93.1%, and 95.6%, respectively. Considering computational costs, the results
suggest that 300 iterations and approximately 6000 particles are sufficient for effective training of the model.

3. Results for the 3D positioning method

3.1. Validation on the synthetic dataset
The proposed method was validated using a synthetic dataset created by MicroSIG, a synthetic image
generator based on a 3D ray-tracing approach proposed by Rossi [34]. Details about the synthetic dataset are
available in the supplementary material. Figure 4 shows an example of the depth estimation on synthetic
dataset. The output of the trained YOLOv5s network is shown in figures 4(b) and (h), where different colors
indicate different depths. The 3D position information of each particle are stored in a file. Figure 4(a) shows
the depth information with different color boxes. The enlarged regions of overlapping particles in
figures 4(b) and (h) are shown in figures 4(c), (d), (i), and (j), respectively. Figures 4(g) and (m) show the 3D
spatial distribution of particle fields corresponding to figures 4(b) and (h), respectively. The blue particles
indicate the spatial positions of the particle field set by the MicroSIG, which are considered ground truths.
The red particles indicate the positions predicted by the YOLOv5s network. The accuracy rate is
approximately 99.9%, with most positions predicted correctly. However, the network needs better results for
a very few particles. As shown in figures 4(e) and (k), the particles in the red dotted circle should have the
same depth, but the network gives different depths. The correct depth of the particle is−30 µm. Mutual
interference between overlapping particles may cause errors in figure 4(k). Nonetheless, this method can be
successfully used in most situations, especially in sparse particle fields. The synthetic dataset has proven its
feasibility, and the results suggest that the proposed method is effective in estimating particle depth.

3.2. Applications in the static field
The proposed method was applied to static particle fields using polystyrene particles and red blood cells as
input examples. Five hundred-four images were used as the training input for the polystyrene particle field,
and 5955 particles were extracted to train networks. The images were randomly divided into a training set
and a verification set in an 8:2 ratio. To test the trained network, 1332 unlabeled particles with known depths
were used, and the verification accuracy rate was approximately 99%. A similar process was performed for
red blood cells using 308 images, with approximately 3447 cells for training and 230 for testing. The total
accuracy rate was approximately 97.8%. Figure 5(b) shows a typical result for the polystyrene particles, while
figure 5(c) shows the result for the blood cells. Each detected particle is bounded by a box, and its 3D
information is output to a file. Different colors indicate different depths, as shown in figures 5(a) and (j). The
corresponding 3D distribution can be seen in figures 5(h) and (i), respectively. Figures 5(d)–(g) show
enlarged areas of overlapping particles and background noise. Even in the presence of overlapping particles
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Figure 4. Application of proposed method to the datasets generated by MicroSIG. (a) The images of a single particle at different
depths. Figures (b) and (h) are synthetic data; (c), (d), (i), (j) zoomed-in ROIs in (b), (h); (e), (f), (k), (l) unlabeled zoomed-in
ROIs corresponding to (c), (d), (i), (j); (g), (m) corresponding spatial distributions. The red particles indicate the spatial
positions predicted by the trained YOLOv5s. The blue ones indicate the positions set in the MicroSIG.

Figure 5. Typical microscopic images of the particle field. The micrographs of (b) polystyrene particles field and (c) red blood cell
field. (h), (i) Corresponding spatial distributions. (d), (e), (f), (g) Zoomed-in ROIs in (b), (c). (a), (j) Single particle microscopic
images at different depths. (a): Polystyrene particle; (j): the blood cell.

or cells and noisy environments, the method successfully detected and positioned them, demonstrating the
robustness of the positioning method.

3.3. Applied to the dynamic field and planktons
The proposed method has also been applied to track the 3D motion of particles in a dynamic field. As an
example, motion videos of polystyrene particles were captured and processed. The trained YOLOv5s network
was able to automatically output the 3D positions of the target particles in real-time. A single frame with a
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Figure 6. The motion of particles in the chamber. Figures (a), (b) and (c) are the micrographs of the particles at different
moments; (d) are the trajectory of the particles. The video is referred to in supplement 1.

size of 1922 pixels ∗ 2560 pixels was processed within about 0.008 s, as the video is usually recorded in 25
frames per second (fps), the 3D positioning of the particle fields can be completed in real-time. The results of
the polystyrene particles in oil are shown in supplement 1 and in part in figures 6(a)–(c), while figure 6(d)
shows the trajectories of the particles. The trajectories reveal that the oil mainly flows in a laminar manner
and that the flow velocity may differ at different layers. The results demonstrate the great potential of this
method for fluid investigation.

Furthermore, the proposed method was also applied to track the 3D motion of swimming planktons.
Due to the difficulty of collecting moving underwater samples, the total number of samples was limited, and
they were placed in a petri dish. Using the similar method introduced in section 2.2, microscopic images
were captured using a 20×/0.40NA objective lens. Typical images of the planktons at different depths are
shown in figure 7, while the results of two typical plankton types (named A and B) are presented in
supplements 2 and 3, respectively. Part of these results can also be seen in figures 8 and 9. All samples were
successfully detected and precisely positioned in the test process, and their 3D dynamic trajectory was
obtained as shown in figures 8(d) and 9(d). The swimming planktons moved irregularly, and this method
offered a new approach to the investigations of their behavior. It should be noted that in some cases,
pollutants with similar color and morphology might be mistakenly considered as planktons, as shown in
figure 9(c). This problem will be further discussed in the next section. Nonetheless, the results demonstrate
the capability of this method to track the 3D motion of particles in a dynamic field, and it opens up new
avenues for fluid and biological studies.

3.4. The influences of the noises, overlaps and the discrete depths
As previously mentioned, noise and overlaps from adjacent particles can introduce errors to the proposed
method. To investigate the effects of these factors, polystyrene particles were used as an example, and the
results can be seen in figure 10. The enlarged ROI 1 and ROI 2 in figures 10(b) and (c), respectively, show
that noise does not affect the detection of target particles. The enlarged ROI 3 and ROI 4 in figures 10(d) and
(e), respectively, demonstrate that most overlapped particles can be successfully detected and positioned,
except for the particle in the center of the group composed of six-overlapped particles, which was affected by
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Figure 7.Micrographs of the planktons at different depths under a 20×/0.40 NA objective lens.

Figure 8. The motion of a Plankton A in the chamber. Figures (a), (b) and (c) are the micrographs of the plankton at different
moments; (d) is the trajectory of the plankton. The areas marked by squares are the enlarged views of the corresponding selected
zones. The video is referred to supplement 2.

the adjacent particles’ morphology, leading to an error. However, as particles are usually dispersed before
utilization, the proposed method is still suitable for most experimental conditions.

The depths determined by the proposed method are discrete, while the actual depth is a continuous
variable. To obtain continuous depths, the network compares the input and images obtained at all set depths
and calculates their corresponding probabilities, choosing the depth with the highest probability as the
output. Continuous depths can then be calculated by taking the weighted average of all possible depths with
their probabilities. While Leroy et al proposed a regression method to address the discretization of depth
values [18], the adjacent particles’ overlaps may still affect the probability distribution, and achieving
accurate and consecutive depth estimation remains an ongoing research challenge.
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Figure 9. The motion of a Plankton B in the chamber. Figures (a), (b) and (c) are the micrographs of the plankton at different
moments; (d) is the trajectory of the plankton. The areas marked by squares are the enlarged views of the corresponding selected
zones. The video is referred to supplement 3.

Figure 10. Position estimation of overlapping particles and recognition of noise particles. (a) A micrograph is containing
overlapped particles and noise. (b), (c) The enlarged extracted zones signed in (a) ROI 1 and ROI 2; (d), (e) the enlarged
extracted zones signed in (a) ROI 3 and ROI 4.

4. Autofocus

In situations where pollutants can lead to false detections in defocused images, autofocus is necessary.
Therefore, the dataset prepared for 3D positioning can also be utilized for autofocus. However, DL-based
autofocus methods require more data compared to 3D positioning methods and may require paired data. To
address these issues, this section proposes the use of GANs, eliminating the need for additional data.
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Figure 11. The autofocus of polystyrene particles and blood cells. (a) The focused polystyrene particle field and (b) the enlarged
image of ROI 3. (c) The focused blood cell field and (d) The enlarged image of ROI 4.

4.1. GANs selection for autofocus
We have employed two types of GANs for autofocus, one that uses paired data and another that uses
unpaired data. For the latter type, we used the widely-used Cycle-GAN [25]. It was used to complete
autofocus for different fields, such as polystyrene particles and blood cells. The focus images of the target
particles corresponding to figures 5(b) and (c) are shown in figures 11(a) and (c), respectively. Meanwhile,
figures 11(b) and (d) show the focus images of the ROIs corresponding to figures 11(a) and (c), respectively.
Compared to the images at different depths shown in figures 2(b) and (c), the particles and cells at different
depths are now focused simultaneously. Cycle-GAN can learn the connections between two types of images
from a large dataset [35], and since there is a large amount of data available for polystyrene particles and
blood cells, Cycle-GAN works well in this scenario.

However, as the amount of plankton data is small, Cycle-GAN is unable to work effectively for this type
of sample. Therefore, we opted for Pix2Pix-GAN to perform the autofocus. Pix2Pix-GAN requires paired
data [36], where the input defocused image and the focused image (used as ground-truth) for training must
be pixel-aligned. The network can learn the connections with relatively less data compared to Cycle-GAN.

4.2. Data augmentation for autofocus of plankton
Because plankton samples are often in motion, obtaining paired data for autofocus is challenging. To address
this issue, we extended our data augmentation method (as shown in [19] using Cycle-GAN. High-frequency
information, such as details, is difficult to recover from a defocused image, but it is relatively easy to lose this
information from a focused image. The workflow for this method can be seen in figure 12. We used
Cycle-GAN, trained on a small amount of data, to generate defocused images at different depths from
focused ones. These generated images and their corresponding focused counterparts were considered
pixel-aligned and used to train the Pix2Pix-GAN. The trained Pix2Pix-GAN can then be used for autofocus.
This method proved effective for plankton samples, where obtaining paired data is difficult due to their
motion.

The structural similarity index measure (SSIM) [37] has been used here as an evaluation indicator to
evaluate the accuracy of the images generated by the GANs. SSIM is defined as:

SSIM(a,b) =
(2µaµb + c1)(2σab + c2)

(µa
2 +µb

2 + c1)(σa
2 +σb

2 + c2)
. (5)

Here, µa and µb are the mean values of images a and b, respectively. σa
2 and σb

2 are the variances, while
σab is the covariance of a and b; c1 and c2 are regularization parameters, respectively. A larger SSIM means a
more substantial structural similarity between the two images. For example, if SSIM is 1, the two images are
identical. The average SSIM values between the autofocused images and the corresponding ground truths are
about 0.95. It indicates that this autofocus method is feasible. Three typical samples can be seen in figure 12.
The SSIM values between the generated images (a1, b1, c1) and the corresponding experimental ones (a2, b2,
c2) are about 0.9493, 0.9652, and 0.9567, respectively. As shown in figure 10(d), the pollutant was mistakenly
recognized as a plankton. The plankton and pollutant were focused based on the proposed method, as shown
in figures 12(d1) and (e1), respectively. They can be distinguished easily as the details can be observed clearly
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Figure 12. The workflow of the proposed data-augmentation method for autofocus of the plankton. (Step A) training
Cycle-GAN; (Step B) Train Pix2Pix-GAN using the dataset generated by the trained Cycle-GAN; (Step C) Autofocusing based on
the trained Pix2Pix-GAN. (Step D) The autofocus of plankton and pollutants. Figures (d) and (e) are defocused images of
plankton and pollutants, respectively; (d1) and (e1) are the corresponding autofocus images. GT: ground-truth.

in the focused images. This data augmentation method is suitable for the autofocus of the moving plankton.
It offers a chance for further investigation of the plankton and the pollutants.

5. Conclusions

The proposed method for 3D positioning and autofocus of the particle field is a novel and effective approach
that combines the use of the DfD and YOLO network. The depth of the particles can be determined by their
blurred defocused images, and then the complete 3D position information can be obtained based on the
trained YOLO model. The proposed method can process a single image containing multiple particles in
about 0.008 s, making it suitable for real-time detection and 3D positioning. Furthermore, GANs were
introduced to perform autofocus on particles at different depths simultaneously. The proposed
positioning-autofocus method was validated on various samples and has demonstrated its robustness to the
overlaps of adjacent particles and noise. With this method, the 3D positions of particles in the field can be
determined in real-time, and their focused images can be generated. The results of this study suggest that the
proposed method has great potential for application in the particle field, microbiology, environmental
science, and fluid investigation, among other related areas. Additionally, the method’s ability to detect and
autofocus particles in real-time makes it highly practical and useful for researchers and scientists working in
these fields. In conclusion, the proposed method offers a highly effective and efficient approach for 3D
positioning and autofocus of particles, providing valuable insights for further research in the field of particle
analysis and investigation.

11



Mach. Learn.: Sci. Technol. 4 (2023) 025030 X Zhang et al

Data availability statement

The training data set and network code are available on GitHub: https://github.com/xiaolei0828/particle-
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