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Semantic segmentation is a fundamental but challenging problem of pixel-level

remote sensing (RS) data analysis. Semantic segmentation tasks based on aerial

and satellite images play an important role in a wide range of applications.

Recently, with the successful applications of deep learning (DL) in the computer

vision (CV) field, more and more researchers have introduced and improved DL

methods to the task of RS data semantic segmentation and achieved excellent

results. Although there are a large number of DL methods, there remains a

deficiency in the evaluation and advancement of semantic segmentation

techniques for RS data. To solve the problem, this paper surveys more than

100 papers in this field in the past 5 years and elaborates in detail on the aspects

of technical framework classification discussion, datasets, experimental

evaluation, research challenges, and future research directions. Different from

several previously published surveys, this paper first focuses on comprehensively

summarizing the advantages and disadvantages of techniques andmodels based

on the important and difficult points. This research will help beginners quickly

establish research ideas and processes in this field, allowing them to focus on

algorithm innovation without paying too much attention to datasets, evaluation

indicators, and research frameworks.

KEYWORDS

remote sensing, deep learning, convolutional neural network, semantic segmentation,
satellite image
1 Introduction

Semantic segmentation is one of the most important problems in computer vision

(CV) (Mo et al., 2022). The goal is to determine the class of each pixel in an image, which

has great significance to the analysis and understanding of scene images. For RS data,

semantic segmentation also plays a key role in a variety of geographic information

applications, including urban planning (Zheng et al., 2020b; Abdollahi et al., 2021),
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economic assessment (Song et al., 2022; Wang et al., 2022a), land

resource management (Tong et al., 2020), precision agriculture

(Weiss et al., 2020), and environmental protection (Subudhi et al.,

2021; Li and Liu, 2023).

With the rise and evolution of deep neural networks, deep

learning (DL) has made tremendous breakthroughs in artificial

intelligence fields such as CV and natural language processing

(NLP) (Kitaev et al., 2022; Ru et al., 2022; Zhang et al., 2022b;

Noble et al., 2023). However, there are huge challenges for RS data,

such as top-down data acquisition perspective, large image scale,

different image resolution, and variable lighting conditions. DL

methods on natural images can be directly employed in RS data.

How to efficiently and accurately use the original RS data to obtain

the required information and obtain more accurate segmentation

results is difficult.

DL is gradually being applied to RS semantic segmentation

(Piramanayagam et al., 2018; Sun et al., 2019). Early methods based

on sliding windows and candidate regions are time-consuming and

have a lot of redundant calculations (Davis et al., 1975; Özden and

Polat, 2005; Senthilkumaran and Rajesh, 2009; Nowozin and

Lampert, 2011; Ciresan et al., 2012). In recent years, there are

more and more DL-based methods in RS, including U-Net methods

and its variants (Yue et al., 2019; Foivos et al., 2020), multi-scale

context aggregation networks (Liu et al., 2018a; Chen et al., 2020; Li

C. et al., 2021; Xu H. et al., 2022), and multi-level feature fusion

networks (Dong and Chen, 2021; Li et al., 2021b). The attention

mechanism that pays attention to relevant information and ignores

irrelevant information is frequently adopted with its advantages (Li

et al., 2021a; Li et al., 2021b; Li YC. et al., 2021; Seong and Choi,

2021). Later, Transformer-based and generative adversarial

network (GAN) methods no doubt are getting more and more

attention (Shamsolmoali et al., 2020; Tian et al., 2021; Cui L. et al.,

2022; He et al., 2022; Wang L. et al., 2022).

Some works of literature have reviewed the research methods in

the field of semantic segmentation of RS data, classified and explored

from different perspectives, including RS image analysis on general

DL algorithms (Zhu et al., 2017; Tsagkatakis et al., 2019; Jiang et al.,

2022), detection field methods (Asokan and Anitha, 2019; Li et al.,

2022a), Transformer models (Aleissaee et al., 2022), and image

registration methods (Zhang X. et al., 2021). Sebastian et al. (2022).

explored and evaluated the strengths and weaknesses of various

qualitative and quantitative image segmentation evaluation metrics

used in RS applications. Lu et al. (2021) introduced and analyzed the

studies and applications of satellite data from the perspective of

semantics, and carried out analysis and discussions from the four

research areas of semantic understanding, semantic segmentation,

semantic classification, and semantic search. Li et al. (2018) discussed

and performed a comparative analysis of DL models for semantic

classification. Tsagkatakis et al. (2019) comprehensively reviewed DL

methods for enhancing RS observations, focusing on key tasks

including single- and multi-band super-resolution, denoising,

restoration, pan-sharpening, and fusion. Most of the discussed

methods are outdated and lack the interpretation of the latest

research results and algorithms for semantic segmentation.

To promote the semantic segmentation methods of RS data, we

focus on the latest research methods, recent open datasets, and
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evaluation methods, and look forward to the future direction. First,

we describe the definition and research overview of semantic

segmentation tasks. Second, we discuss different technical

frameworks of DL and summarize their advantages and

disadvantages. Then, we illustrate the public RS datasets from

data collection and the comparison of experimental results with

different methods. Finally, we summarize future challenges and

research directions. The main contributions of this paper are

as follows:
• Highlight approaches of DL in RS data for semantic

segmentation tasks in the recent 5 years from different

technical frameworks, including new architectures, DL

components, and advantages and disadvantages.

• Detailed summaries of RS datasets. It contains the dataset

name, description, classes, channel number, and URL.

Statistical results of different methods on the same dataset

are also summarized.

• This review not only summarizes the existing achievements

but also points out some promising research directions for

semantic segmentation. From this perspective, it helps

potential readers find research points and motivates

engineers to develop advanced application patterns.
2 Overview

This section provides an overview of methods for semantic

segmentation in the RS field. First, the basic definition of semantic

segmentation is described. Second, the traditional and mainstream

methods are explained. Third, statistics are made on the semantic

segmentation methods of RS images in the past 5 years, and the

main published journals, quantity, and keyword visualization of

papers are analyzed.
2.1 Definition and concept

Semantic segmentation is a very important direction in the CV.

Unlike target detection and recognition, semantic segmentation

achieves image pixel-level classification. It can divide a picture into

multiple blocks according to the similarities and differences of

categories. Semantically related pixels are annotated with the

same label. The semantic segmentation algorithm can

comprehensively complete the recognition, detection, and

segmentation of visual elements in the scene, and improve the

efficiency and accuracy of image understanding. Compared with

image classification and target detection, the semantic segmentation

results can provide richer information about image parts and

details. Semantic segmentation algorithms have extensive

applications and long-term development prospects. For example,

in automatic driving technology, semantic segmentation algorithms

can assist the automatic driving system to judge road conditions by

segmenting roads, vehicles, and pedestrians. For RS images,

semantic segmentation plays an irreplaceable role in disaster

assessment, crop yield estimation, and land change monitoring.
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2.2 Research overview

Through the Google Scholar search keys “semantic segmentation”

and “remote sensing”, the statistics of the number of papers published

since 2015 are shown in Figure 1. We can see that semantic

segmentation, as an important task in the field of remote sensing,

has attracted the attention of researchers. Moreover, more and more

new technologies and methods are emerging.

We collect the works from more than 100 articles based on RS

semantic segmentation. This article counts them. The statistics of the

research published are shown in Figure 2A (journals with less than three

articles not shown). According to the number of journals published, the

top four are, in order, Remote Sensing, IEEE Transactions on Geoscience

and Remote Sensing, Journal of Photogrammetry and Remote Sensing,

and IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing. The year’s distribution of the research papers is shown

in Figure 2B. It can be found that we pay more attention to the latest

studies of the past 2 years, which represent the current advanced

technologies for semantic segmentation.

We analyze the keywords of the papers in the past 5 years. The

keywords have substantial meaning for expressing the central

content of the paper and can map the research content and

direction in recent years. The statistical results are displayed in

Figure 3, through the word cloud diagram. We can see that, in

addition to the task keyword “semantic segmentation” and the data

keyword “remote sensing”, “attention”, “convolutional neural”,

“Transformer”, “GAN”, and “unsupervised” are used more from

the perspective of methods technology.
2.3 Method overview

All developments are a long technical accumulation. Early

methods of semantic segmentation used traditional methods. With

the emergence of DL, more and more new methods are emerging.

There are also many excellent DL methods in the field of RS data.

Early semantic segmentation research focused on non-DL

models, such as the threshold method (Davis et al., 1975), the
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clustering-based method (Özden and Polat, 2005), the edge

detection method (Senthilkumaran and Rajesh, 2009), and

conditional random fields (CRFs) (Nowozin and Lampert, 2011).

These traditional methods have low efficiency and accuracy.

With the popularity of DL, many classic semantic segmentation

models have been designed. The fully convolutional network (FCN)

(Long et al., 2019) is the first applied DL to a semantic segmentation

task. It changed the fully connected layer of CNN to a convolutional

layer. However, the receptive field of FCN is fixed, and it is easy to lose

detailed information. To solve this problem, the SegNet model

(Badrinarayanan et al., 2017) was proposed. It can reduce the number

of parameters by using pooling indices to save the contour information

of the image. The U-Net network (Ronneberger et al., 2015) is an

extension of FCN. Its main innovation is utilizing four layers of skip

connections in the middle. DeepLab V1 (Chen et al., 2015) alleviated the

down-sampling problem and makes the segmentation boundary clearer

by replacing the traditional convolutional layer with porous convolution.

It discarded the fully connected layer of the VGG16 and changed the last

two pooling steps to one. Then, DeepLab v2 (Chen et al., 2017a),

DeepLab v3 (Chen et al., 2017b), and DeepLab v3+ (Chen LC. et al.,

2018) were proposed. The contribution of DeepLab v2 lies in the more

flexible use of atrous convolution and Atrous Spatial Pyramid Pooling

(ASPP). DeepLab v2 abandoned CRF, and improved ASPP, using

dilated convolution to deepen the network. DeepLab v3+ modified

the main network again and upgraded ResNet-101 to Xception.

In recent years, many improved methods based on classical DL

semantic segmentation have been applied to remote sensing images

(Zhou et al., 2018; Ding et al., 2020b; Pan et al., 2020; Bai et al., 2021;

Huang et al., 2022). Bai et al. (2021) proposed an improved model

HCANet and designed two Compact Atrous Spatial Pyramid Pooling

(CASPP and CASPP+) modules. Huang et al. (2022) improved U-

Net and U-net++ (Zhou et al., 2018) connections in one to four layers

of U-Net. The advantage of this structure is that the network can

learn the significance of characteristics from different depths and fuse

them. There are many kinds of research with the latest technologies,

for example, attention mechanism (Wang et al., 2022a), generative

confrontation network (Pan et al., 2020), and Transformer (Ding

et al., 2020b). These new methods have improved the performance of
FIGURE 1

The number of papers based on remote sensing semantic segmentation since 2015.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1201125
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Lv et al. 10.3389/fevo.2023.1201125
semantic segmentation tasks in RS data and have had an important

impact on the evolution of this task.

From the perspective of the DL technology framework, this paper

categorizes and outlines the semantic segmentation methods in RS

data in the past 5 years by dividing them into six categories, namely,

based on CNN, based on attention mechanism, multi-scale strategy,

based on Transformer, based on GAN, and fusion-based methods.

We display these network models in recent years in Figure 4.
Frontiers in Ecology and Evolution 04
3 Semantic segmentation framework

3.1 General CNN-based methods

There are many semantic segmentation studies based on the

CNN of RS data. This section discusses these papers from the

following categories: FCN-based, U-net-based, SegNet-based,

DeepLab-based, and other convolutional network methods.
BA

FIGURE 2

The distribution map of publications and years of analyzed articles. (A) The percentage distribution of publications. (B) The percentage distribution
of years.
FIGURE 3

The cloud map of keywords statistics of analyzed papers.
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3.1.1 FCN architecture
In the FCN, 1×1 convolution replaces the full connection in the

CNN. Then, the probability category value of each pixel is obtained

through the softmax layer. FCN introduces the deconvolution

shown in Figure 5. The true category of each pixel is the category

with the largest corresponding probability value. Finally, a

segmented image is obtained, whose size is the same resolution as

the input image. The deconvolution uses known convolution

kernels and convolutional output to restore images, thereby

obtaining refined features. The reason that FCN is more efficient

than CNNs is that computing convolutions are avoided one by one

for each pixel block, in which adjacent pixel blocks are repeated.

Although the FCN has pushed great breakthroughs in the scene

segmentation problem, it relies on a large-scale image recognition

network, which is usually trained on a large number of images

(Marmanis et al., 2016). However, in RS domains, label scarcity is a

difficult problem. Kemker et al. (2018) were the first ones to apply
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the FCN to segment multispectral RS images. It used massive

automatically labeled synthetic multispectral images and gained

good results. Then, many FCN-based methods (Iglovikov et al.,

2018; Shao et al., 2020; Wei et al., 2020; Chen et al., 2022) are

introduced to improve the performance of the segmentation.

Owing to the characteristics of RS data that come from

additional spectral bands set by multiple sensors, the commonly

used RGB-based pre-training model cannot meet the requirements.

According to the characteristics of RS data, some studies have

improved the FCN-based method to achieve good semantic

segmentation results (Liu et al., 2019; Chen G. et al., 2021; Chen

L. et al., 2021). Liu et al. (2019) fused the RGB feature to obtain

semantic labels from a DL framework with light detection and

ranging (Li-DAR) features. Chen G. et al. (2021) proposed an

improved structure, named SDFCNv2, to optimize the

segmentation results of RS data. First, they designed a hybrid

model basic convolutional block to obtain a larger receptive field.
FIGURE 4

Semantic segmentation methods of remote sensing based on deep learning.
BA

FIGURE 5

The FCN architecture and its deconvolution operator (Long et al., 2019). (A) FCN architecture. (B) Deconvolution.
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Second, they develop the spatial channel fusion model to reduce

training pressure and improve experimental results. The EFCNet

(Chen L. et al., 2021) was an end-to-end network, which used a

depth-variant block to learn the weights of different scale features.

Transfer learning with FCN can improve segmentation accuracy

(Wurm et al., 2019). Different convolutional blocks of the FCN

network extract multi-scale information without the need for

ensemble learning techniques (Pastorino et al., 2022a).

Incorporating the features extracted from the FCN network and

spatial information can obtain more accurate results (Pastorino

et al., 2022b).

3.1.2 U-Net architecture
The U-Net architecture (Long et al., 2019) is the most widely

utilized model in current semantic segmentation studies. It uses

skip connections in addition to the traditional encoder–decoder

layers to fuse low-level and high-level features in the expansion path

to improve localization accuracy. Many variant methods have

emerged later, such as Unet++ (Zhou et al., 2018), DC-Unet (Lou

et al., 2021), and TransUNet (Chen J. et al., 2021), and methods

based on the U-Net structure have been used for RS images (Huang

et al., 2017; Huang et al., 2018; Tasar et al., 2019; Maxwell et al.,

2020; Liu Z. et al., 2022; Priyanka et al., 2022; Wang K. et al., 2022)

and show better performance.

Maxwell et al. (2020) experimented with a UNet-based

approach on a large dataset of historical land surfaces from the

US Geological Survey and reduced manual digitization operations.

An incremental learning method (Tasar et al., 2019), which was a

variant of U-Net, included an encoder as the first 13 convolutional

layers of VGG16 and a decoder, and two central convolutional

layers. ResUNet-a (Foivos et al., 2020) added residual connections

in a U-Net backbone, which solved the problem of gradient

disappearance and explosion. It employed multiple parallel atrous

convolutions to extract object features at multiple scales. Priyanka et

al. (2022) designed a DIResUNet model to combine the building
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blocks with the U-Net scheme by integrating initial modules,

modified residual blocks, and Dense Global Space Pyramid

Pooling (DGSPP). In this way, local and global related scenes are

extracted in parallel by a dedicated processing operator, leading to

more efficient semantic segmentation. HCANet (Bai et al., 2021)

was similar to the encoder–decoder structure of U-Net. In HCANet,

there are two modules, CASPP and CASPP+. The CASPP module

substitutes the crop operations in U-Net and obtains multi-scale

context information from ResNet with multi-scale features. To get

aggregated context information, the HCANet method employed the

CASPP+ module in the middle layer of the network. Yue et al.

(2019) proposed TreeUNet, which connects a segmentation module

and a Tree-CNN block.

3.1.3 SegNet architecture
The SegNet network includes an encoder network, a symmetric

decoder network, and a classification layer pixel-wise. It has 13

convolutional layers that are the same as the VGG16. Up-pooling,

which applies the index of Max Pooling, is used in the encoder to

the decoder. It improves the recognition effect of the segmentation

task on the segmentation boundary. As shown in Figure 6, the

positions of the maximum values of the four colors are recorded. In

the up-pooling block, these positions are marked, and the other

positions are filled with zeros. In this way, the recognition effect of

the segmentation task can be improved on the boundary.

Many studies utilized the method of combining SegNet with

other operations to achieve semantic segmentation tasks (Marmanis

et al., 2017), and some researchers used the idea of SegNet to design

improved models (Weng et al., 2020; Zheng et al., 2020b).

Marmanis et al. (2017) saved memory by adding boundary

detection in the SegNet encoder–decoder architecture. Weng et al.

(2020) proposed the SR SegNet to accomplish water segmentation.

On the one hand, limit the number of parameters by adding an

improved residual block and depth separable convolution into the

encoder. Meanwhile, the dilated convolution can improve the
FIGURE 6

The up-pooling in SegNet architecture (Badrinarayanan et al., 2017).
frontiersin.org

https://doi.org/10.3389/fevo.2023.1201125
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Lv et al. 10.3389/fevo.2023.1201125
ability of feature extraction. On the other hand, SR SegNet used

more convolution kernels in the encoder network and employed a

cascade method to combine different level features of images.

3.1.4 DeepLab architecture
The DeepLab series includes some semantic segmentation

algorithms proposed by the Google team. DeepLab v1 was

launched in 2014 and achieved second place in the segmentation

task on the PASCAL VOC2012 dataset. Then, from 2017 to 2018,

DeepLab v2, DeepLab v3, and DeepLab v3+ were successively

established. The two innovations of DeepLab v1 are atrous

convolution and fully connected CRF. The difference between

DeepLab v2 is ASPP. DeepLab v3 further optimizes ASPP,

including adding convolution and batch normalization

operations. DeepLab v3+ is based on the structure of U-Net and

adds an up-sampling decoder module to advance the accuracy of

the edge.

In the field of RS, there are also many methods using DeepLab

series structural models, such as those based on DeepLab (Chen K.

et al., 2018; Hu et al., 2019; Venugopal, 2020; Wang Y. et al., 2021),

and some using DeepLab v3 models (Du et al., 2014; Kong et al.,

2021; Andrade et al., 2022; Wang et al., 2022a; Wang M.

et al., 2022).

A dilated CNN method (Venugopal, 2020) was proposed based

on DeepLab to catch the differences in images. Wang Y. et al. (2021)

proposed a feature-regularized mask DeepLab model to alleviate the

overfitting problem caused by small-scale samples. Chen K. et al.

(2018) introduced a shuffling operator based on the DeepLab model

to improve the convolutional network.

DeepLabv3+ extends DeepLabv3, which added an effective

decoder module to refine segmentation results (Du et al., 2014;

Kong et al., 2021; Andrade et al., 2022; Wang et al., 2022a; Wang M.

et al., 2022). Wang et al. (2022a) combined features by an attention

mechanism based on DeepLabv3+, named CFAMNet. First, a

feature module based on attention focused on the correlation

between different classes. Then, the multi-parallel space pyramid

pool structure extracted features of different scales of the input data.

To correctly handle the imbalance problem between different

classes, Andrade et al. (2022) extended the original DeepLabv3+

model, which can improve the depiction quality of forest polygons.

Wang M. et al. (2022) proposed an improved DeepLabv3+

semantic segmentation network, adopting style differences in the

generalization RS data in the backbone network ResNet101 using

the Instance Batch Normalization (IBN) module.

3.1.5 Other CNN methods
The power of CNN is that its multi-layer structure can

automatically learn features (Li Y. et al., 2020; Mi and Chen,

2020; Ma et al., 2021; Zhang Y. et al., 2021; Cui H. et al., 2022;

Ma J. et al., 2022). Cui H. et al. (2022) proposed a novel method,

Hybrid DA Network (MDANet), for patch image adaptation. It

reduced the difference in projection distribution of different patch

images by placing them into the virtual center of the hybrid domain.

Ma J. et al. (2022) designed a progressive reconstruction block based
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on the ASPP block and used different proportions of atrous

convolutional layers to continuously process features of different

resolutions. Super pixel-enhanced deep neural forests (SDNFs) (Mi

and Chen, 2020) achieved better classification accuracy by

combining deep convolutional neural networks (DCNNs) with

decision forests.

Compared with the large-scale coverage areas of RS images, key

objects such as cars and ships in HRS images usually only contain a

few pixels. To address this issue, Ma et al. (2021) designed a

semantic segmentation model of small objects, named foreground

activation (FA), which is from the perspective of structure and

optimization. Li Y. et al. (2020) coupled CNN and graph neural

network (GNN) design models to discover the spatial topological

relationship between visual elements. A novel activation function

Hard-Swish in (Avenash and Viswanath, 2019) obtained better

accurate results. Some new methods with the CNN network, for

example, Yang and Ma (2022), proposed a sparse and complete

latent structure via prototypes to solve the complex context of the

background class. The weakly supervised method based on the

CNN network can better solve tree species segmentation problems

(Ahlswede et al., 2022).

3.1.6 Discussion
The advantage of the FCN-based method is that it can adapt any

input image size. Although the effect of 8 times up-sampling is

much better than that of 32 times, the result of up-sampling is still

relatively blurred and smooth, and it is not sensitive to the details of

images. The classification of each pixel does not fully consider the

relationship between pixels. The spatial regularization ignored

spatial consistency. Since the model based on the U-Net structure

does not add pads during the convolution process, two pixels are

reduced after each convolution. The SegNet network uses pooling

indices to save the contour features of the input image, reducing

parameters. The DeepLab series performs ASPP, which improves

the positioning of the target boundary by using DCNN and reduces

the positioning accuracy caused by the invariance of DCNN.
3.2 Attention mechanism-based methods

The attention mechanism is a prevalent technique in DL

methods (Vaswani et al., 2017; Fu et al., 2019; Guo et al., 2022).

Excellent semantic segmentation models are often complex and

require massive computing resources. In particular, the frequently

used FCNs rely on detailed spatial and contextual information,

which hinders their practical application. In DANet (Fu et al.,

2019), rich information relations can be obtained through a dot-

product operator. Although attention technology greatly improves

segmentation accuracy, the requirement of massive computation

resources also hinders its application. In recent years, more and

more improved methods have emerged, such as the self-attention

mechanism and fusion attention mechanism. This section

summarizes and discusses linear attention and sub-attention

mechanisms, and channel and spatial attention mechanisms.
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3.2.1 Self-attention and linear attention
The input received by the neural network is many vectors of

different sizes, and there is some relationship among them, but

actual training cannot fully utilize these relationships. To solve the

problem that the fully connected neural network cannot establish

correlations for multiple related inputs, the self-attention operator

emerged. It requires the machine to recognize the correlation

between different components.

RSANet (Zhao D. et al., 2021) was a region self-attention

mechanism. Compared with the traditional methods, it can

decrease the feature noise and the redundant features. Li C. et al.

(2021) employed a layered self-attention embedded neural network

with dense connections, which made full use of short- and long-

range contextual features. Self-attention models were learned for

automatic learning of channel and position weights (Chen Z. et al.,

2021) and built a feature library and extract features of class-

constrained (Deng et al., 2021). Li C. et al. (2021) proposed the

Multi-Scale Context Self-Attention Network (MSCSANet). It

combined the benefits of self-attention and the mechanism of

CNN to improve the segmentation quality. Through the position

and channel attention modules, the correlation within the feature

map was calculated as well as the multi-scale contextual feature map

and local features.

Linear attention is an optimization genre of self-attention,

which can optimize the complexity from O (N2) to O (N). The

ith query feature is qTi ∈ RDk and the ith key feature is ki ∈ RDk .

The first-order representation of the Taylor expansion is eq
T
i kj ≈

1 + qTi kj, and guarantees qTi kj ≥ −1 using the L2 normal form for qi
and kj.

sim(qi, kj) = 1 + (
qi
qik k2

)T (
kj
kj

�
�

�
�
2

) (1)

where the sim(.) measures the similarity between qi and kj.

Therefore,

D(Q, K, V)i =
oN

j=1(1 + (
qi
qik k2

)T(
kj
kj

�
�

�
�
2

))vj

oN
j=1(1 + (

qi
qik k2

)T (
kj
kj

�
�

�
�
2

))
(2)

where Q is the corresponding query matrix, K is the key matrix, and

V is the value matrix. The vector form is represented as follows:

D(Q, K, V)i =
ojVi,j + (

Q
Qk k2

)((
K
Kk k2

)TV)

N + ( Q
Qk k2 )oj(

K
Kk k2

)Ti,j

(3)

Li et al. (2021a) used a linear attention mechanism (LAM). They

reconstruct the skip connections of the original U-Net and design a

multi-stage method. Li et al. (2021c) designed a novel Attention

Bilateral Context Network (ABCNet), which utilizes a lightweight

CNN spatial path and contextual path for semantic segmentation of

high-resolution RS images and used a LAM modeling the global

contextual information. A2-FPN (Li R. et al., 2022) was proposed

for attention aggregation. The model introduces a LAM and an
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attention aggregation module for a feature pyramid network to

enhance multi-scale feature learning. Wang L. et al. (2021) utilized

stacked convolution to build the texture path and to fuse

dependency and texture features. Marsocci et al. (2021) proposed

a combined self-supervised algorithm using an attention

mechanism and a semantic segmentation algorithm based on a

LAM for the shape of aerial images.

3.2.2 Channel and spatial attention
The semantic segmentation methods in RS data widely used

attention mechanisms, such as channel and spatial attention. The

channel attention focuses on feature learning in the important

channel dimensions and weakens others. The spatial attention

module emphasizes key areas and weakens the background. Most

of the current research methods combine these two methods to

improve the segmentation effect, and some methods use one of

them separately.
3.2.2.1 Channel attention

Channel attention generates an attention mask in the channel

domain to select important channels. Channel attention focuses on

the channel dimension, which is shown in Figure 7A. A feature

detector detected feature maps of each channel. For a feature map,

the importance of each channel is calculated, and the weighted

feature map is obtained by multiplying weights with the feature

maps. Su et al. (2022) designed architecture similar to U-Net using

wavelet frequency channel attention blocks as the attention

mechanism. To select the most discriminative features,

Panboonyuen et al. (2019) changed the weights of RS features at

each stage to adaptively assign more weight values to important

features. CFAMNet (Wang et al., 2022a) improved the deep

DeepLabv3+ network. Its attention module obtained relevance

between different categories. A multi-parallel ASPP extracted

space relevance and obtained the context features of different scales.

3.2.2.2 Spatial attention

Spatial attention focuses on the space and which points on each

channel are more important (Luo et al., 2019; Zhao Q. et al., 2021; Li

et al., 2022b); thus, it is necessary to generate a spatial weight, which

is shown in Figure 7B. First, average the values of different channels

at the same plane space point (AvgPool) and take the maximum

value (MaxPool) to obtain the weight. Then, a convolutional layer

and a sigmoid function are used to obtain the final weight, and this

weight is multiplied by each channel to achieve a weighted feature

map in the spatial dimension. Owing to the size of the convolution

kernel and the disappearing gradient, the data extracted from some

buildings are inaccurate, and the information on some smaller

buildings will be lost as the network deepens. A multi-scale spatial

attention module (Li et al., 2022b) is designed to provide contextual

information for the features obtained by this network model. A

multi-scale spatial attention module provides contextual

information for the features obtained by this network model.

Zhao Q. et al. (2021) used a multi-scale module to advance the

accuracy of high-resolution aerial labeling.
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3.2.2.3 Fusion attention mechanism

Many experiments prove that fusing channel and spatial

attention can get better segmentation results (Ding et al., 2020a; Li

H. et al., 2020; Sun et al., 2020; Seong and Choi, 2021; Fan et al.,

2022; Liu R. et al., 2022), which is shown in Figure 7C. There are two

ways for the integration of channel and spatial attention: (1) parallel

model, where channel attention and spatial attention are paralleled,

and (2) sequential model. First, let the feature map pass channel

attention and then pass spatial attention or vice versa. Most

experiments prove that it is better to pass channel attention first.

The bilateral segmentation network (BiSeNetV2) (Sun et al., 2020)

includes a detailed branch and a semantic branch. The detailed

branch uses wide channels and shallow layers to capture low-level

details and generate high-resolution feature representations. It takes

the feature map {C1, C2, C3, C4, and C5} as input. C1 contains rich

spatial location information, which is concatenated with Conv 1×1

and C2 to obtain feature map C12 through convolution operation.

Next, the spatial boundary attention map A1=1/1(1+exp(C12)) is

obtained through the sigmoid operation. The channel attention gate

assigns weights according to the importance of each channel, and the

spatial attention gate assigns weights according to the importance of

each pixel location for the entire channel. Ding et al. (2020a)
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represented features in two ways via augmentation. On the one

hand, the attention module is utilized to enhance embedding

attention based on contextual information computed by local

stitching. On the other hand, local foci from high-level features are

embedded by the attention embedding module. Fan et al. (2022)

fused channel and spatial attention; the attention module is

combined with dilated convolutional layers to form a new central

region encoding and decoding, which improves the accuracy of river

segmentation. Li H. et al. (2020) proposed an end-to-end semantic

segmentation network that integrates lightweight spatial and

channel attention modules to adaptively refine features. Global

relationships between different spatial positions or feature maps

can be learned and reasoned by relation-augmented representations

(Mou et al., 2020).

3.2.3 Discussion
Self-attention is the weight given to each input depending on

the relationship between the input data. Self-attention has the

advantage of parallel computing when calculating. Linear

attention is similar to dot-product attention, but it uses less

memory and computation. Channel attention focuses on the

importance of different channels, while spatial attention gates
B

C

A

FIGURE 7

Channel attention and spatial attention (Woo et al., 2018). (A) Channel Attention. (B) Spatial attention. (C) The convolutional block attention
combines channel attention and spatial attention.
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focus on the importance of different pixel locations. In recent years,

to improve semantic segmentation performance, most methods fuse

channel and spatial attention mechanisms. However, researchers

simply add or connect the attention results of the spatial and

channel dimensions. How to identify the semantic segmentation

of complex backgrounds is a problem that needs to be solved

continuously. Therefore, it is necessary to design efficient fusion

models to meet higher accuracy requirements.
3.3 Multi-scale strategy-based methods

RS images have high resolution and multi-scale variation

characteristics. However, the receptive field size of the CNN is

fixed. For the large-scale visual elements in the image, the receptive

field can only cover its local area, which can easily cause wrong

recognition results, and for the small-scale visual elements in the

image. The challenge of exploiting multi-scale segmentation is to

automatically select the best consecutive segmentation scale analysis

(Zhang et al., 2020; Zhong et al., 2022a). Most methods are based on

hierarchical structure or parallel structure, combined with an

attention mechanism to achieve multi-scale feature fusion. This

section discusses multi-scale semantic segmentation methods for RS

images from hierarchical and parallel structures.
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3.3.1 Hierarchical structure
The algorithm based on the hierarchical structure obtains

multi-scale information through different stage features of the

CNN, which is shown in Figure 8A. During the forward

propagation process of the CNN, the receptive field increases

continuously with the convolution and pooling operations. Multi-

scale features from channel and spatial can be captured by fusing

the features from CNN’s different stages (Zheng et al., 2020a; Li Z.

et al., 2021; Liu B. et al., 2022; Luo et al., 2022; Wang et al., 2022b;

Zhao et al., 2022; Zheng et al., 2022).

High-resolution RS data have larger dimensions than typical

natural images. Mou et al. (2020) studied a framework for object-

specific optimization by identifying and fusing meaningful objects

based on line segment tree models representing hierarchical multi-

scale segmentation. Nodes in each path originate from leaf nodes.

The EaNet model (Zheng et al., 2020b) is an edge-ware CNN. A

kernel pyramid pooling (LKPP) module extracts different scale

information. They designed a new loss function to optimize

boundaries. Zheng et al. (2022) used a different scale input

convolution module for extracting acceptable local information.

Li Z. et al. (2021) extracted different features at multiple scales; SS

AConv cascaded multi-scale structure (SCMS) transforms the SS

AConv and residual correction scheme into a cascaded spatial

pyramid by integrating different rates of SS AConv.
B

A

FIGURE 8

The hierarchical and parallel structures of the multi-scale strategy (Zhang and Li, 2020). (A) Hierarchical structure. (B) Parellel structure.
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Xu H. et al. (2022) designed the FSHRNet using strong linear

separability of high-resolution features to achieve multi-scale object

segmentation in VHR images. Li et al. (2021c) proposed a layered

self-attention model with dense connections. The method made full

use of short and long contextual features. Inspired by transfer

learning, Zhao et al. (2022) improved a multi-scale network that

can advance the network’s robustness. It learned scale-invariant and

small objects context information. Liu B. et al. (2022) designed a

method that can efficiently extract different scale features and

generate maps, which helps to subdivide objects into small and

different sizes. Luo et al. (2022) extracted categorical object

representations from multi-scale pixel features. It can identify the

similarities and differences between categories. The article by Zheng

et al. (2020a) learned the symbiotic relationship between scenes

through the foreground-scene relationship module. Relevant

context-associated foreground augments foreground functionality,

thereby reducing false positives. Wang et al. (2022b) used dynamic

multi-scale dilated convolution to extract different scale features.

3.3.2 Parallel structure
The parallel structure algorithm connects multiple parallel

branches with different receptive fields after the semantic feature

map obtained by the convolution module to form a parallel

structure to capture features of different scales, which is shown in

Figure 8B. Liu et al. (2018b) automatically learned multi-scale and

multi-level features, which are obtained from a deep supervision

network to provide comprehensive direct supervision to deal with

various scenarios and scales of the road. Liu et al. (2018a) captured

different scale contexts in the output results of CNN encoders, and

then continuously aggregate them in a self-cascading manner. Bello

et al. (2022) proposed an efficient dense multi-scale segmentation

network for accurate and specialized remote real-time segmentation

of RS images. Wang et al. (2022 2022) designed a new backbone

network, taking multi-scale problems as an entry point, which can

focus on more important information of multi-scales.

Because of the size of the CNN kernel and the vanishing

gradient, the data extracted from buildings are inaccurate, and the

information of some smaller buildings will be lost as the network

deepens. Duan and Hu (2019) proposed a new erasure attention

module to cooperate with the multi-scale refinement scheme to

efficiently perform feature embedding.

3.3.3 Discussion
The multi-scale strategy is a common technique for the

semantic segmentation task of RS data. Since high-resolution

images contain different object scales, it is necessary to combine

the information of different scales of receptive fields to meet the

requirements of the accurate segmentation of various objects. The

FCN uses the same convolution operation on the entire image,

without considering the multi-scale problem of visual elements,

which damages the segmentation accuracy of larger-scale and

smaller-scale visual elements. The multi-scale model generally

builds a multi-scale RS image segmentation network first, then

fuses multi-scale features, and finally predicts the results through

convolution and up-sampling.
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The method based on the hierarchical structure obtains multi-

scale information through the features of different stages of the

CNN. During the forward propagation process of the CNN, the

receptive field expanded continuously using the pooling and

convolution parts. The shallower feature map corresponds to a

smaller receptive field, and the feature scale is also smaller. While

the deep feature map corresponds to a larger receptive field, the

feature scale is also larger. Therefore, different scale features can be

obtained by fusing feature maps of different stages. The method

based on parallel structure connects multiple parallel branches of

different receptive fields after the semantic feature map obtained by

the convolution module to form a parallel structure to capture

features of different scales. These parallel branches are computed

from the semantic feature map obtained by the convolution

module, compared to the hierarchical algorithms, which are more

suitable for learning semantic features.
3.4 Transformer-based methods

The Transformer was originally applied in the field of NLP.

Each word is called a token in NLP, and in CV, the image is cut into

non-overlapping patch sequences that are similar to tokens. SETR

(Zheng et al., 2021) is the first representative model of semantic

segmentation based on vision Transformer (ViT), which replaced

the CNN encoder with a pure Transformer structure encoder. It

drives the development of semantic segmentation in recent years.

Recently, Transformer technology makes significant

contributions to improving semantic segmentation performance in

the RS field (Li W. et al., 2022; Ma L et al., 2022; Sun et al., 2022).

However, compared with the words in the text, the pixels in the image

have a very high resolution, and the computational complexity of

using a Transformer in CV is the square of the image scale, which will

lead to an excessively large amount of calculation. To solve the above

problems, the Swin Transformer (ST) (Liu et al., 2021) network was

proposed, which is shown in Figure 9A. Its features are learned by

moving the window. The moving window not only brings greater

efficiency but also greatly reduces the sequence length. The advantage

of the hierarchical structure is that it flexibly provides information on

various scales. Because self-attention can calculate within the window,

its computational complexity increases linearly with the size of the

picture rather than quadratic. Therefore, in RS semantic

segmentation, it is widely used (Panboonyuen et al., 2021; Xu et al.,

2021; Feng et al., 2022; Gu et al., 2022; Liu Y. et al., 2022; Li X. et al.,

2022; Meng et al., 2022; Xu Y. et al., 2022). ST first used the module to

segment the data into many non-overlapping different patches. The

state-of-the-art solutions for segmentation tasks in RS data are

usually solved by CNN methods and Transformer technology. A

pre-trained ST (SwinTF) (Panboonyuen et al., 2021) model with ViT

was used as the backbone to weight downstream tasks by

concatenating task layers on the pre-trained encoder. The original

ST as the backbone of the encoder module contains a convolutional

layer and attention operator. Li X. et al. (2022) utilized ST blocks and

convolution blocks to advance the segmentation performance. Xu

et al. (2021) argued that Transformer-based architectures usually face
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two main problems: massive computational and difficulty of edge

segmentation. Therefore, the authors proposed a newmodel based on

a Transformer network to achieve accurate edge detection and fewer

parameters. Use an efficient Transformer backbone to improve ST to

reduce computational load. Liu Y. et al. (2022) designed UPer head

with ST to challenge the land-cover segmentation.

CNN cannot simulate global semantic correlation, and the

Transformer model can be built with global features (Ghali et al.,

2021). Combining CNN and Transformer can improve the

performance of semantic segmentation (Zhao X. et al., 2021;

Wang H. et al., 2022; Zhang C. et al., 2022; Zhang et al., 2022a).

CNN obtained local detail features and the Transformer module

obtained the global context features. Zhong et al. (2022b) designed a

semantic segmentation network, which combined CNN and

Transformer parts. It solved over-segmentation and the

inaccurate edge detection problem, which was caused by small

differences between lakes and complex texture features. StransFuse

(Gao et al., 2021) was a new method combining both advantages of

the Transformer and the CNN model. It can better improve the

performance of various RS images, which is shown in Figure 9B.

Multi-level Transformers can fuse features in different levels in each

modality and high-level cross-modal features (Ma X. et al., 2022).

The Transformer breaks through the limitation that the CNN

model cannot be calculated in parallel and can reasonably utilize

GPU resources. The Transformer’s ability to acquire local

information is not as strong as CNN’s. Therefore, combining

Transformer and CNN can improve semantic segmentation. The

ST improves the ordinary Transformer and can be flexibly modeled

at various scales using a layered architecture. The sliding window

feature of the ST enables it to compute self-attention in locally non-

overlapping windows and allows cross-window connections.
3.5 GAN-based methods

Training neural networks, which largely depend on massive

images with precise pixel-level annotation, is labor-intensive,

especially for big-scale RS data. Segmenting multispectral images
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using supervised machine learning algorithms requires numerous

pixel-level labeled data, which makes the task extremely challenging.

In recent years, some studies have introduced GAN into RS

images for semantic segmentation tasks (Creswell et al., 2018;

Kerdegari et al., 2019; Hong et al., 2020; Li D. et al., 2022). The

GAN (Creswell et al., 2018) consists of generator (G) and

discriminator (D) parts. The generator part can generate a fake

image to fool the discriminator, and the discriminator distinguishes

the fake image from the real image. The generator G transforms a

random sample z ∈ Rd distribution g into a generated sample G(z).

The discriminator D discriminates them from the training samples

from the distribution m, while G tries to make the generated

samples’ distribution similar to that of the training samples. The

adversarial target loss function is shown below:

V(D, G) : = Ex∼m½log D(x)� + Ez ∼ g ½log (1 − D(G(z)))� (4)

Tian et al. (2021) proposed a combined GAN and FCN network and

constructed an FCN-based segmentation network to enhance the

deep semantic receptive field of the model. GAN is integrated into an

FCN semantic segmentation network to synthesize global image

feature information and then accurately segment and sense

complex RS images. Hong et al. (2020) proposed plug-and-play

units in two networks: a self-generative GANs module and mutual

GANs module, to learn perturbation-insensitive feature

representations and eliminate multimodality, yielding more efficient

and robust information transfers, respectively. Sun et al. (2021)

proposed a subdivision method based on GANs to reduce intra-

class differences. The background and target should be generated

separately via the Orthogonal GAN (O-GAN). The O-GANworks by

adding new loss functions to their discriminators. To better extract

architectural features, the drawing is based on the idea offine-grained

image classification through an O-GAN intermediate convolutional

layer (SCDA) with selective convolutional descriptor aggregation.

Because of the cumbersome and difficult annotation for RS

images, the exploration of unsupervised and semi-supervised

models is difficult. The domain adaptive method using the

confrontation generation network learns domain-invariant

features through the confrontation between the generator and the
BA

FIGURE 9

The Transformer unit and adaptive fusion module. (A) Swin Transformer (Liu et al., 2021). (B) Adaptive fusion module (Gao et al., 2021).
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discriminator, which can effectively reduce the difference between

domains. Most methods use GAN to generate RS images and

combine them with network models such as CNN for

semantic segmentation.
3.6 Fusion-based methods

As researchers continue to pursue the accuracy of semantic

segmentation, a large number of fusion models of different

technologies and structures have emerged, and have shown

excellent results. Some fusion methods in recent years are listed

in Table 1. First, the CNN network is the basis of most models.

Adding an attention mechanism block is the most common way in

the research of fusion models (Panboonyuen et al., 2019;

Shamsolmoali et al., 2020; Kong et al., 2021; Liu Z. et al., 2022).

Second, different targets have different scales on the image.

Therefore, multi-scale methods often integrate other feature

extraction methods to improve models, such as CNN and

Transformer (Chen et al., 2020; Zheng et al., 2020b; Zhao Q.

et al., 2021; Zhang et al., 2022a). Third, some complex models

integrate more modules, such as GAN, ST, and multi-scale (Li Z.

et al., 2021; Marsocci et al., 2021; Xu et al., 2021). However, complex

models often require massive computing resources; thus, more

models that balance computing resources and accuracy are needed.
4 Dataset description and
experimental discussion

4.1 Dataset description

We describe some public RS datasets for semantic segmentation

tasks in this section. The most frequently referenced datasets are the

ISPRS Vaihingen and Potsdam datasets, followed by GID and

WHDLD. The image samples and classifications of these four

datasets are shown in Figure 10. We describe the datasets with

more papers’ references, which include the description, classes,

channels, and URLs shown in Supplementary Table 1.

4.1.1 Satellite image datasets
In this section, we list a few datasets for semantic segmentation

tasks, which are captured by satellites. Satellite images are obtained

from the earth observation remote sensing instrument loaded on

the satellite.

4.1.1.1 ISPRS Vaihingen

The ISPRS Vaihingen is a comparatively small village where there

are many independent small buildings. The dataset contains 33 true

orthophoto (TOP) images (GSD ~ 9 cm) with 2,500 × 2,000 pixels,

which are of very high resolution. There are approximately 16 image

tiles that are noted with pixel-wise labels. In addition, every pixel is

split into one of six land categories, namely, impervious ground,

architecture, low vegetation, tree, car, and clutter.
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4.1.1.2 ISPRS Potsdam

The ISPRS Potsdam dataset covers an area of 3.42 km2, which

consists of 38 image tiles with a spatial resolution of 5 cm. All

images are 6,000 × 6,000 pixels with four bands for near-infrared

(NIR) and red (R), green (G), and blue (B) channels.

Similar to the Vaihingen region, it is also made up of three

bands of RS TIFF files and a single band of digital surveying and

mapping (DSM). RS images and DSM are defined on the same

reference system (UTM WGS84) because of the same coverage size

of each RS image. In particular, each image is decomposed into

smaller images using radial transform files. The dataset also

provides a tiff storage form for different channel combinations of

the TOP image so that participants can select their respective

desired data.

The dataset label is a semi-dense disparity map obtained by

averaging DSM data matched by multiple sets of commercial

software based on internal and external orientation elements. The

dataset provides a normalized DSM that does not require manual

annotation. Accordingly, it is not guaranteed that there is no false

data here, which is to help researchers use high data without using

absolute DSM.

4.1.1.3 GID

GID (Tong et al., 2020) covers 506-km2 areas that are captured

via the satellite Gaofen-2. This dataset includes 150 high-quality

Gaofen-2 RS images with 7,200 × 6,800 pixels. The dataset has a rich

diversity in spectrum, texture, and structure, which is very close to

the real feature distribution characteristics. The GID dataset is

divided into two parts: a large-scale set of labeling categories

(GID-5) and a fine land cover set (GID-15). It contains five

classes in GID-5. In addition, 150 image-level labeled Gaofen-2

satellite RS images are offered. Among them, there are 120 images in

the training section; meanwhile, 30 images are included in the

validation set.

4.1.1.4 WHDLD

The Wuhan dense labeling dataset (WHDLD) (Shao et al.,

2020) is captured from an enormous image of the downtown area of

Wuhan in the RS field. With a resolution of 2 m, this dataset

provides 4,940 RGB images with 256 × 256 pixels. WHDLD is

labeled with six categories. They are building, roads, sidewalks,

vegetation, bare soil, and water.

4.1.1.5 DeepGlobe Land Cover

The dataset contains a space resolution of 0.5 m and is built of

red, green, and blue bands. It is generated from a satellite with 2,448

× 2,448 pixels. Seven classes have been split into downtown area,

farm land, range land, forest, water area, barren, and unknown.

4.1.1.6 GF-2

Based on the GF-2 satellite, this dataset has a space resolution of

0.8 m, with 2,000 × 2,000 pixels. With the help of ENVI, the image

of GF-2 is preprocessed. These data are labeled by Matlab software

with different colors and diverse image types.
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TABLE 1 Different methods that integrated different models.

Papers Year Datasets Methods

Panboonyuen
et al. (2019)

2019 ISPRS Vaihingen, Landsat-8 dataset CNN, Transfer learning, Attention mechanism

Luo et al. (2019) 2019 fg CNN, Multi-scale, Self-attention

Zheng et al.
(2020b)

2020 WHU building dataset, Cityscape, ISPRS Vaihingen CNN, Object-specific optimization, Multi-scale

Li et al. (2021a) 2020 ISPRS Vaihingen Attention mechanism, Multi-scale, ResU-Net

Duan and Hu
(2019)

2020 GID CNN, Multi-scale, Attention mechanism

Shao et al. (2020) 2020 WHDLD, DLRSD FCN, Region convolutional features, Multi-scale

Sun et al. (2020) 2020 AIR-SEG, ISPRS Vaihingen FCN, Boundary attention model, Channel-weighted, Multi-scale

Chen et al. (2020) 2021 ISPRS Potsdam, ISPRS Vaihingen GAN, Multi-scale

Seong and Choi
(2021)

2021 SpaceNet building datasets, GIS, WHU dataset CNN, Attention mechanism, ResNet

Tian et al. (2021) 2021 ISPRS Vaihingen, ISPRS Potsdam, DeepGlobe Road FCN, GAN

Panboonyuen
et al. (2021)

2021 ISPRS Vaihingen Feature pyramid network, CNN, Transformer

Ghali et al. (2021) 2021 Corsican Fire dataset CNN, Transformer, TransUNet, U2Net Architecture

Chen Z. et al.
(2021)

2021 WHU and Massachusetts Building datasets U-Net, Self-attention, Multi-scale

Shamsolmoali
et al. (2020)

2021 DeepGlobe Road Extraction Data Set Feature pyramid, Multi-scale, Attention mechanism

Li C. et al. (2021) 2021 ISPRS Vaihingen, ISPRS Potsdam CNN, Dense connection, Self-attention

Xu et al. (2021) 2021 ISPRS Vaihingen, ISPRS Potsdam CNN, Swin Transformer

Kong et al. (2021) 2021 Sentinel-1 SAR images Channel spatial Attention mechanism, DeepLabv3+, Multi-scale

Wang L. et al.
(2022)

2022 ISPRS Potsdam, ISPRS Vaihingen Transformer, Multi-scale

Feng et al. (2022) 2022 GID CNN, Swin Transformer, Multi-scale

Gu et al. (2022) 2022 WHDLD, LoveDA
CNN, Swin Transformer, U-Net, Multi-scale, A deformable
adaptive patch merging layer

Meng et al. (2022) 2022 ISPRS Vaihingen, ISPRS Potsdam FCN, Swin Transformer

Zhang et al.
(2022a)

2022 ISPRS Potsdam, WHU Building, dataset CNN, Transformer, Depthwise channel self-attention

Liu Z. et al. (2022) 2022 ISPRS Vaihingen, ISPRS Potsdam DCNN, Attention mechanism

Li X. et al. (2022) 2022 DeepGlobe Land Cover Dataset, ISPRS Vaihingen, ISPRS Potsdam CNN, Transformer, Multi-scale

Li et al. (2021b) 2022 ISPRS Vaihingen, ISPRS Potsdam CNN, Multi-attention network, Multi-scale,

Zhao et al. (2022) 2022 ISPRS Potsdam Collaborative enhanced fusion, Attention mechanism, Multi-scale

Luo et al. (2022) 2022 ISPRS Potsdam, GID Feature pyramid, cross-attention, Transformer, Multi-scale

Zheng et al. (2022) 2022 GID
Multi-scale, Transformer, Attention mechanism, semi-supervised,
Pyramid scene parsing network

Liu Y. et al. (2022) 2022 ISPRS Vaihingen, ISPRS Potsdam
CNN, Swin Transformer, Multi-scale, Dynamic attention pyramid
head

He et al. (2022) 2022 ISPRS Vaihingen, ISPRS Potsdam CNN, Swin Transformer, UNet, Spatial interaction module

Wang et al.
(2022b)

2022 SSS image datasets
CNN, Attention mechanism, Dynamic Multi-scale Dilated
Convolution, Adaptive Receptive Field Mechanism

Cui L. et al. (2022) 2023
24 remote sensing city-scale images of Yushu city and Beichuan city
after the Yushu and Wenchuan earthquakes

CNN, Swin Transformer, Convolutional block attention module
F
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4.1.1.7 RSSCN7

RSSCN7 (Qin et al., 2015) consists of 2,800 RS images.

Collected from Google Earth, each class is equipped with 400

images with 400 × 400 pixels. This dataset is split into seven

different classes, namely, grass land, forest, farm land, parking

lots, residential region, industrial region, and rivers/lakes.
4.1.1.8 LoveDA

The LoveDA dataset (Wang J. et al., 2021) collects different

images of different cities and villages from Nanjing, Changzhou,

and Wuhan, China. Along with a spatial resolution of 3 m, this

dataset offers 5,987 RS images. Each picture has a resolution of

1,024 × 1,024. This dataset provides six categories, namely, building,

roads, water, infertile soil, forest, and agriculture.

4.1.2 Aerial image datasets
We review a few RS semantic segmentation datasets captured by

aircraft in this section. These data have the following characteristics:

high definition, large scale, small area, and high visibility.
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4.1.2.1 Landcover

The Landcover aerial image labeling dataset consists of images

from Poland’s rural areas, from which there are 39.51 km2 with a

size of 50 cm/pixel and 176.76 km2 with a resolution of 25 cm/pixel.

These images are labeled with four classes. They are forests, water,

building, and others.

4.1.2.2 UAVid

UAVid (Ye et al., 2020) is a UAV semantic segmentation

dataset revolving around city street scenes with a resolution of

4,096 × 2,160 and 3,840 × 2,160. It contains 300 images intensively

labeled with eight classes to cope with the semantic labeling task.

The eight classes are architecture, urban road, tree, low vegetation,

moving car, static car, human, and clutter/background. UAV is a

quite challenging field due to the high resolution of images and the

elaboration of scenes.

4.1.2.3 ISAID

This dataset is designed for instance segmentation (Zheng et al.,

2020a), offering 2,806 high-resolution RS images from
B

C D

A

FIGURE 10

Visualization of the four common datasets. (A) ISPRS Vaihingen. (B) ISPRS Postdam. (C) WHDLD. (D) GID.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1201125
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Lv et al. 10.3389/fevo.2023.1201125
approximately 800 × 800 pixels to approximately 4,000 × 13,000

pixels with 15 foreground classes and 1 background class.

4.1.2.4 Massachusetts road datasets

The Massachusetts road dataset covers 2,600 km2 of

Massachusetts. This dataset consists of aerial images with a size of

at least 1,500 × 1,500 and a resolution of 1 m. In addition, this

dataset also provides seven pixels of ground segmentation truth

collected from OpenStreetMap.

4.1.2.5 DLRSD

With a spatial size of 256 × 256, DLRSE (Shao et al., 2020)

consists of 2,100 RGB images and a resolution of 0.3 m. The dataset

is labeled based on the UCMerced LandUse dataset with 17
Frontiers in Ecology and Evolution 16
categories, namely, airplanes, bare soil, architecture, car,

chaparral, courthouse, dock, field, grass, mobile house, sidewalk,

sand, marine, ship, tank, trees, and water.
4.2 Experimental comparison

Semantic segmentation methods for RS images are most

commonly used for experimental comparisons on datasets ISPRS

Vaihingen and ISPRS Potsdam. This paper summarizes the

referenced RS semantic segmentation papers in the experimental

comparison of the two as shown in Table 2, using the indicators

mF1, mIoU, and OA.

The values cannot rank the performance of the methods,

because the training set and test size of different papers are
TABLE 2 Comparison of different methods on ISPRS Potsdam and Vaihingen datasets.

Methods Models
ISPRS Potsdam ISPRS Vaihingen

mF1 (%) mIoU (%) OA (%) mF1 (%) mIoU (%) OA (%)

Based on CNN EFCNet (Chen L. et al., 2021) 79.74 65.7 80.72 81.87 70.14 85.46

SDFCNv2 (Chen G. et al., 2021) – 67.82 85.03 – – –

EGCAN (Liu Z. et al., 2022) 93 – 91.4 89.7 – 91

HCANet (Bai et al., 2021) 88.07 – 88.92 88.94 – 89.71

Attention Mechanism MANet (Li et al., 2021b) 92.9 86.95 91.32 90.41 82.71 90.96

ABCNet (Li et al., 2021c) 92.7 86.5 91.3

A2-FPN (Li R. et al., 2022) 92.4 86.1 91.1 90.1 82.2 91

LANet (Ding et al., 2020a) 91.95 – 90.84 88.09 – 89.83

SCAttNet (Li H. et al., 2020) – 68.31 87.97 – – –

CAM-DFCN (Luo et al., 2019) 89.43 – 90.26 88.55 – 90.41

DSPCANet (Li YC. et al., 2021) – 77.66 90.13 – 72.56 87.32

MARE (Marsocci et al., 2021) – – – 87.95 90.35 81.76

MAResUNet (Li et al., 2021a) – – – 90.28 83.3 90.86

EaNet (Zheng et al., 2020b) – – – 90.3 90.8

Multi-scale Strategy FSHRNet (Xu H. et al., 2022) 90.67 83.16 89.82 86.66 88.38 76.86

SMAFNet (Chen et al., 2020) 88.18 71.31 86.77 86.91 65.28 88.45

MFNet (Li et al., 2021b) – – 91.65 88.24 77.05 91.47

DGPRNet (Zhang Y. et al., 2021) – 77.05 85.69 – 82.36 90.43

Based on Transformer DC-Swin (Wang L. et al., 2022) 93.25 87.56 92 90.71 83.22 91.63

DHT-E (Zhang et al., 2022a) – 81.7 89.3 – – –

ICTNet (Li X. et al., 2022) 93 – 91.57 92.34 – 90.14

MAT (Zhao X. et al., 2021) 91.59 84.82 – 88.7 79.93 –

SUDNet (Xu Y. et al., 2022) 92.57 86.4 92.98 89.49 81.26 90.95

CG-Swin (Meng et al., 2022) 93.29 87.61 91.93 90.81 83.39 91.68

SSAtNet (Zhao Q. et al., 2021) – – – – 76.4 88.01

SwinTF-PSP (Panboonyuen et al., 2021) – – – 94.83 90.98 –

Based on GAN Semi-supervised GAN (Kerdegari et al., 2019) 88.57 – 87.89 87.08 – 88.34
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different during the experiments. However, according to the

comparison of different methods in the table, the overall

performance of the method based on the attention mechanism

and the Transformer mechanism is better than others.

Attention mechanisms are widely used in RS semantic

segmentation, combining channel and spatial attention or multi-

scale features to improve segmentation performance. The

Transformer can perceive the global information of the input

sequence, which is a huge advantage of the Transformer over

CNN. In CNN, information can only start locally, and as the

number of layers increases, the area that can be perceived

gradually increases. However, the Transformer starts from the

input, and each layer structure can see all the information and

establish the association between the basic units, so it can handle

more complex problems.
4.3 Discussion

The benefits and drawbacks of typical techniques are analyzed

through the experimental outcomes combined with their
Frontiers in Ecology and Evolution 17
characteristics, as shown in Table 3. Researchers can use the

strengths and weaknesses of the methods as a research reference

to carry out future work.
5 Conclusion and future direction

This paper reviews the state-of-the-art progress in semantic

segmentation of RS images, which summarizes them from the angle

of DL framework and technology. The earliest CNN-based classical

methods were applied to the semantic segmentation task in the field

of RS data and achieved good experimental results. Next, with

burgeoning technologies such as attention mechanism, multi-scale,

Transformer, and GAN, the performance of high-pixel semantic

segmentation is improved. Integrating multiple techniques is a wise

choice for researchers, which enables the progress of both the

accuracy and efficiency of the segmentation.

After an in-depth study of semantic segmentation techniques,

we found that although researchers have made effective efforts,

there are still many challenges in this research, and further efforts

are required in future work.
TABLE 3 The advantages and disadvantages analysis and selection guidance for the existing methods.

Methods Advantages Disadvantages

Chen G. et al.
(2021)

The number of model parameters is small; it can excavate deep
generalized features.

Rely on a large number of training datasets.

Chen et al. (2022) It takes much less running time. Need to focus on unsupervised learning.

Abdollahi et al.
(2021)

It takes forward and backward dependencies into account and
considers all the information.

Need to do multi-object segmentation from remote sensing data
simultaneously.

Foivos et al.
(2020).

Tanimoto loss results in balanced gradients can be used for regression
problems

Due to the original image being reduced, the fine details of the trees
cannot be recognized

Weng et al. (2020) It reduces a large number of parameters; The training speed is high.
Missed detections and false alarms, achieved poor water-body extraction
results without complete water-body boundaries.

Du et al. (2014)
It can alleviate the retention of accurate boundary information on
ground objects.

The recognition accuracy of objects with large scale is not high.

Li et al. (2021c)
It can obtain detailed spatial and contextual information. It reduces the
parameter number.

It is dependent on fully convolutional networks.

Li Y. C. et al.
(2021)

It can extract effective spectral and spatial enhancement features. Need to focus on the multi-scale convolution in different topologies.

Zheng et al. (2022)
It combines the advantages of merging Transformer and CNN to get
local and global features.

Obtains more refined object information

Li Z. et al. (2021)
It draws contextual information and refines objects at dense multi-
scales.

It leads to a decreased performance in the recovery of edges of very thin
semantics.

Li et al. (2022b) It can better identify dense buildings and small targets. Need to automatic enhancement of training data.

Ma L. et al. (2022)
It has effective attention weight enhancement and edge convolutions
for powerful local feature encodings.

Missing validation results on other remote sensing datasets.

Xu et al. (2021)
It can better solve the problem of high computing load and blurred
edges.

Boundary detection is not well resolved.

Gao et al. (2021) Avoiding gradient disappearance and feature map information loss. The algorithm structure is complex.

Pan et al. (2020)
The model can generate ground-truth data by controlling the numeral
and scope of samples.

Need to use supervised training data to fit the parameters.

Hong et al. (2020)
It eliminates the gap between modalities and obtains a smoother and
more detailed appearance in urban scene parsing.

Massive labeled RS images are required for its training.
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Fron
• High-resolution RS images require manual pixel labeling,

which is arduous and labor-intensive. Therefore, the

problem of insufficient samples still exists. Future work

can be improved in the following aspects: (1) how to

construct multi-angle, multi-tone, and other sample

analysis models; (2) exploring approaches to achieve

more promising performance, rarely using fine

annotation or rough brands, and reducing training

samples; and (3) merging datasets and combining

different optical and SAR datasets. Robust Transformer

models can be explored for multi-source RS data, which

comprise aerial and satellite images with diverse spatial

and spectral resolutions.

• Optimize and improve the semantic segmentation

models. Semantic segmentation technology can directly

promote the development of smart cities, resource

monitoring, and other fields. These tasks generate a

higher demand for models. (1) How to better capture

more differentiated features and context information for

its high-resolut ion images . (2) How to design

unsupervised learning models for improving the

performance of high-resolution images, including

weakly supervised and semi-supervised methods, which

do not require a large amount of labeled data. (3) Change

the number or types of convolutions in convolutional

models. (4) How to replace the edge-guided context

aggregation method and use better edge extractors in

explicit augmentation methods.

• Reduce the computational complexity and improve the

robustness of the model. It is important to improve the

performance and quality of the existing models, which are

large and computationally intensive and hinder their wide

application. How to balance the performance and

computer power of semantic segmentation is a future

research direction. (1) Build real-time semantic

segmentation models with less model size and

computational complexity. (2) Design a more efficient

and concise feature extraction method. (3) Reduce

latency.

• Research on more complex actual scenarios. Many

experiments are only implemented on specific datasets.

Therefore, how to design new methods that can be

suitable for actual complex scenarios remains to be studied.

• Research on small target segmentation. Owing to the small

proportion of the pixel area of the small target, a certain

amount of detailed information will be lost after multiple

down-sampling, which will give rise to an accuracy

decrease to a certain extent. In the future, we can start

with small targets and improve accuracy with methods

such as residual connections, attention mechanisms, and

pyramid structures.
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Unfortunately, since semantic segmentation of RS images is a

hot research field, a large number of research methods have

emerged in recent years and are constantly updated, so it is

difficult for us to find all semantic segmentation methods. In the

future, researchers’ attention should be directed to new methods

and theories for semantic segmentation of RS images.
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