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Abstract 

 
Traditional ratio estimator loses its efficiency when there are outliers in the data or when the error term is not 

normally distributed. Specifically in health-related data, many biological processes can be modeled by 

Laplace distribution. We propose a novel robust ratio estimator that utilizes Lloyd’s estimator for the cases 

where the error term is from the Laplace distribution. We derive the mean square error of the proposed 

estimator and compare it with some other existing estimators using extensive simulations. We use the 

proposed estimator to estimate Covid-19 cases and deaths in Louisiana and demonstrate its performance. 
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1 Introduction 
 

The ratio estimator improves the precision of the sample mean    when the study variable is linearly correlated 

with an auxiliary variable whose values are known for each unit of the population [1]. The ratio estimator is a 

good choice to estimate the population mean    when the study variable has a Normal distribution [2]. Let the 

relationship between the study variable   , and the auxiliary variable     in the population is given as  

 

               ,                                                                   (1.1) 

 

where       is a function of   ,    is an iid random variable with mean zero and variance   
 , and       is the 

probability density function of               . We refer to the assumed model in Eq. (1.1) as the true model. 

The accuracy of the estimates and statistical inferences depend on the accuracy of the assumptions made on the 

true model. The Gaussian assumption on       provides the well-known ratio estimator, 

 

             ,                     (1.2) 

 

with the mean square error (MSE)  

 

                                       ,
 

                               (1.3) 

 

where          
   ,          

   ,          
   

 
   

 ,          
   

 
   

 ,             
   

 
     ,        

and        . The traditional ratio estimator in Eq. (1.2) is more efficient than the sample mean     if         , 

where   is the population correlation coefficient between        ,         ,         ,    and    are the 

population standard deviations of   and  , respectively. There are real-life situations, however, where the 

assumptions on a true model might be violated. For example, model misspecification occurs when one assumes 

a specific theoretical model for the population under study, whereas a different model describes it better in 

reality. The estimates might not be reliable when there is misspecification in the model. Contamination occurs 

when a few values of the sample data are extreme. If these outliers have a potential to be influential points, 

ignoring them or proceeding with standard procedures can lead to a seriously biased inference. When there are 

such model violations, one needs to modify the estimation procedures and robustify the estimators. This study 

explores a novel estimation method in simple random sampling (SRS) to maintain the quality of the statistical 

inferences based on the true model when there is misspecification or contamination in the data. 

 

In survey sampling, robust estimation of the mean in the presence of outliers under normality has been discussed 

by several authors. Farrel and Barrera [3], Kadilar et al., [4] and Subzar et al. [5] utilized the M-estimation 

technique to create robust ratio-type estimators. Oral and Kadilar [6, 7] and Oral and Oral [8] integrated 

Modified Maximum Likelihood Estimator (MMLE) into various ratio-type estimators and studied their 

properties under misspecification and contamination by following the model (1.1) in which       was assumed 

to be from a long tailed symmetric (LTS) family. The LTS distribution is a symmetrical distribution with a 

shape parameter p, and its kurtosis changes from  , 9, 5, to 4.2 for p=2.5, 3, 4, and 5, respectively; when p tends 

to  , it approaches to a normal distribution. Oral and Kadilar [6, 7] and Oral and Oral [8] showed that, when 

      follows a LTS distribution, or the data has outliers, their estimators provide more efficient estimates than 

the traditional ratio estimator; see also [9] and [10]. More recently, Ahmed et al. [11] highlighted several 

problems with MMLE’s weight function and suggested using the Generalized Least Squares Estimation (GLSE) 

instead of MMLE for the robustification process in SRS. They showed that when       follows a LTS 

distribution, integrating GLSE into the traditional ratio estimator yields more efficient ratio estimators with 

respect to the both traditional and MMLE integrated ratio estimator; see also [12]. 

 

Specifically, Oral and Oral [8] proposed the following robust ratio estimator 
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where    , which is a weighted mean, is estimated using the MMLE from the LTS distribution. Ahmed et al. [11] 

showed that although the above estimator works very well for large samples, for very small sample sizes it does 

not assign small enough weights to the extreme values. Thus, they modified this estimator such that the weights 

would be smaller for extreme values and improve robustness. Later, Saenaullah et al. [13] replaced the     above 

with its Best Linear Unbiased Estimator (BLUE) of   , and studied the properties of their proposed estimator. 

 

Although the LTS family provides a flexible symmetric family of distributions for modeling, in many real-life 

applications the Laplace distribution might provide a better choice as it generally has a sharper peak depending 

on its scale parameter. As an example, Purdom and Holmes [14] showed that the error distribution for gene 

expression data from microarray experiments can be fitted nicely with the Laplace distribution. Bottai and 

Zhang [15] used Laplace distribution to model survival time in patients with small cell lung cancer. Biological 

processes and health-related data every so often reveal heavy-tailed distributions with a sharp peak. In such 

cases, Laplace distribution might be the natural choice. In fact, statistical models and applications based on 

Laplace distribution have been rapidly developed in the recent years: Yang [16] provided a robust mean change 

point estimation in linear regression assuming that the errors follow the Laplace distribution. Song et al. [17] 

proposed a robust estimation for mixture linear regression models under the assumption that the errors are from 

the Laplace distribution. More recently, Lu and Chang [18] proposed a robust algorithm for multiphase 

regression models to deal with data drawn from heavy-tailed distributions. Thus, in this study, we extend the 

work of Ahmed et al. [11] to the case where the error term in Eq. (1.1) is from the Laplace distribution. We 

integrate the GLSE into the traditional ratio estimator, and study its properties and robustness under both 

misspecification and contamination models assuming that the true model’s       is characterized by the Laplace 

distribution. We also use the publicly available Covid-19 data for Louisiana, and by estimating i) the average 

number of deaths using the average number of cases as the auxiliary information, ii) fourth wave’s average 

number of deaths using the third wave’s average number of deaths, iii) fourth wave’s average number of cases 

using third wave’s average number of cases, we demonstrate that the proposed estimator is superior to the 

traditional ratio estimator. 

 

2 GLSE of the Mean and Variance for the Laplace Distribution 
 

Following the Lloyd’s GLSE procedure, let             be a SRS from the Laplace distribution 

 

              
 

  
     

      

  
 ,                                        (2.1) 

 

where    and    are the location and scale parameters, respectively [19]. Let                  be the 

order statistics from the sample above, and                  be their concomitants in the true model (1.1). 

Let 

 

     
       

  
  ,           

 

be the standardized variate in (2.1), and the means, variances and covariances of the order statistics      are 

denoted as         and     respectively. Further, let                      ,                      ,    

          and       for            .  The BLUE of    and    for          are given by, 

 

   
  

      

      
   or     

         
 
    ,                                                                    (2.2) 

 

and 

 

   
  

      

      
 ,                                                  (2.3) 
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where              
 
   

 
   

 
   ;     are the elements of the inverse matrix  , and their variances are 

 

       
   

  
 

      
  and         

   
  

 

      
                                                                          (2.4) 

 

[20]. The exact values of      and   were tabulated for      in [20]. For large sample sizes the elements of 

     may be calculated with the formula 

 

        
 

   
         

    

  

 

 
         ,                                                     (2.5) 

 

and the elements of   are determined from the equation   

 

                               ,                                                            (2.6) 

 

where           ,           ,          and           ; see [21]. Using      and  , one may get 

the solutions for Eq. (2.2)-(2.4). 

 

To evaluate the weight function of GLSE, we calculate the values of the coefficients    for n = 5, 10, 12 and 15 

and present them in Fig. 1. As can be seen from the Fig. 1, the function    allocates higher weights to the central 

observations and lower weights to the extreme observations, so the extreme values get minimum weights, and 

the effects of the outliers are minimized.  

 

 
 

Fig. 1. The weight function    in GLSE to estimate the population mean 
 

3 Proposed Robust Ratio Estimator 
 

Assuming that the true model (1.1) follows the Laplace distribution given in (2.1) with                 
 

and               
             , we propose the robust ratio estimator  

 

    
   

 

  
  ,                                             (3.1) 

 

Where    
  is the BLUE given in (2.2). The approximate MSE of (3.1) under the true model (1.1) can be derived 

as follows. Let  
 

       
   

 

  
     , or                 , 

 

where 
 

   
   

 

  
 and   

  

  
. If we denote         

      and            , by applying the Taylor series approximation to  

     around         we get 
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              , 

 

          
 

      
     

 
                     

             .                              (3.2) 

 

Thus, from (3.2) the MSE of the proposed estimator can be written as 

 

                
                      

     .                                                (3.3) 

 

The variance        
    in Eq. (3.3) can be written as        

     
     , where   is the vector consisting of 

the elements of the coefficients   ,
 
       

 
is the same as given above, and        

      can be given as 

 

       
                 

 
    

   
 
   

 
 . 

 

Since    
 
         

 
   , we can write 

 

       
                 

 
    

     
 
   

 
 , 

 

or alternatively, 

 

       
                        

 
                

 
                                    (3.4) 

 

where      
       

  
,      

       

  
, and the covariance between      and      can be given as                

      ; see [22]. The expression in Eq. (3.4) may also be written by using a matrix notation, 

 

       
            

     ,                                                                           (3.5) 

 

where   is the     vector with elements     and                . Finally, the expression of          is 

obtained as, 

 

           
                          

   .                                             (3.6) 

 

4 Efficiency Comparisons 
 

Suppose that the underlying super-population, i.e. the true model, is from (2.1). The GLS estimator    
  in (2.2) is 

calculated from the order statistics                  for the random sample of size  . In order to show 

that the proposed estimator is more efficient than the traditional sample mean, we first establish the conditions 

where GLSE    
  is more efficient than   , which we denote by    , and solve the inequality below 

 

                
      .                                               (4.1) 

 

Here,            
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                                       (4.2) 

 

where        
      can be obtained by using the identity    

 
       

 
       

   
    as 

 

       
      

 

 
       

      .                                                (4.3) 

 

Since            are independently and identically distributed random variables with 

 

        
  

 

 
,                                                               (4.4) 

 

integrating (4.3) and (4.4) into (4.2) provides 

 

     
               

    
 

 
       

       
  

 

 
.                                     (4.5) 

 

Thus, the inequality in (4.1) becomes 

 
  

 

 
         

    
 

 
 
  

 

 
        

       .                                 (4.6) 

 

It can be showed that inequality (4.6) always satisfies, and hence    
  is always more efficient than    . For 

demonstration, the results from a simulation study are given below for sample sizes   10, 20, 30 and 500.  

 

                  
   

10 0.2040 0.1460 

20 0.0988 0.0662 

30 0.0672 0.0425 

500 0.0042 0.0021 

 

Note that, the exact expressions of        
   and        

       are        
     

      and        
       

      
 . 

 

For large samples, the proposed estimator in (3.1) has smaller MSE with respect to the MSE of the traditional 

ratio estimator in (1.2), when   is from Laplace distribution. To show that     is always more efficient than     

for large samples, we write 

 

              
       and               

      .                               (4.7) 

 

Considering two correlated random variables   and  , we can write                              and we 

obtain the expected values in Eq. (4.7) as 

 

     
      

  

  
 

 

   
          

 

  
 

 

     
     ,                   (4.8) 

 

and 

 

     
      

  

  
 

 

    
  

 
        

 

  
 

 

      
  

 
    .                                 (4.9) 

 

Since      
         

  
 
  from (4.1), we have      

            
  

 
   ; this follows from the fact that, on a 

probability space        ,                implies                    for any    [23]. 

Consequently,  
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and  

 

                                        
  

 
   ; 

 

therefore, it is clear from (4.7)-(4.9) that                   for large sample sizes. The proposed estimator 

    performs better than     for small samples, if 

 

                 , or 

 

              , where    
 

  
                 

           
                                  (4.10) 

 

5 Robustness of the Proposed Estimator 
 

To evaluate the robustness properties of the proposed estimator, we conduct an extensive simulation study as 

follows. We consider a population from the model (1.1), and generate    and    independently   where the 

random error    is from       
   and    is from                  . Let    represent the super-population of 

size N consisting of        ,                   . To assure that the correlation coefficient  
 
is sufficiently 

high, the values of the parameter   in the model (1.1) are chosen such that the correlation coefficient is 0.60. 

The value of   which satisfies this condition is determined by                         ; see [6] and 

[8]. To calculate the MSE of the estimators in (1.2) and (3.1), one has to calculate the    ,    , and     from all   
  

possible samples of size   from   . We consider the values       and            and    . Since   
  is 

extremely large, we choose M=50,000 possible simple random samples of size   which then give 50,000 values 

for each estimator, i.e.,    ,    , and      In calculating     using n=10, 30, 70 and 100, we also need to calculate 

the coefficients    and integrate them into Eq. (3.1). To compare the efficiencies, we calculate the values of the 

MSEs of each estimator from the expressions                        
   ,                        

    

and                        
    under the true model and under eleven different contamination or 

misspecification models. The description of each model is given below 

 

True model: All   observations are from        and no outlier is present. 

 

Dixon’s outlier model-I:      observations are from        and    (we do not know which) are from 

      , where    is calculated from the formula   
 

  
      . 

 

Dixon’s outlier model-II:      observations are from        and    (we do not know which) are from 

      , where    is calculated from the formula   
 

  
      . 

 

Tatum’s localized scale disturbances model-I [24]: A proportion     of observations are from a population 

       and a proportion   of the observations are from       . 

 

Tatum’s localized scale disturbances model-II [24]: A proportion     of observations are from a 

population        and a proportion   of the observations are from       . 

 

Amiri and Allahyari’s single step shift in the scale model-I [25]:  The first        observations are from 

       and the last    observations are from       . 

 

Amiri and Allahyari’s single step shift in the scale model-II [25]:  The first        observations are from 

       and the last    observations are from       . 

 

Misspecification model:            , 
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Table 1. The values of (1)         , (2)          and (3)          

 

 n=10  n=30  n=70  n=100 

d (1) (2) (3)  (1) (2) (3)  (1) (2) (3)  (1) (2) (3) 

(i) True Model 

N/A 0.2081 0.2427 0.1836  0.0693 0.0665 0.0532  0.0298 0.0271 0.0237  0.0207 0.0191 0.0142 

(ii) Dixon’s outlier model-I 

3 0.3670 0.3622 0.1876  0.1223 0.1175 0.0610  0.0523 0.0449 0.0255  0.0367 0.0298 0.0179 

4 0.5153 0.5015 0.1943  0.1677 0.1749 0.0678  0.0722 0.0618 0.0257  0.0504 0.0383 0.0170 

5 0.6776 0.6599 0.1925  0.2297 0.2133 0.0601  0.0983 0.0908 0.0282  0.0672 0.0510 0.0172 

(iii) Dixon’s outlier model-II 

3 0.7976 0.8599 0.2301  0.2667 0.2564 0.0652  0.1132 0.1022 0.0276  0.0800 0.0661 0.0195 

4 1.2591 1.2251 0.2133  0.4193 0.3983 0.0633  0.1807 0.1604 0.0276  0.1265 0.1055 0.0196 

5 1.8796 1.9995 0.2394  0.6159 0.5538 0.0606  0.2653 0.2296 0.0273  0.1882 0.1477 0.0183 

(iv) Tatum’s localized scale disturbances model-I using        

3 0.3672 0.3813 0.1961  0.1220 0.1087 0.0570  0.0525 0.0435 0.0244  0.0365 0.0289 0.0175 

4 0.5216 0.6336 0.2380  0.1705 0.1677 0.0632  0.0718 0.0560 0.0234  0.0508 0.0419 0.0184 

5 0.6796 0.7160 0.2065  0.2282 0.2171 0.0622  0.0982 0.0859 0.0265  0.0689 0.0514 0.0175 

(v) Tatum’s localized scale disturbances model-II using        

3 0.7777 0.8149 0.2188  0.2641 0.2552 0.0652  0.1131 0.0948 0.0262  0.0789 0.0623 0.0187 

4 1.2660 1.3443 0.2366  0.4213 0.4077 0.0655  0.1815 0.1709 0.0296  0.1286 0.1031 0.0191 

5 1.8838 2.3185 0.2735  0.6170 0.6388 0.0705  0.2633 0.2266 0.0268  0.1872 0.1458 0.0183 

(vi) Tatum’s localized scale disturbances model-I using        

3 0.4508 0.4622 0.2118  0.1497 0.1456 0.0677  0.0638 0.0557 0.0272  0.0451 0.0364 0.0190 

4 0.6548 0.7470 0.2513  0.2174 0.2084 0.0675  0.0939 0.0756 0.0262  0.0647 0.0562 0.0214 

5 0.9150 1.0337 0.2586  0.3075 0.2852 0.0669  0.1322 0.1132 0.0280  0.0932 0.0799 0.0209 

(vii) Tatum’s localized scale disturbances model-II using        

3 1.0987 1.2493 0.2919  0.3682 0.3566 0.0731  0.1555 0.1347 0.0299  0.1087 0.1006 0.0244 

4 1.7977 1.9547 0.2999  0.5938 0.5759 0.0727  0.2529 0.2201 0.0301  0.1805 0.1464 0.0210 

5 2.7223 2.8950 0.3093  0.9140 0.8404 0.0705  0.3889 0.3373 0.0301  0.2716 0.2113 0.0203 

(viii) Amiri and Allahyari’s single step shift in the scale model-I using        

3 0.3656 0.3702 0.1908  0.1222 0.1192 0.0624  0.0525 0.0437 0.0245  0.0368 0.0276 0.0170 

4 0.5138 0.5768 0.2169  0.1701 0.1626 0.0629  0.0716 0.0594 0.0250  0.0515 0.0418 0.0185 

5 0.6963 0.7531 0.2173  0.2253 0.2218 0.0643  0.0979 0.0852 0.0266  0.0674 0.0510 0.0170 
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 n=10  n=30  n=70  n=100 

d (1) (2) (3)  (1) (2) (3)  (1) (2) (3)  (1) (2) (3) 

(ix) Amiri and Allahyari’s single step shift in the scale model-II using        

3 0.8022 0.8517 0.2258  0.2633 0.2725 0.0699  0.1133 0.0981 0.0274  0.0780 0.0633 0.0188 

4 1.2643 1.3365 0.2319  0.4212 0.4330 0.0706  0.1828 0.1676 0.0286  0.1256 0.1126 0.0213 

5 1.8650 2.0652 0.2460  0.6303 0.6040 0.0654  0.2657 0.2510 0.0254  0.1873 0.1770 0.0228 

(x) Amiri and Allahyari’s single step shift in the scale model-I using        

3 0.4555 0.4725 0.2168  0.1492 0.1409 0.0649  0.1561 0.1243 0.0277  0.0443 0.0342 0.0178 

4 0.6450 0.7436 0.2494  0.2195 0.2025 0.0650  0.2587 0.2252 0.0305  0.0662 0.0506 0.0190 

5 0.9325 1.0102 0.2527  0.3073 0.2780 0.0645  0.3864 0.3809 0.0347  0.0921 0.0743 0.0197 

(xi) Amiri and Allahyari’s single step shift in the scale model-II using        

3 1.0821 1.3118 0.3134  0.3634 0.3519 0.0722  0.1557 0.1274 0.0283  0.1082 0.0978 0.0238 

4 1.7935 1.9424 0.3016  0.5954 0.5821 0.0741  0.2532 0.2311 0.0310  0.1783 0.1472 0.0214 

5 2.7065 2.8768 0.3097  0.9056 0.8810 0.0739  0.3904 0.3193 0.0294  0.2724 0.2248 0.0222 

(xii) Misspecification Model 

1.07 0.2351 0.2412 0.1923  0.0788 0.0762 0.0570  0.0339 0.0299 0.0258  0.0234 0.0213 0.0197 

 

Table 2. Relative efficiencies of the estimators with respect to     

 

 n=10  n=30  n=70  n=100 

d                                            

(i) True Model  

N/A 0.857 1.133  1.042 1.303  1.100 1.257  1.084 1.458 

(ii) Dixon’s outlier model-I 

3 1.013 1.956  1.041 2.005  1.165 2.051  1.232 2.050 

4 1.028 2.652  0.959 2.473  1.168 2.809  1.316 2.965 

5 1.027 3.520  1.077 3.822  1.083 3.486  1.318 3.907 

(iii) Dixon’s outlier model-II 

3 0.928 3.466  1.040 4.090  1.108 4.101  1.210 4.103 

4 1.028 5.903  1.053 6.624  1.127 6.547  1.199 6.454 

5 0.940 7.851  1.112 10.163  1.155 9.718  1.274 10.284 

(iv) Tatum’s localized scale disturbances model-I using        

3 0.963 1.873  1.122 1.122  1.207 2.152  1.263 2.086 

4 0.823 2.192  1.017 1.017  1.282 3.068  1.212 2.761 
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 n=10  n=30  n=70  n=100 

d                                            

5 0.949 3.291  1.051 1.051  1.143 3.706  1.340 3.937 

 (v) Tatum’s localized scale disturbances model-II using        

3 0.954 3.554  1.035 1.035  1.193 4.317  1.266 4.219 

4 0.942 5.351  1.033 1.033  1.062 6.132  1.247 6.733 

5 0.813 6.888  0.966 0.966  1.162 9.825  1.284 10.230 

(vi) Tatum’s localized scale disturbances model-I using        

3 0.975 2.128  1.028 1.028  1.145 2.346  1.239 2.374 

4 0.877 2.606  1.043 1.043  1.242 3.584  1.151 3.023 

5 0.885 3.538  1.078 1.078  1.168 4.721  1.166 4.459 

(vii) Tatum’s localized scale disturbances model-II using        

3 0.825 3.453  1.033 1.033  1.222 5.502  1.106 4.546 

4 0.923 5.947  1.023 1.023  1.096 8.168  1.211 8.332 

5 0.941 8.739  1.028 1.028  1.223 13.279  1.212 12.270 

(viii) Amiri and Allahyari’s single step shift in the scale model-I using        

3 0.988 1.916  1.025 1.025  1.201 2.143  1.333 2.165 

4 0.891 2.369  1.046 1.046  1.205 2.864  1.232 2.784 

5 0.925 3.204  1.016 1.016  1.149 3.680  1.322 3.965 

(ix) Amiri and Allahyari’s single step shift in the scale model-II using        

3 0.942 3.553  0.966 0.966  1.155 4.135  1.232 4.149 

4 0.946 5.452  0.973 0.973  1.091 6.392  1.115 5.897 

5 0.903 7.581  1.044 1.044  1.059 10.461  1.058 8.215 

(x) Amiri and Allahyari’s (2012) single step shift in the scale model-I using        

3 0.964 2.101  1.059 1.059  1.256 5.635  1.295 2.489 

4 0.867 2.586  1.084 1.084  1.149 8.482  1.308 3.484 

5 0.923 3.690  1.105 1.105  1.014 11.135  1.240 4.675 

(xi) Amiri and Allahyari’s single step shift in the scale model-II using        

3 0.825 3.453  1.033 1.033  1.222 5.502  1.106 4.546 

4 0.923 5.947  1.023 1.023  1.096 8.168  1.211 8.332 

5 0.941 8.739  1.028 1.028  1.223 13.279  1.212 12.270 

(xii) Misspecification Model  

1.07 0.975 1.222  1.034 1.381  1.135          1.316  1.102 1.190 
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where              denotes the percentage, and           refers to the extremity of the contamination. 

Realize that the first model, i.e., the true model, is given for the sake of comparisons, and all other models are its 

plausible alternatives. In order to make direct comparisons between these models, the generated    values 

            were standardized to have the same variance as that of the true model. The simulated values of 

the MSEs and their corresponding relative efficiencies      are given in Tables 1 and 2, respectively, where 

 

     
        

        
 

 

for      .      denotes the relative efficiency of the traditional ratio estimator and      denotes the relative 

efficiency of proposed robust ratio estimator. 

 

It can be seen from Table 1 that, the MSE of the proposed robust ratio estimator slightly increases as the 

percentage of contamination increases (from a low value of        to a comparatively high value of   
    ), which is expected, but the increase in the MSE of the traditional ratio estimator is larger compared to the 

proposed estimator. Besides, for a given sample size, the MSE values of the proposed estimator almost stay the 

same compared to the true model demonstrating its robustness to its plausible deviations from the assumed 

Laplace distribution. Tables 1 and 2 together show that the MSEs of the proposed robust ratio estimator are 

smaller compared to MSEs of the traditional ratio estimator under all types of model violations. We conclude 

that the proposed robust ratio estimator is both robust and more efficient than the traditional ratio estimator 

when the error term is from Laplace distribution. 

 

6 COVID-19 in Louisiana: Estimating the Mortality and Case Numbers 
 

The first case of Covid-19 was identified in Wuhan, China in December 2019. Since then, it has spread 

worldwide causing an ongoing pandemic. It has affected all nations profoundly, causing issues from crippling 

economies to mental health problems [26, 27, 28, 29]. Consequently, accurately estimating the Covid-19 

infections and deaths has been crucial for epidemiologists, public health workers, and federal governments to be 

able to make public policies and combat the disease. There are not many studies that use survey sampling 

procedures to estimate Covid-19 cases. Recently, Chandra et al. [30] have used adaptive cluster sampling to 

estimate Covid-19 cases in the Uttarakhand and Kerala states; see also [31]. Epidemiologists generally use 

infectious disease models to estimate cases and deaths. However, with novel infectious diseases, such as Covid-

19, the initial estimates regarding the cases and deaths can be erroneous [32]. Besides, due to the evolving 

nature of Covid-19, it has been challenging to predict cases and deaths for different waves caused by different 

mutations. For example, while the Omicron variant was found to be more transmissible than the Delta variant, it 

was also observed to be less severe [33]. Some of these infectious disease models, such as the agent-based 

model, have been criticized for their unrealistic assumptions. Therefore, health researchers might want to 

consider utilizing more simplistic approaches in estimating the cases or deaths, especially when there are too 

many unknowns at the beginning of pandemics.  

 

Louisiana (LA) state reported its first case of Covid-19 in March 2020 and immediately became one of the hot 

spots of the pandemic in the U.S. [34]. Two years after the first reported case, in March 2022, there were 

1,229,511 total confirmed Covid-19 cases, and 16,862 total confirmed deaths from Covid-19 in the LA state. As 

of July 2023, these numbers increased to a total of 1,611,869 confirmed cases and a total of 19,049 deaths
ǂ
. 

Considering that the number of deaths due to Covid-19 is related to the number of confirmed cases, we analyze 

the publicly available data reported by New York Times
ǂǂ
[35]. More specifically, we consider the newly 

confirmed Covid-19 daily cases and deaths in LA. As doctors and epidemiologists are interested more in 

average numbers than the raw numbers, we consider the average number of confirmed cases and average 

number of deaths. Our analyses include three different situations: 

 

Case-I 

 

We estimate the average number of Covid-19 deaths in LA between 7/1/2021 and 8/14/2021, using the average 

number of confirmed cases for the same time period as the auxiliary information. 

 

  



 

 
 

 

Ahmed et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 65-80, 2023; Article no.JAMCS.103547 
 

 

 
76 

 

Case-II  

 

Considering LA's third wave’s (between 11/5/2021 and 3/5/2021) average number of deaths as the auxiliary 

information, we estimate LA’s fourth wave’s (between 6/1/2021 and 9/29/2021) average number of deaths. 

 

Case-III 

 

Considering LA’s third wave's average number of confirmed Covid-19 cases as the auxiliary information, we 

estimate LA’s fourth wave's average number of confirmed Covid-19 cases. 

 

  
 

Fig. 2. Covid-19 cases and deaths in LA; the first five waves 

 

Case-I Case-II Case-III 

   
 

Fig. 3. Scatter plot of the variables for Cases I-III 

 

See Fig. 2 for the first five waves of Covid-19 in LA; scatter plots of the variables described for each situation 

above is given in Fig. 3. Reviewing several normality tests, we conclude that none of the residuals are normally 

distributed (Table 3); the normal probability plots also confirms non-normality as well as the existence of 

several outliers (Fig. 4). On the other hand, Laplace distribution fits very well to each case, see Fig. 5. Goodness 

of fit tests from Laplace distribution also provide evidence that we can model the residuals using the Laplace 

distribution, see Table 4.  

 

Table 3. Tests of normality for residuals  
 

Test p-value 

Case-I Case-II Case-III 

Shapiro Wilk 0.0008 0.0240 0.0003 

Anderson Darling 0.0002 0.0340 0.0003 

K. Smirnov  0.0274 0.0009 0.0003 
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Case-I Case-II Case-III 

   

 

Fig. 4. The Normal Probability plot of the residuals  

 

Case-I Case-II Case-III 

   
 

Fig. 5. The Q-Q plot of the residuals where the theoretical quantiles are calculated from the Laplace 

distribution  
 

Table 4. Goodness of fit tests for Laplace distribution to assess residuals 
 

Test Case-I Case-II Case-III 

Statistic p-value Statistic p-value Statistic p-value 

Anderson Darling 0.5561 0.9605   0.4423 0.930   0.4131 0.930 

Cramer-von Mises 0.0697 0.1370   0.0711 0.131   0.0418 0.131 

Watson 0.0629 0.0805   0.0705 0.080   0.0412 0.081 

 

To evaluate the performance of the proposed robust ratio estimator with its competitors, we report the mean 

estimates and the MSEs given in (1.3) and (3.6) along with the relative efficiencies  

                       where      . The results are presented in Table 5. The R code that was used for 

calculations can be obtained from the contact author upon request.
  

Table 5. Computational results of for estimating average Covid-19 cases and deaths 
 

 Case-I Case-II Case-III 

  946 2662 3116 

  17 20 20 

    0.91 0.81 0.93 

  0.0104 1.7894 1.8695 

        353.5508 0.0312 155.2261 

         0.0273 0.0515 361.4136 

            2.8488 0.0323 220.6684 
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 Case-I Case-II Case-III 

   0.0066 1.1065 1.5735 

       
   0.0249 0.0495 347.2143 

       
      2.5956 0.0310 211.9987 

    0.4296 0.3652 43.8501 

    0.3601 0.1824 15.1357 

         0.0062 0.0358 78.8666 

         0.0059 0.0190 64.3833 

     4.3786 1.4372 4.5825 

     4.6264 2.7072 5.6135 

 

From Table 5, it can be seen that the MSE of the traditional ratio estimator is inflated. The MSE of the proposed 

robust ratio estimator is stable in the presence of outliers. Besides, the proposed robust ratio estimator is more 

efficient compared to the traditional ratio estimator. This result is expected since the condition (3.10) is satisfied 

for all cases studied (see, Table 4). We conclude that the proposed estimator based on GLSE is a better estimator 

than its counterparts. 

 

7 Discussion and Concluding Remarks 
 

The traditional ratio estimator becomes unstable and inefficient when there are outliers in the data, or if the 

underlying distribution is not Normal. To increase the efficiency of the traditional ratio estimator when the error 

distribution is from Laplace, we utilized the GLS estimation, which also provides robustness by assigning small 

weights to the outliers and large weights to the central observations. We first studied the efficiency and 

robustness properties of the proposed ratio estimator via an extensive simulation study. We then applied the 

novel robust estimator to Covid-19 data from Louisiana and showed that it is more efficient than the sample 

mean and the traditional ratio estimator. Using the Covid-19 data we also showed that the results from the 

traditional and the proposed ratio estimators are not close to each other; one cannot trust the over-estimated 

results from the traditional ratio estimator since it is highly affected by the outliers. To our knowledge, this is the 

first time in survey sampling literature that a ratio-type estimator was used to analyze health-related data. The 

novel estimator we proposed in this study can specifically help researchers to obtain robust estimates in 

analyzing medical and biological data when there is auxiliary information available about the population and the 

underlying distribution is Laplace. 
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