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ABSTRACT 
 
The present article focuses how the genome size and GC content are explained based on codon 
and amino-acid usage. This current study aims to identify the statistically significant factors of 
genome size and GC content using statistical modeling. The present analyses show that habitat (P 
= 0.08), taxonomy (P = 0.02), genome GC content (P < 0.01), isolation temperature (P< 0.01), 
GC% of the 2nd position within a codon for protein coding part (P< 0.01), number of total tRNA 
genes within genome (P< 0.01), lower (P< 0.01) and upper (P = 0.01) boundary of GC% for tRNA 
encoding genes, average frequency (within 100) of non-polar aliphatic (P< 0.01), aromatic (P< 
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0.01), and positively charged r group containing amino acids (P< 0.01) are statistically significant 
effects of entire genome size. On the other hand, taxonomy (P = 0.03), genome size (P< 0.01), 
isolation temperature (P = 0.02), GC% of protein coding part of total genome (P< 0.01), GC% of the 
1

st
 (P< 0.01), 2

nd
 (P< 0.01), and 3rd position (P< 0.01) within a codon for protein coding part, 

number of total tRNA genes within genome (P< 0.01), lower (P< 0.01) and upper (P< 0.01) 
boundary of GC% for tRNA encoding genes, average frequency (within 100) of non-polar aliphatic 
(P< 0.01), aromatic (P< 0.01) and negatively charged r group containing amino acids (P = 0.01) are 
statistically significant effects of entire genome GC content. These analyses support, and also try to 
remove some conflicts of many earlier research findings. However, the present analyses also have 
identified all new causal factors in the variance models, and many additional causal factors in the 
mean models of genome size and genome GC content, which was not reported by the earlier 
investigators. 
 

 
Keywords: Amino acid; codon; genome size; genome GC content; joint generalized linear models; 

log-normal model; gamma model; non-constant variance. 
 

1. INTRODUCTION 
 
The relationship researchers noticed that the 
association between genome GC content (also 
genome size), codon and amino-acid usage is 
ahistorical. In the three domains of living 
organisms, it is observed that genes and 
genomes at mutation / selection equilibrium 
reproduce a unique relationship between nucleic 
acid and protein composition. An association 
between the species specificity in synonymous 
codon choice and amino acid usage was 
identified. In this correlation, proteins with 
species-specific amino acid usage were also 
coded with species-specific synonymous codon 
choice. Correlations between genome 
composition (in terms of GC content) (also 
genome size) and usage of particular codons 
and amino acids have been widely used, but it is 
still unclear and inconclusive [1-4]. For a long 
time, the central issue of evolutionary genomics 
was to find out the adaptive strategy of nucleic 
acid molecules of various microorganisms having 
different optimal growth temperatures (Topt). 
Long-standing controversies exist regarding the 
correlations between genomic G+C content and 
Topt, and this debate has not been yet settled 
[5]. 
 
The average genome size of microorganisms 
differs significantly between and within biomes. 
Aquatic microbiomes also showed large variation 
in average genome sizes, ranging from 1.5 to 5.5 
Mb for Bacteria and Archaea. Microbial average 
genome lengths in the terrestrial biome were 
significantly higher than in the host-associated 
and aquatic biomes [6]. The presence of 
nucleotides (guanine and cytosine), known as 
`GC content' varies from among genomes of 

different species and phyla [7,8]. The genomic 
GC-content of bacteria varies dramatically, from 
less than 20% to more than 70% [9,10]. This 
variation may be due to the differences in the 
patterns of mutation between bacteria, or may be 
due to intrinsic, or extrinsic factors; or whether it 
is the result of neutral processes or selection 
[8,11]. 
 
Different organisms have idiosyncratic, and 
sometimes extremely biased, preferences for 
one synonymous codon over another. The 
distributions of genome size and GC-content for 
environmental microbial communities show a 
distinct pattern. The observed GC patterns are 
not a result of differing species compositions in 
each environment, as simulations of these 
compositions using sequenced genomes with the 
same phylogenetic distribution results in distinct 
GC patterns. Even closely related sequences, 
when they are from different environments, show 
a marked difference in GC content, more so than 
when they are from the same environment. The 
correlation between genome size and GC 
content is very small, as there is one possible 
environmental impact that the genomes in 
aquatic microorganism are smaller than in soil 
[12]. It has been known for some time that the 
frequencies of some codons and amino acids 
correlate with genome size and GC content [13], 
the causality has remained unclear and 
inconclusive: Correlations could exist because 
selection for a particular codon or amino-acid 
usage produces a particular genome size and 
GC content determines codon and amino-acid 
usage according to combinatorial principles. In 
this article, it is examined how the genome size 
and genome GC content are associated with 
codons and amino-acids usage. 
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In the evolutionary theory of synonymous codon 
usage, some researches sought to explain 
interspecific variation in overall sequence 
composition, and noted correlations between GC 
content and amino acid content across different 
species. Earlier researches have suggested that 
the genomes were at equilibrium with respect to 
mutation, and they have also explained how 
directional mutation could affect the composition 
of coding sequences [7,13,14]. Although it has 
not been explained why species with similar 
genome composition have recognizably distinct 
sequences for individual genes? The genome 
GC content (also genome size) has been shown 
to correlate with cross-species differences in 
frequencies of codons [15,16] and amino acids 
[17,18]. The frequency of some amino acids is 
generally low in the low GC content bacterium 
but it increases in the high GC bacterium. It 
clearly shows that the amino acid usage of a 
protein can be very different between high GC 
and low GC content bacteria [19,20]. There is a 
tendency of large genomes to be GC rich and 
small genomes to be GC poor [19]. The reason 
for this may be that large genomes are generally 
found in more complex environments, as there 
may be an indirect link between GC content and 
niche complexity. Another factor could be the 
preferred growth temperature of an organism, 
which has been proposed to correlate with GC 
content [21], but this is under debate [2,22]. 

 
In the present article, responses genome size 
and genome GC content are modelled based on 
codons and amino-acids usage. It is identified 
that both the responses are non-normal are 
heteroscedastic. Accordingly, both the responses 
are modelled using joint generalized linear 
models. In the present analysis, habitat, genome 
GC content, isolation temperature, GC% of the 
2nd position within a codon for protein coding 
part, number of total tRNA genes within genome, 
lower and upper boundary of GC% for tRNA 
encoding genes, average frequency (within 100) 
of non-polar aliphatic, aromatic and positively 
charged r group containing amino acids are 
identified as the significant factors for the mean 
of genome size, whereas its variance is 
explained by taxonomy and number of total tRNA 
genes within genome. On the other hand, mean 
genome GC content is explained by statistically 
significant factors genome size, isolation 
temperature, GC% of protein coding part of total 
genome, GC% of the 1st, 2nd, and 3rd position 
within a codon for protein coding part, lower and 
upper boundary of GC% for tRNA encoding 
genes, average frequency (within 100) of non-

polar aliphatic and negatively charged r group 
containing amino acids, while the variance of 
genome GC content is explained by statistically 
significant factors taxonomy, GC% of the 1st and 
2nd position within a codon for protein coding 
part, number of total tRNA genes within genome, 
lower and upper boundary of GC% for tRNA 
encoding genes, average frequency (within 100) 
of non-polar aliphatic and aromatic r group 
containing amino acids. 
 
Some earlier findings about the genome size and 
GC content are cited as in the above. This 
literature invites some doubts and debates about 
the causal factors of the genome size and GC 
content. What are the backgrounds of these 
doubts and debates of the earlier findings? Some 
of the defects of the earlier studies are described 
in Section 2. 
 
2. BACKGROUND 
 
In earlier researches, linear correlation and 
simple regression lines [1,5,22] have been fitted 
to derive the relationships between genome GC 
content, codons and amino-acids usage. Based 
on classical assumptions (which are not valid for 
any positive data set), these relationships have 
been derived. As a result, the predictions (drawn 
from these analyses) relating these responses 
have thus far had limited success. This can be 
remedied by taking into account an appropriate 
statistical technique and the differential effect of 
selection on the different positions within codons. 
Recently, some simple models have been 
provided, based solely on purifying selection and 
mutation at the nucleotide level, that 
quantitatively predicts both codon and amino-
acid usage trends across archaea, bacteria and 
eukaryotes on the basis of the genome GC 
content [23,24]. In earlier researches, it has been 
identified that the response variances of genome 
size and genome GC content are non-constant, 
distributions are non-normal, and many factors 
may effect on these responses. Under these 
situations, classical simple and multiple 
regression analyses are completely 
inappropriate. 
 
Many of the relationships researchers have 
sought to identify between genome GC con-tent 
(also genome size), codons and amino acids 
usage are still unclear and inconclusive. The 
reason is that evidences are insufficient or 
conflicting. Generally, validated relationships are 
established based on an appropriate statistical 
analysis. Some previously reported statistical 
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analyses indicate that certain relationships 
between genome GC content, codons and amino 
acids usage are inconsistent. For a better 
understanding of these relationships, further 
studies are indispensable. The functional 
relationship is considered a probabilistic 
(regression or generalized linear model (GLM)) 
model that provides an approximation to 
relatively more complex phenomenon [25-28]. If 
the univariate response data sets are 
independent or dependent, heteroscedastic and 
belong to exponential family, both the mean and 
the variance need to be modelled 
simultaneously, using link functions for natural 
mean and variance. This modelling approach is 
known as joint generalized linear model (JGLM) 
[29]. 
 
For non-constant variance (heteroscedastic) 
data, log-transformation is often recom-mended 
to stabilize the variance [30]. However, in 
practice, the variance is not always stabilized by 
an appropriate (seems to be suitable) 
transformation [27]. For heteroscedastic 
response, classical regression technique gives 
inefficient analysis, often resulting in an error so 
that significant factors are classified as 
insignificant. For instance, the analysis by Myers 
et al. [27] missed many important factors of the 
process. This is a serious error in any data 
analysis. It is well known that the positive data 
sets are analyzed either by the log-normal or the 
gamma models [26,31-34]. The present authors 
have noticed that the original data set is positive, 
the response variance is non-constant, 
distribution is non-normal, and the model fit 
criteria measure values are inconsistent. In 
earlier analyses, these features of the data sets 
were not counted. As a result, the earlier findings 
invite some doubts and debates. These 
observations have motivated us to take up this 
present study. 
 
Generally, some continuous positive response 
variables belong to the exponential family of 
distributions, and their variances may or may not 
be constant, as the variance may or may not 
have relation with the mean. The problem of non-
constant variance (for the response variable y) in 
linear regression is a departure from the 
standard least squares assumptions. This 
problem of inequality of variance occurs often in 
practice, frequently in conjunction with a non-
normal response variable. To minimize the 
problem, an appropriate method is to transform 
the response variable to stabilize the variance. 
This makes the distribution of the response 

variable closer to the normal distribution, and it 
improves the fit of the model to the data. 
However, in practice, a suitable transformation 
may not always stabilize the variance [27,33]. 
Thus, for analysis of positive data with non-
constant variance, it is crucial to use joint 
generalized linear models (JGLMs) (modelling of 
mean and variance simultaneously) to identify 
the significant factors of the process [29,33]. 
Joint GLMs (with relevant references) for log-
normal and gamma models are described in 
Section 3. 
 
3. METHODOLOGY: JOINT MEAN AND 

VARIANCE MODELS UNDER LOG-
NORMAL AND GAMMA DISTRIBUTION 

 
The class of generalized linear models includes 
distributions useful for the analysis of some 
continuous positive measurements in practice 
which have non-normal error distributions. The 
problem of non-constant variance in the 
response variable y in linear regression is due to 
departure from the standard least squares 
assumptions. Transformation of the response 
variable is an appropriate method to stabilize the 
variance. For heteroscedastic data, the log-
transformation is often recommended [30]. 
However, in practice the variance may not 
always be stabilized despite a proper 
transformation [27; Table 2.7, p. 36]. Box [35] 
proposed the use of linear models with data 
transformation.  
 
For example, when 

 
E(Yi) = µi and Var(Yi) = σi

2 
µ

2
i ;  

 
the transformation Zi = log(Yi) gives stabilization 
of variance Var(Zi) ≈ σi

2. However, if a 
parsimonious model is required, a different 
transformation is needed. Thus, a single data 
transformation may fail to meet various model 
assumptions. Nelder and Lee [36] proposed 
using joint generalized linear models (GLMs) for 
the mean and dispersion. 
 
When the response Yi is constrained to be 
positive log transformation Zi = logYi is used. 
Under the log-normal distribution, a joint 
modelling of the mean and dispersion is such 
that 

 
 E(Zi) = µi and Var(Zi) = σi

2
;  

 µi  = xi
tβ  and log(σ 

i
2 ) = g i

t ;                    (1) 
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where x
t
i and gi

t
 are the row vectors for the 

regression coefficients β and  in the mean and 

dispersion model, respectively. 
 
For the constant coefficient of variation (i.e., 
variance increases with the mean), we have 
 

Var(Y) = σ
 2
{E(Y)}

 2
 = σ

 2
µ

2
y: 

 
Further, if the systematic part of the model is 
multiplicative on the original scale, and hence 
additive on the log scale, then 
 

Yi = µyi εi  (i = 1,2,3,….., n) 
 
with 
 

ηi  = log µYi
 
=

 xi
t
β= β0 + xi1β1 + xi2β2  

+ .......+xipβp 

 
(2)

 
and εi's are independent identically distributed 
(IID) with E(εi²) = 1. In generalized linear models 
(GLMs), µYi

 is the scale parameter and Var(εi) = 

σ2 is the shape parameter. 
 
For non-constant variance response, Nelder and 
Lee [36] proposed a modelling approach for the 
multiplicative model (2). These researchers 
advocated the use of joint generalized linear 
models (JGLMs): 
 

   E(yi) = µi and Var(yi) = σ
2
 V (µi ); 

 
with 
 

ηi
 = log(µYi

) = xi
tβ ;and  εi = log(σ2

Yi) = gi
t

Y; (3)
 

where xi and gi are the row vectors used in the 
mean and the dispersion models, respectively. 
The regression coefficients (βy) of the mean 
model and ( y) of the dispersion model are 

estimated, respectively, by the maximum 
likelihood (ML) and the restricted ML (REML) 
method [33,37]. The restricted likelihood 
estimators have proper adjustment of the 
degrees of freedom by estimating the mean 
parameters, which is important in the analysis of 
data from quality engineering because the 
number of parameters of β is often relatively 
large compared with the total sample size. 
 

In GLMs, the variance consists of two 
components, one is V (µi), which depends on the 
mean (µi), and the other is σi

2
, which is 

independent of the mean adjustment. The 
variance function (V (·)) characterizes the 
distribution of GLMs family. For example, if V (µ) 

= 1, the distribution is Normal, Poisson if V (µ) = 
µ, gamma if V (µ) = µ2, etc. Some detailed 
discussion on GLMs approaches is given in 
[29,33,37-41]. 
 

4. GENOME DATA, ANALYSIS AND 
INTERPRETATION  

 

A. Data: Genome data set under the present 
study contains 576 microorganisms 
(observations) on 17 variables. There are 158 
aquatic, 68 terrestrial and 350 hosts. The present 
data set is collected by the following method.  
 

Primary data collection:  
 

1. The kingdom, taxonomical classification, 
habitat, temperature range, size and GC% 
of the genomes of a large number of 
microorganisms whose genomes have 
been completely sequenced and retrieved 
from NCBI 
(www.ncbi.nlm.nih.gov/genomes/lproks.cgi
).  

2. The entire codon usage table, coding 
GC%, GC1%, GC2% and GC3% which are 
available have been retrieved from `Codon 
Usage Database' (http://www.kazusa.or.jp/ 
codon/), and for the rest organisms we 
have retrieved all the cDNA sequences 
from NCBI (ftp:// 
ftp.ncbi.nih.gov/genomes/) or PATRIC 
(http://brcdownloads.patricbrc.org/patric2/).  

3. The entire genome sequences have been 
retrieved from NCBI and PATRIC.  

4. The three letter code (if it is available) for 
the individual organism has been retrieved 
from KEGG, and if is not available we have 
put an alpha numeric three character code 
started by A (for aquatic)/ T (for terrestrial)/ 
H (for host). 

 

Secondary data generation: 
 

1 For all of those microorganisms, using a 
PERL script written in house we have 
calculated `amino-acid frequencies' (within 
100) of each amino acid, and the RSCU 
values from codon usage tables or cDNA 
sequence file following translation table 11 
(http://www.ncbi.nlm.nih.gov/Taxonomy/Uti
ls/wprintgc.cgi/).  

2 Using a PERL script written in house, 
coding GC%, GC1%, GC2% and GC3% 
have been calculated for those if the 
CUTG table was unavailable.  

3 Using ARAGORN 
(http://130.235.46.10/ARAGORN/) and in 
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house PERL script we have calculated the 
codon specific tRNA number, GC% range 
of the tRNA encoding part from the entire 
genome sequences.  

 

Arrangement of data under different parameter:  
 

1. These organisms are classified into three 
major groups based on their habitat type-
organisms isolated from terrestrial, aquatic 
and host.  

2. The organisms have been classified into 
different groups based on different 
taxonomical groups (like: Proteobacteria 
alpha, beta, gama, firmicutes, 
cyanobacteria etc) within the same habitat.  

3. The microorganisms have been marked as 
psychrophilic, mesophilic, thermophilic and 
hyperthermophilic according to their 
temperature range of living.  

4. On the basis of physiochemical properties 
amino acids have been grouped into non-
polar aliphatic r group containing amino 
acids (NPA), aromatic r group containing 
amino acids (ARO), polar uncharged r 
group containing amino acids (PUC), 
positively charged r group containing 
amino acids (PCH), negatively charged r 
group containing amino acids (NCH) and 
group wise average frequencies have been 
calculated using MS-Excel.  

 

B. Variables 
 

Dependent variables:  
 

The dependent variables in the present study are 
the genome size and the genome GC content.  
 

Independent variables:  
 

There are two sets of independent variables, 
qualitative and quantitative. Three independent 
variables (habitat, taxonomy, temperature range) 
are qualitative and the remaining thirteen are 
continuous variables. Table 1 presents a 
description of each set of item and how they are 
operationalized for the present study. The 
present data set is not displayed here, as it 
would substantially increase the length of the 
paper. However, we may submit our data set on 
request for verification of our analysis. 
 

4.1 Genome Size Data Analysis and 
Interpretations 

 

In the present subsection, the dependent 
variable genome size is analyzed, treating it as 
the response variable, in relation to the 16 

covariates as explanatory variables (Table 1). 
Table 1 displays the independent variables and 
their respective levels. There are three factors 
and fourteen continuous variables (Table 1). For 
factors, the constraint that the effects of the first 
levels are zero is accepted. Therefore, it is taken 
that the first level of each factor as the reference 
level by estimating it’s as zero. Suppose that αi 
for i = 1, 2, 3 represents the main effect of A. It is 
taken 1= 0, so that 2 = 2 - 1. For example, 

the estimate of the effect A2 means the effect of 
difference between the second and the first 
levels in the main effect A, i.e., 2 - 1. Note that 

the factors habitant, temperature and taxonomy 
have respectively, three, four and eighteen levels 
(Table 1). As taxonomy has more levels, it is 
treated here as a variable, and the other two are 
treated as factors for the present analysis. 
 
In the present subsection, it is aimed to identify 
the factors which have significant effects on 
genome size (response variable). It is identified 
that the genome size is a non-constant variance 
response. Thus, we have fitted the data set with 
both the joint log-normal and gamma models in 
Section 3. It is found that the joint log-normal 
models fit is better than the gamma fit (based on 
Akaike information criterion (AIC) and graphical 
analysis), so only the results of log-normal 
models fit are displayed in Table 2. The selected 
models have the smallest AIC value in each 
class. It is well known that AIC selects a model 
which minimizes the predicted additive errors 
and squared error loss [42; p. 203-204). The 
value of AIC of the selected model (Table 2) is 
1601 + 2*17 = 1635.0. 
 
Fig. 1(a) displays the histogram of residuals. It 
does not show any lack of fit (due to missing 
variables or influential observations). Fig. 1(b) 
presents the absolute residuals plot with respect 
to fitted values. This is a flat diagram with the 
running means, indicating that the variance is 
constant under the joint GLM log-normal fitting. 
Fig. 2(a) and Fig. 2(b), respectively, display the 
normal probability plot for the mean and the 
variance model in Table 2. Neither figure shows 
any systematic departures, indicating no lack of 
fit of the selected final models. 
 
 
Table 2 shows the parameters habitat, genome 
GC content, isolation temperature, GC% of the 
2nd position within a codon for protein coding 
part, number of total tRNA genes within genome, 
lower and upper boundary of GC% for tRNA 
encoding genes, average frequency (within 100) 
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of non-polar aliphatic, aromatic and positively 
charged r group containing amino acids are 
statistically significant factors of mean genome 
size. Mean genome size is positively associated 
with genome GC content, habitant `terrestrial', 
isolation temperature `mesophilic' and 
`psychrophilic', GC% of the 2nd position within a 
codon for protein coding part, number of total 
tRNA genes within genome, upper boundary of 
GC% for tRNA encoding genes, and is negatively 

associated with lower boundary of GC% for tRNA 
encoding genes, average frequency (within 100) 
of non-polar aliphatic, aromatic and positively 
charged r group containing amino-acids usages. 
Note that the habitant \ host" and the isolation 
temperature \ hyper-thermophilic" are 
insignificant, and the isolation temperature 
`psychrophilic' is partially (0.05< P <0.15) 
positively significant. 

 
Table 1. Operationalization of variables in the analysis 

 

Domain/ 
Variable name 

Operationalization 

HABITAT (A) Habitat(1 = Aquatic, 2 = Terrestrial, 3 = Host) 
TAXONO (x1) Taxonomy(1= Actinobacteria, 2= Alpha Proteobacteria, 3= Beta Proteobacteria, 

 4= Gamma Proteobacteria, 5= Delta Proteobacteria, 6= Cyanobacteria, 7= 
Bacteroidetes, 8= Firmicutes, 9= Deinococcus, 10= Thermotogae, 11= 
Planctomycetes, 12= Crenarchaeota, 13= Euryarchaea, 14= Chlamydia,  
15= Fuso bacteria, 16= Nano archaea, 17= Epsilon Proteobacteria , 18= Spirochete) 

SIZE (y) Entire genome size in MB 
GC%(y1) Entire genome GC% 
TEMP (B) Temperature(1=Thermophilic, 2=Mesophilic, 3=Psychrophilic, 4= Hyper-

Thermophilic) 
COD GC% (x6) GC% of protein coding part of entire genome 
GC1% (x7) GC% of the 1st position within a codon for protein coding part 
GC2% (x8) GC% of the 2nd position within a codon for protein coding part 
GC3% (x9) GC% of the 3rd position within a codon for protein coding part 
tRNA (x10) Number of total tRNA genes within genome 
tRNA 
GC1%(x11) 

Lower boundary of GC% for tRNA encoding genes 

tRNA GC2% 
(x12) 

Upper boundary of GC% for tRNA encoding genes 

AVG NPA(x20) Average frequency (within 100) of non-polar aliphatic r group containing amino acids 
AVG ARO(x24) Average frequency (within 100) of aromatic r group containing amino acids 
AVG PUC (x30) Average frequency (within 100) of polar uncharged r group containing amino acids 
AVG PCH (x34) Average frequency (within 100) of positively charged r group containing amino acids 
AVG NCH (x37) Average frequency (within 100) of negatively charged r group containing amino acids 

 

Table 2. Results for mean and dispersion models of genome size data from log-normal fit 
 

 Covariate Estimate s.e. t P-value 95% C.I. 
Mean 
model 

Constant 1.2750 0.4471 2.852 0.01 0.4 2.151 
GC%(y1) 0.0129 0.0027 4.728 <0.01 0.007 0.018 
TEMP2(B2) 0.3903 0.1193 3.271 <0.01 0.156 0.624 
TEMP3(B3) 0.2343 0.1490 1.572 0.12 -0.057 0.526 
TEMP4(B4) 0.0934 0.1849 0.505 0.61 -0.269 0.455 
HABITAT2(A2) 0.0848 0.0488 1.738 0.08 -0.011 0.18 
HABITAT3(A3) -0.0420 0.0880 -0.477 0.63 -0.214 0.13 
GC2%(x8) 0.0124 0.0016 7.722 <0.01 0.009 0.015 
tRNA(x10) 0.0101 0.0007 15.548 <0.01 -0.004 0.024 
tRNA GC1%(x11) -0.0080 0.0021 -3.894 <0.01 -0.012 -0.004 
tRNA GC2%(x12) 0.0107 0.0039 2.763 0.01 0.003 0.018 
AVG NPA(x20) -0.2357 0.0523 -4.505 <0.01 -0.338 -0.133 
AVG ARO(x24) -0.0740 0.0225 -3.282 <0.01 -0.118 -0.03 
AVG PCH(x34) -0.1559 0.0413 -3.774 <0.01 -0.237 -0.075 

Variance 
model 

Constant -1.1442 0.2257 -5.068 <0.01 -1.587 -0.702 
TAXONO(x1) 0.0302 0.0132 2.298 0.02 0.004 0.056 
tRNA (x10) -0.0221 0.0035 -6.331 <0.01 -0.029 -0.015 
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(a)                                                                 (b) 

 

Fig. 1. (a) The histogram plot of residuals and (b) the absolute residuals plot with respect to 
fitted values for genome size data (Table 2) 

 

 
        

  (a)                                                              (b) 
  

Fig. 2. The normal probability plot of the (a) mean and (b) variance for genome size  
data (Table 2) 

 

Table 2 shows that taxonomy and the number of 
total tRNA genes within genome are statistically 
significant with the variance of genome size. The 
variance of genome size is positively associated 
with the taxonomy, and is negatively associated 
with the number of total tRNA genes within 
genome, indicating that the variance of genome 
size decreases with the increasing of the number 
of total tRNA genes within genome. 

 

4.2 Genome GC Content Data Analysis 
and Interpretations 

 
In the present subsection, genome GC content is 
considered as the response variable, and the 

remaining other variables are treated as 
explanatory variables. Genome GC content data 
set is identified as a non-constant variance 
response. Therefore, it has been fitted using both 
the joint log-normal and gamma models (Section 
3). It is observed that joint gamma models fit is 
better than the log-normal fit (based on AIC and 
graphical analysis), so only the results of gamma 
fit are presented in Table 3. The selected models 
have the smallest AIC value (2701.922 + 2*23 = 
2747.922; Table 3) in each class. 
 
Fig. 3(a) and Fig. 3(b) display respectively, the 
histogram of residuals and the absolute residuals 
plot with respect to the fitted values. The 
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histogram plot (Fig. 3(a)) does not show any lack 
of fit. Fig. 3(b) is a flat diagram with the running 
means, indicating that variance is constant under 
the joint GLM gamma fitting. Fig. 4(a) and       
Fig. 4(b) display respectively, the normal 
probability plot for the mean and the variance 
model in Table 3. There does not exist any 
systematic departure in any one of these two 
figures. So, there is no lack of fit of the final 
selected models. 
 

Table 3 shows that the genome size, isolation 
temperature `hyper thermophilic', GC% of protein 
coding part of total genome, GC% of the 1st, 
2nd, and 3rd position within a codon for protein 
coding part, number of total tRNA genes within 
genome, lower boundary of GC% for tRNA 
encoding genes are positively (significant) 
associated with the mean of genome GC 
content, indicating that if these effects increase, 
genome mean GC content will increase. Also 
upper boundary of GC% for tRNA encoding 
genes, average frequency (within 100) of non-
polar aliphatic and negatively charged r group 
containing amino acids are negatively 
(significant) associated with the mean of genome 
GC content, indicating that if these effects 

decrease, genome mean GC content will 
increase, and vice-versa. Again, isolation 
temperature `psychrophilic' is also partially 
negatively associated with the mean of genome 
GC content. This implies that genome GC 
content is low at the isolation temperature 
`psychrophilic' and is indifferent at the mesophilic 
level. 

 
Table 3 shows that the variance of genome GC 
content is positively associated with GC% of the 
1st position within a codon for protein coding 
part, upper boundary of GC% for tRNA encoding 
genes and average frequency (within 100) of 
aromatic r group containing amino acid, 
indicating that if these effects increase, the 
variance of genome GC content will increase. 
Again, taxonomy, GC% of the 2nd position within 
a codon for protein coding part, number of total 
tRNA genes within genome, lower boundary of 
GC% for tRNA encoding genes and average 
frequency (within 100) of non-polar aliphatic r 
group containing amino acid are negatively 
associated with the variance of genome GC 
content, indicating that if these effects increase, 
variance will decrease. 

 

Table 3. Results for mean and variance models of GC content data from gamma fit 

 

 Covariate Estimate s.e. t P-value 95% C.I. 

Mean 

model 

Constant 3.0800 0.0594 51.86 <0.01 2.9635 3.1964 

TEMP2(B2) -0.0059 0.0137 -0.43 0.67 -0.0327 0.0209 

TEMP3(B3) -0.0317 0.0198 -1.61 0.11 -0.0705 0.0071 

TEMP4(B4) 0.0402 0.0164 2.45 0.02 0.0081 0.0723 

SIZE(y) 0.0046 0.0015 3.02 <0.01 0.0016 0.0075 

COD GC%(x6) 0.0078 0.0008 10.28 <0.01 0.0062 0.0093 

GC1%(x7) 0.0068 0.0004 17.77 <0.01 0.006 0.0075 

GC2%(x8) 0.0053 0.0002 24.53 <0.01 0.0049 0.0056 

GC3%(x9) 0.0038 0.0005 7.93 <0.01 0.0028 0.0048 

tRNA (x10) 0.0002 0.0001 1.57 0.12 0.0001 0.0004 

tRNA GC1%(x11) 0.0019 0.0002 8.48 <0.01 0.0015 0.0023 

tRNA GC2%(x12) -0.0031 0.0005 -6.41 <0.01 -0.0041 -0.0021 

AVG NPA(x20) -0.0360 0.0081 -4.46 <0.01 -0.0519 -0.0201 

AVG NCH(x37) -0.0104 0.0041 -2.52 0.01 -0.0184 -0.0023 

Variance 

model 
Constant -2.6671 1.3263 -2.011 0.04 -5.2666 -0.0675 

TAXONO(x1) -0.0327 0.0147 -2.229 0.03 -0.0615 -0.0039 

GC1%(x7) 0.0757 0.0079 9.554 <0.01 0.0602 0.0911 

GC2%(x8) -0.0171 0.0060 -2.841 0.01 -0.0289 -0.0053 

tRNA(x10) -0.0154 0.0042 -3.694 <0.01 -0.0236 -0.0072 

tRNA GC1%(x11) -0.0841 0.0088 -9.525 <0.01 -0.1013 -0.0669 

tRNA GC2%(x12) 0.0726 0.0161 4.516 <0.01 0.041 0.1041 

AVG NPA(x20) -1.2744 0.1869 -6.817 <0.01 -1.6401 -0.9081 

AVG ARO(x24) 0.5206 0.0438 11.898 <0.01 0.4347 0.6064 
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(a)                                                                       (b) 
 

Fig. 3. (a) The histogram plot of residuals and (b) the absolute residuals plot with respect to 
fitted values for genome GC content data (Table 3) 

 

 
 

(a)                                                           (b) 
 

Fig. 4. The normal probability plot of the (a) mean and (b) variance for genome GC content  
data (Table 3) 

 

5. DISCUSSIONS AND CONCLUDING 
REMARKS  

 
This article focuses on the determinants of 
genome size and genome GC content based on 
codons and amino-acids usage. The present 
response data set is positive, so the possible 
probability model is log-normal or gamma 
[26,31]. Both the responses genome size and 
genome GC content are identified as non-

constant variances (Tables 2, 3). Thus, the joint 
models of mean and variance are derived from 
log-normal and gamma distributions. The present 
data set has been examined using both the joint 
log-normal and gamma models [33]. It is 
observed that the joint log-normal models fit is 
much better than the gamma models for genome 
size, while for genome GC content, the situation 
is quite reverse, therefore, only the appropriate 
results of JGLMs are reported. 
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The results (in Table 2) related to genome size 
can be interpreted in the following ways. 
 

1. It has been pointed that there is a weak 
correlation between genome size and GC 
content [12]. From Table 2 and Table 3, it 
is clear that the genome size and GC 
content are positively (statistically 
significant) correlated (a strong association 
as P = 2.87e

-6
) with each other. It implies 

that if a new group of bacterial is studied, 
we would expect that those with larger 
genomes would have a larger average GC 
content than those with smaller genomes. 
Therefore, the present analysis supports 
the finding of [19], and it may be restated 
that for a new group of bacterial, as the 
large genomes to be GC rich and small 
genomes to be GC poor. Earlier 
researchers have explained this situation 
as that the large genomes are generally 
observed in more complex environments, 
as there may be an indirect link between 
GC content and niche complexity.  

2. From Table 2, it is clear that the mean 
genome size is highly associated (P= 
0.0011) (significant) with isolation 
temperature. It is positively significant at 
isolation tempera-ture level 2 i.e., at 
mesophilic, and partially at level 3 i.e., at 
psychrophilic, and insignifi-cant at level 4 
i.e., at hyper-thermophilic. These results 
indicate that the genome size is higher at 
mesophilic and psychrophilic than 
thermophilic, and it is indifferent at hyper 
thermophilic. In earlier researches, some 
controversies exist regarding the 
association be-tween genome size and 
different optimal growth temperatures [21], 
but the present analysis gives a clear 
information.  

3. It is observed that the type of habitat is 
associated with the genome size (Table 2). 
Habitat type 2, i.e., terrestrial is positively 
partially significant, and habitat type 3, i.e., 
host is insignificant with the mean genome 
size. These results indicate that the 
average genome size of the terrestrial is 
significantly higher than the aquatic 
(supports [16]), and it is indifferent for the 
host. 

4. Mean genome size is positively 
(significant) associated with GC% of the 
2nd position within a codon for protein 
coding part   (Table 2). This indicates that 
for a new group of bacterial, genome size 

will increase if the GC% of the 2nd position 
within a codon for protein coding part will 
increase, and vice-versa.  

5. Average genome size is positively 
(statistical significant) associated each with 
tRNA and tRNA GC2% (Table 2). These 
imply that the genome size will increase 
separately with the increase of number of 
total tRNA genes within genome and upper 
boundary of GC% for tRNA encoding 
genes.  

6. Average genome size is negatively 
(significant) associated with the lower 
boundary GC% for tRNA encoding genes 
(Table 2). This implies that as the genome 
size increases, the lower boundary GC% 
for tRNA encoding genes decreases.  

7. Average genome size is negatively 
(statistical significant) associated each with 
the average frequency (within 100) of non-
polar aliphatic, aromatic and positively 
charged r group containing amino acids 
usages (Table 2). These indicate that the 
genome size will be large if each of the 
average frequency (within 100) of non-
polar aliphatic, aromatic and positively 
charged r group containing amino acids 
usages will be low, and vice-versa. These 
present results are a little bit different from 
the earlier findings [19,20].  

8. Variance of genome size is negatively 
associated (significant) with the number of 
total tRNA genes within genome. This 
indicates that if the total tRNA genes 
increase, variance of genome size 
decreases. Consequently, genome size 
increases.  

9. Taxonomy is also associated with the 
variance of genome size, indicating that 
the variance of genome size changes with 
the type of taxonomy of the organisms. 
That is the variation of genome size exists 
within the different types of taxonomy. This 
result agrees with the findings of earlier 
researches [7,8].  

 
The present results (Table 3) of genome GC 
content may be interpreted below. 
 

1. From Table 3 (also in Table 2) genome GC 
content is positively (significant) 
associated with the genome size. 
Therefore, the same interpretation as in 
serial no. 1 (for genome size) is valid here.  

2. In earlier researches, the factor growth 
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temperature has been proposed to 
correlated with GC content [21], but this is 
under debate [2,5]. In the present analysis 
(Table 3), it is clear that the genome GC 
content is highly associated (significant) 
with isolation temperature. It is insignificant 
at isolation temperature level 2 i.e., at 
mesophilic and partially negatively at level 
3 i.e., at psychrophilic and positively 
significant at level 4 i.e., at hyper-
thermophilic. Therefore, it is concluded 
that the genome GC content is higher at 
hyper-thermophilic than at thermophilic, 
lower at psychrophilic and is indifferent at 
mesophilic. These present findings are 
more specific. 

3. GC% of protein coding part of entire 
genome (COD GC%) is positively (highly 
significant) associated with the genome 
GC content (Table 3). This implies that GC 
content is large or small according as COD 
GC% is rich or poor.  

4. Each of the GC% of the 1st, 2nd and 3rd 
position within a codon for protein coding 
part is directly (highly significant) 
associated with the genome GC content 
(Table 3). This indicates that the genome 
GC content will be large if each of the 
GC% of the 1st, 2nd and 3rd position 
within a codon for protein coding part is 
rich.  

5. Genome GC content is directly associated 
each with tRNA (partially significant) and 
tRNA GC1% (highly significant, P =   
2.22e

-16
), but inversely with tRNA GC2% 

(highly significant, P = 3.10e
-10

) (Table 3). 
These imply that the genome GC content 
will be large separately with the increase of 
number of total tRNA genes within 
genome, lower boundary of GC% for tRNA 
encoding genes and with the decrease of 
upper boundary of GC% for tRNA 
encoding genes.  

6. Genome GC content is inversely (highly 
statistically significant, P = 9.92e-6) 
associated each with the average 
frequency (within 100) of non-polar 
aliphatic and negatively charged r group 
containing amino acids usages (Table 3). 
These indicate that the genome GC 
content will be large if each of the average 
frequency (within 100) of non-polar 
aliphatic and negatively charged r group 
containing amino acids usages will be low, 
and vice-versa. These present results are 
completely different from earlier       

findings [19,20].  

7. Taxonomy is also associated with the 
variance of genome GC content (Table 3), 
indi-cating that the genome GC content 
changes with the type of taxonomy of the 
organisms. That is the variation of genome 
GC content exists within the different types 
of taxonomy (supports the findings of 
[7,8]).  

8. Variance of genome GC content is 
associated positively (significant) with 
GC1% of the 1st and negatively with 
GC2% of the 2nd position within a codon 
for protein coding part (Table 3), 
respectively. This indicates that genome 
GC content variance will be small if the 
GC1% is small and GC2% is large. 

9. Variance of genome GC content is 
inversely associated each with tRNA and 
tRNA GC1%, but directly with tRNA GC2% 
(each is highly significant, P < 0.001) 
(Table 3). The relation of tRNA, tRNA 
GC1% and tRNA GC2% with the variance 
of genome GC content is completely 
reverse to its mean. These imply that the 
variance genome GC content will be small 
separately with the increase of number of 
total tRNA genes within genome, lower 
boundary of GC% for tRNA encoding 
genes and decrease with the upper 
boundary of GC% for tRNA encoding 
genes.  

10. Genome GC content variance is 
associated (highly significant, P < 0.0001) 
negatively with the average frequency 
(within 100) of non-polar aliphatic and 
positively with aro-matic r group containing 
amino acids usages (Table 3), 
respectively. These indicate that the 
variance of genome GC content will be 
small if the average frequency (within 100) 
of non-polar aliphatic r group containing 
amino acids usages will be high and 
aromatic r group containing amino acids 
usages will be low. 

 
In early researches, it has been pointed that the 
variations of genome size and GC content are 
non-constant [6,12], yet only the mean models 
have been derived based on constant variance 
assumption. In the present study, however, both 
the mean and the variance models of genome 
size and GC content have been derived 
(Sections 4.1, 4.2). Some of the present results 
are little cited in the literature. For example, the 
present analysis has first derived the 
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determinants of the variances of both the 
genome size and GC content (Sections 4.1, 4.2). 
This article presents a clear interpretation about 
the determinants of genome size and GC 
content. It tries to remove some conflicts of 
earlier findings (as in above). Most of the 
estimated effects are highly statistically 
significant. Only a few partially significant effects 
are included in the model for better fitting. 
Standard deviations of all the estimated effects 
are very small, indicating that the estimates are 
stable [29]. The present study may provide 
substantial new information to explain both the 
mean and the variance models of genome size 
and GC content. 

 
The findings in Section 4 can be explained in the 
biological path-way. A few possible explanations 
on the relationships between GC content, 
genome size and survival in terrestrial 
environment are given below. 

 
¤ In Tables 2 and 3, it is identified that the large 

genomes to be GC rich and small genomes to 
be GC poor. Biologically, this may be 
explained as follow.  

 
DNA is the double helical master molecule 
carrying information for expression of life through 
transcription and translation. The building blocks, 
i.e. four nucleotides (A,T, G,C) stack one over 
the other providing extension of genome size 
commensurate with the biological requirement of 
different organisms as well as of their horizontal 
pairings as AT and GC for stabilization of DNA 
molecule. Of these, GC by virtue of triple 
hydrogen bindings provides more stability than 
AT with only double hydrogen binding. Thus, it is 
expected that GC% needs to increase with the 
increase of genome size for structural stability. 
The same logic can be extended for 
preponderance of GC at 1,2 and 3 position of 
codon for avoiding/ reducing mismatching 
chances between mRNA codon and tRNA 
anticodon vis-a-vis possible translational error 
during protein synthesis due to stability caused 
by triple hydrogen binding. This also explains 
high GC content in coding region and genome 
size. However, it may be reiterated that the 
nature appears to have given equal weight to all 
four nucleotides as for as creation of genetic 
code for different amino acids is concerned. 
During the course of selection, chemical stability 
of GC over AT (U) has probably succeeded.  
 
 
 

¤ The relationship of genome size and GC 
content can be explained in other way. 
Preponderance of GC in large size genome is 
also important from the viewpoint of or-
chestrated expression, i.e. switch on and off, of 
genes as per requirement of situation for 
survival of organisms. This is achieved through 
methylation of cytosine in GC pair. The GC 
methylation occurs both in gene promoter 
sequences and sequences of gene per se.  
 

¤ In Table 2, it is identified that the mean 
genome size is significantly higher in the 
terrestrial than in aquatic and is indifferent in 
host. Biologically, this may be viewed as 
follow.  

 
The terrestrial habitat harbours extreme and 
diverse conditions in comparison to aquatic and 
host conditions, thereby requiring large genome 
size, which can remain stable only if GC content 
increases.  
 
¤ In Table 2, it is identified that the mean 

genome size is negatively associated each 
with the average frequency (within 100) of non-
polar aliphatic, aromatic and positively charged 
r group containing amino acids usages. Also in 
Table 3, it is identified that the mean genome 
GC content is negatively associated each with 
the average frequency (within 100) of non-
polar aliphatic and negatively charged r group 
containing amino acids usages. Biologically, 
this may be illustrated as follow. 

 
Amino acids with polar side groups carry more 
information than amino acids with non-polar 
aliphatic side groups for secondary and tertiary 
folding and performance of diverse physiological 
functions of the protein. This may be the reason 
that the genome size and GC content have 
retained exceedingly high codons for polar amino 
acids, resulting in a positive correlation with polar 
amino acids. 

 
Because of the above reasons, GC content finds 
positive correlations with the genome size of 
different organism thriving in diverse terrestrial 
habitat. Further, GC content pro-vides stability 
and integrity to large fragile DNA molecules 
commensurate with genome size, its 
preponderance in coding (gene) region 
responsible for regulation (expression / sup-
pression / silencing) of functional genes/ 
transposable elements in different situations 
such as diverse environmental conditions, 
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organisms, organs and tissues and aging 
(Juvenility vs maturity gradient). In codons, GC 
content avoids translational errors of functional 
genes. 
 
To fill the gaps in the genetic research literature, 
this study derives the relationships of genome 
size, GC content, codon and amino-acid usage. 
The mathematical models (in Tables 2 and 3) in 
this report show the relationships of genome size 
and GC con-tent. The models reported here 
illuminate the complex relationships. Fortunately, 
a true mathematical model can open the truth 
that is covered by the complex relationships. 
 

Our results, though not completely conclusive, 
are revealing:  
 

¤ Our findings confirm many previous research 
findings (Section 4).  
 

¤ An important conclusion has to do with the use 
of earlier used statistical models. While further 
research is called for, we find that a joint log-
normal and gamma models are much more 
effective than either traditional simple, multiple 
regression and Log-Gaussian models (with 
constant variance), because they better fit the 
data. In short, research should have greater 
faith in these results than those emanating 
from the simple, multiple regression and Log-
Gaussian (with constant variance) models.  
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