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Abstract 
Let G be a graph. G is singular if and only if the adjacency matrix of graph G is 
singular. The adjacency matrix of graph G is singular if and only if there is at 
least one zero eigenvalue. The study of the singularity of graphs is of great signi-
ficance for better characterizing the properties of graphs. The following defini-
tions are given. There are 4 paths, the starting points of the four paths are 
bonded into one point, and the ending point of each path is bonded to a cycle 
respectively, so this graph is called a kind of quadcyclic peacock graph. And in 
this kind of quadcyclic peacock graph assuming the number of points on the four 
cycles is 1 2 3 4, , ,a a a a , and the number of points on the four paths is 1 2 3 4, , ,s s s s , 
respectively. This type of graph is denoted by ( )1 2 3 4 1 2 3 4, , , , , , ,a a a a s s s sγ , called 

γ graph. And let ( ) ( )1 2 3 4 1 2 3 4, , , ,1,1,1,1 , , ,a a a a a a a aγ δ= , this type four cycles 
peacock graph called δ graph. In this paper, we give the necessary and suffi-
cient conditions for the singularity of γ graph and δ graph. 
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1. Introduction 

This paper only considers finite and undirected simple graphs. Let G is a graph 
with n points, its adjacency matrix can be represented by the following matrix: 
( ) ( )ij n n

A G a
×

=   

1 if ~ ,
0 otherwise.ij

i j
a 

= 


 

where ~i j  represents the point i and point j are adjacent. The eigenvalues of 
any graph G are the eigenvalues of its adjacency matrix ( )A G , and these n ei-
genvalues is called the spectrum of graph G. The number of non-zero eigenva-
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lues in the spectrum of G are called the rank of G, denoted by ( )r G . The num-
ber of zero eigenvalues in the spectrum of G are called the the nullity of G, de-
noted by ( )Gη . Obviously, ( ) ( )r G G nη+ = . G is singular if and only if the 
adjacency matrix of graph G is singular. And ( )A G  is singular if and only if 
there is at least one zero eigenvalue. 

In chemistry, we can use graphs to represent molecular diagrams of molecules, 
and the application of the nullity (or rank) of graphs is very extensive (see 
[1]-[6]). In [6], it proposes that the nullity of a molecular graphs is a necessary 
condition for the stability of the molecular chemical properties. In addition, how 
to characterize all graphs with nullity greater than zero is also a problem that we 
have been exploring, it was proposed in 1957 (see [2]). Many scholars have at-
tempted to characterize this type of graph which also known as singular graphs, 
but this problem is very difficult and still unresolved. So far, there are only some 
results for special graphs (see [7]-[16]). In order to better characterize this type 
of graph, some mathematical scholars attempt to explore the mutual influence 
between the nullity of the graph and the structure of the graph by studying the 
structural characteristics of singular graphs (see [17] [18] [19] [20] [21]). Some 
works by researchers have shown significant connections between singular 
graphs and other fields of mathematics (see [22] [23] [24] [25]). Recently, we 
give the necessity and sufficiency of the singular of some classes tricycle graphs 
and probability of the occurence of these singular graphs [26] [27]. 

The subgraph of graph G where each branch is an isolated edge or cycle is 
called the basic Sachs subgraph of graph G. The basic subgraph containing all 
points of G is called a basic spanning subgraph or a spanning Sachs subgraph. A 
basic spanning subgraph only composed of isolated edges is called a perfect 
matching of graph G. Of course, if a graph has a perfect matching, the number 
of points on the graph must be even. Let Pn, Cn and Kn denote the path, cycle and 
complete graph with n vertices, respectively. Let G H∪  be the union of two 
graphs G and H. For the notations and terms which are not defined above, 
please refer to [1]. 

There are 4 paths, the starting points of the four paths are bonded into one 
point, and the ending point of each path is bonded to a cycle respectively, so this 
graph is called a kind of quadcyclic peacock graph. And in this kind of quadcyclic 
peacock graph assuming the number of points on the four cycles is 1 2 3 4, , ,a a a a , 
and the number of points on the four paths is 1 2 3 4, , ,s s s s . This type of graph is 
denoted by ( )1 2 3 4 1 2 3 4, , , , , , ,a a a a s s s sγ , called γ graph (see Figure 1). And let 
( ) ( )1 2 3 4 1 2 3 4, , , ,1,1,1,1 , , ,a a a a a a a aγ δ= , this type four cycles peacock graph 

called δ graph (see Figure 2). In this paper, we give the necessary and sufficient 
conditions for the singularity of γ graph and δ graph. This paper is a generaliza-
tion of [26] [27], and has a certain promotion effect on the better characteriza-
tion of singular graphs, and is also an application of nullity in graph theory. 

In this paper, 1 2 3 4, , ,a a a a  collectively referred to as four a. 1 2 3 4, , ,s s s s  col-
lectively referred to as four s. A path with the odd number of points is called a 
odd path, and a path with the even same as above is called even path. 

https://doi.org/10.4236/jamp.2023.1112243


X. J. You, H. C. Ma 
 

 

DOI: 10.4236/jamp.2023.1112243 3842 Journal of Applied Mathematics and Physics 
 

 
Figure 1. γ graph. 

 

 
Figure 2. δ graph. 

 
The main conclusions are the following theorem and corollary. 
Theorem 1. ( )1 2 3 4 1 2 3 4, , , , , , ,G a a a a s s s sγ=  is singular if and only if one of 

the following holds: 
(i) At least the length of one cycle is a multiple of 4. 
(ii) If there are four even cycles, at most two s are even or four s are even. 
(iii) If there are three even cycles, at least two s which connected to even cycles 

are odd. 
(iv) If there are two even cycles, (1) s which connected to even cycles are odd, 

(2) s which connected to even cycles are even and the s which connected to odd 
cycles have same parity and the length of the two odd cycles is different with re-
spect module 4. 

(v) If there is no even cycle, (1) the parity of the four s is same and four a is 
exactly two module 4 remainder 1 and two module 4 remainder 3, (2) exactly 
two s are odd and two s are even and the a which connected to the s with the 
same parity is different with respect module 4.  

By theorem 1, the following corollary 1 is obvious. 
Corollary 1. ( )1 2 3 4, , ,G a a a aδ=  is singular if and only if one of the follow-

ing holds: 
(i) At least the length of one cycle is a multiple of 4. 
(ii) There are four even cycles or three even cycles or two even cycles.  

2. Some Lemmas 

Lemma 2. [1] Suppose 1 2 tG G G G= ∪ ∪ ∪ , where ( )1,2, ,iG i t=   are 
connected components of G. Then ( ) ( )

1

t

i
i

G Gη η
=

=∑ . Equivalently, G is 
non-singular if and only if each ( )1,2, ,iG i t=   is non-singular.  

Lemma 3. [1] If G is a graph with n vertices and adjacency matrix is ( )A G , 
then  
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( )( ) ( ) ( ) ( ) ( )1 1 2 ,n p H c H

H
det A G

∈

= − −∑


 

  is the set of spanning Sachs subgraph of G, ( )p H  is the number of the 
components in H, ( )c H  is the number of cycles in H.  

3. Proof of the Theorem 

Proof. ( ) 1 2 3 4 1 2 3 4 7V G a a a a s s s s= + + + + + + + − . Combine the parity of 
the a1, a2, a3, a4, s1, s2, s3, s4 and the symmetry of graph γ, we will discuss as fol-
lows. 

1 Four a are even. 
1.1 Four s are even. G has no spanning Sachs subgraph, G is singular. 
1.2 Three s are even. We can assume that s1, s2, s3 are even, s4 is odd. 
The spanning Sachs subgraphs of graph G with four cycles have:  

1 2 3 4
1 2 3 4

2
7

2a a a a
s s s sC C C C P+ + + −

∪ ∪ ∪ ∪  (one).  

The spanning Sachs subgraphs of graph G with three cycles have:  

1 2 3
4 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (two),  

1 2 4
3 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (two),  

1 3 4
2 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (two),  

2 3 4
1 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (two).  

The spanning Sachs subgraphs of graph G with two cycles have:  

1 2
3 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (four),  

1 3
2 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (four),  

1 4
2 3 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (four),  

2 3
1 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (four),  

2 4
1 3 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (four),  

3 4
1 2 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (four).  

The spanning Sachs subgraphs of graph G with one cycle have:  

1
2 3 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (eight),  

2
1 3 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (eight),  
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3
1 2 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (eight),  

4
1 2 3 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (eight).  

It contains 16 perfect matchings. 
By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2 3 4 4 1 2 3 4

3 1 2 3 4 2 1 2 3 4

1 1 2 3 4 3 4 1 2 3 4

2 4 1 2 3 4 2 3 1

7 74 34 32 2

7 73 33 32 2

7 73 23 22 2

7 2 22

1 2 1 2 2

1 2 2 1 2 2

1 2 2 1 2 4

1 2 4 1

s s s s a s s s s

a s s s s a s s s s

a s s s s a a s s s s

a a s s s s a a s

+ + + − + + + + −
+ +

+ + + + − + + + + −
+ +

+ + + + − + + + + + −
+ +

+ + + + + − + +
+

− × + − × ×

+ − × × + − × ×

+ − × × + − × ×

+ − × × + −
2 3 4 7 2 22 2 4

s s s+ + + −
+ × ×

 

( ) ( )

( ) ( )

( ) ( )

( )

1 4 1 2 3 4 1 3 1 2 3 4

1 2 1 2 3 4 2 3 4 1 2 3 4

1 3 4 1 2 3 4 1 2 4 1 2 3 4

1 2 3 1

7 72 22 22 2

7 72 122 2

7 71 1
2 2

1 2 4 1 2 4

1 2 4 1 2 8

1 2 8 1 2 8

1

a a s s s s a a s s s s

a a s s s s a a a s s s s

a a a s s s s a a a s s s s

a a a s

+ + + + + − + + + + + −
+ +

+ + + + + − + + + + + + −
+ +

+ + + + + + − + + + + + + −
+ +

+ + +

+ − × × + − × ×

+ − × × + − × ×

+ − × × + − × ×

+ − ( )
2 3 4 1 2 3 4 1 2 3 47 71

2 22 8 1 16 0,
s s s a a a a s s s s+ + + − + + + + + + + −

+ × × + − × =

 

multiply both sides by ( )
1 2 3 4 1 2 3 4 7

21
a a a a s s s s+ + + + + + + −

− , if and only if  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 1 2 3 1 3 4 2 3 41 2 4

1 3 2 3 3 41 2 1 4 2 4

31 2 4

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0,

a a a a a a a a a a a a aa a a

a a a a a aa a a a a a

aa a a

+ + + + + + + + ++ +

+ + ++ + +

− − − − − − − − −

+ − + − + − + − + − + −

− − − − − − − − + =

 

if and only if  

( ) ( ) ( ) ( )
31 2 4

2 2 2 21 1 1 1 1 1 1 1 0,
aa a a     − − − − − − − − =     

     
 

if and only if 14 | a , 24 | a , 34 | a  or 44 | a , if and only if the length of any cycle 
is a multiple of 4. 

1.3 Two s or one s or no s is even. In these cases, G has no spanning Sachs 
subgraph, G is singular. 

2 Three a are even. We can assume that a1, a2, a3 are even, a4 is odd. 
2.1 Four s or three s are even. Similar to case 1.2, in these cases we can get that 

G is singular if and only if the length of any cycle is a multiple of 4. 
2.2 Two s are even. 
2.2.1 If s4 is contained in two s. Let’s assume that s3, s4 are even, s1, s2 are odd. 

G has no spanning Sachs subgraph, G is singular. 
2.2.2 If s4 is not contained in two s. Let’s assume that s1, s2 are even, s3, s4 are 

odd. Similar to case 1.2, we can get that G is singular if and only if the length of 
any cycle is a multiple of 4. 

2.3 One s or no s is even. In these cases, G has no spanning Sachs subgraph, G 
is singular. 
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3 Two a are even. We can assume that a1, a2 are even, a3, a4 are odd. 
3.1 Four s are even. There is no the spanning Sachs subgraph with four cycles. 

The spanning Sachs subgraphs of graph G with three cycles have:  

1 2 3
4 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one),  

1 2 4
3 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one).  

The spanning Sachs subgraphs of graph G with two cycles have:  

1 3
2 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two),  

1 4
2 3 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two),  

2 3
1 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two),  

2 4
1 3 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two).  

The spanning Sachs subgraphs of graph G with one cycle have:  

3
1 2 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (four),  

4
1 2 3 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (four).  

There is no perfect matching. 
By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

( ) ( )

( )

4 1 2 3 4 3 1 2 3 4

2 4 1 2 3 4 2 3 1 2 3 4

1 4 1 2 3 4 1 3 1 2 3 4

1 2 4 1 2 3 4

7 73 33 32 2

7 72 22 22 2

7 72 22 22 2

7
2

1 2 1 1 2 1

1 2 2 1 2 2

1 2 2 1 2 2

1

a s s s s a s s s s

a a s s s s a a s s s s

a a s s s s a a s s s s

a a a s s s s

+ + + + − + + + + −
+ +

+ + + + + − + + + + + −
+ +

+ + + + + − + + + + + −
+ +

+ + + + + + −
+

− × × + − × ×

+ − × × + − × ×

+ − × × + − × ×

+ − ( )
1 2 3 1 2 3 4 71 1

22 4 1 2 4 0,
a a a s s s s+ + + + + + −

+× × + − × × =

 

multiply both sides by ( )
1 2 3 4 6

21
s s s s+ + + −

− , if and only if  

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 4 2 334

1 4 1 3 1 2 4 1 2 3

1 111
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1

1 1 1 1 0,

a a a aaa

a a a a a a a a a a

+ − + −−−

+ − + − + + − + + −

− − − − + − + −

+ − + − − − − − =

 

if and only if  

( ) ( ) ( ) ( )
34 1 211

2 2 2 21 1 1 1 1 1 0,
aa a a−−   − − + − − − − − =   

   
 

if and only if 14 | a , 24 | a  or ( ) ( )
34 11

2 21 1 0
aa −−

− + − = , if and only if the length of 
any cycle is a multiple of 4 or the length of the two odd cycles is module 4 with 
different remainder. 
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3.2 Three s are even. 
3.2.1 If s1 and s2 are all contained in three s. Let’s assume that s1, s2, s3 are even, 

s4 is odd. The spanning Sachs subgraphs of graph G with four cycles have:  

1 2 3 4
1 2 3 4

2
7

2a a a a
s s s sC C C C P+ + + −

∪ ∪ ∪ ∪  (one).  

The spanning Sachs subgraphs of graph G with three cycles have:  

1 3 4
2 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (two),  

2 3 4
1 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (two).  

The spanning Sachs subgraphs of graph G with two cycles have:  

3 4
1 2 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (four),  

1 2
3 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one).  

The spanning Sachs subgraphs of graph G with one cycle have:  

1
2 3 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (two),  

2
1 3 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (two).  

It contains 4 perfect matchings. 
By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

( ) ( )

( )

1 2 3 4 2 1 2 3 4

1 1 2 3 4 1 2 1 2 3 4

3 4 1 2 3 4 2 3 4 1 2 3 4

1 3 4 1 2 3 4

7 74 34 32 2

7 73 23 22 2

7 72 122 2

7 1
2

1 2 1 2 2

1 2 2 1 2 4

1 2 1 1 2 2

1 2 2

s s s s a s s s s

a s s s s a a s s s s

a a s s s s a a a s s s s

a a a s s s s

+ + + − + + + + −
+ +

+ + + + − + + + + + −
+ +

+ + + + + − + + + + + + −
+ +

+ + + + + + −
+

− × + − × ×

+ − × × + − × ×

+ − × × + − × ×

+ − × × + ( )
1 2 3 4 1 2 3 4 7

21 4 0,
a a a a s s s s+ + + + + + + −

− × =

 

multiply both sides by ( )
1 2 3 4 1 2 3 4 7

21
a a a a s s s s+ + + + + + + −

− , if and only if  

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3 4 1 3 4 2 3 4 3 4

1 2 1 2

2 2 2 2 2

2 2 2

2 1 1 1 1

1 1 1 1 0,

a a a a a a a a a a a a

a a a a

+ + + + + + + +

+

 
× − − − − − + − 
 

+ − − − − − + =

 

if and only if  

( ) ( ) ( )
3 4 1 2

2 2 24 1 1 1 1 1 1 0,
a a a a+   − + − − − − =   

   
 

obviously, the first equation is equal to 0 without a solution, if and only if 14 | a  
or 24 | a , if and only if the length of any cycle is a multiple of 4. 

3.2.2 If s1 and s2 are not all contained in three s. Let’s assume that s1, s3, s4 are 
even, s2 is odd. Similar to case 1.2, we can get that G is singular if and only if the 
length of any cycle is a multiple of 4. 
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3.3 Two s are even. 
3.3.1 If s1, s2 are contained in two s exactly. Let’s assume that s1, s2 are even, s3, 

s4 are odd. Similar to subcase 3.1, it is obtained that G is singular if and only if 
the length of any cycle is a multiple of 4 or the length of the two odd cycles is 
module 4 with different remainder. 

3.3.2 If one of s1, s2 is contained in two s. Let’s assume that s1, s3 are even, s2, s4 
are odd. Similar to case 1.2, we can get that G is singular if and only if the length 
of any cycle is a multiple of 4. 

3.3.3 If s1, s2 are not contained in two s exactly. Let’s assume that s3, s4 are 
even, s1, s2 are odd. G has no spanning Sachs subgraph, G is singular. 

3.4 One s is even. 
3.4.1 If s1 or s2 is contained in one s. Let’s assume that s1 is even, s2, s3, s4 are 

odd. Similar to case 1.2, we can get that G is singular if and only if the length of 
any cycle is a multiple of 4. 

3.4.2 If s1 or s2 is not contained in one s. Let’s assume that s3 is even, s1, s2, s4 
are odd. G has no spanning Sachs subgraph, G is singular. 

3.5 Four s are odd. G has no spanning Sachs subgraph, G is singular. 
4 One a is even. We can assume that a1 is even, a2, a3, a4 are odd. 
4.1 Four s are even. There is no the spanning Sachs subgraph with four cycles. 

The spanning Sachs subgraphs of graph G with three cycles have:  

1 2 3
4 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one),  

1 2 4
3 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one),  

1 3 4
2 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one).  

The spanning Sachs subgraphs of graph G with two cycles have:  

2 3
1 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two),  

2 4
1 3 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two),  

3 4
1 2 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two).  

There is no the spanning Sachs subgraph with one cycle. There is no perfect 
matching. 

By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

( ) ( )

4 1 2 3 4 3 1 2 3 4

2 1 2 3 4 1 4 1 2 3 4

1 3 1 2 3 4 1 2 1 2 3 4

7 73 33 32 2

7 73 23 22 2

7 72 22 22 2

1 2 1 1 2 1

1 2 1 1 2 2

1 2 2 1 2 2 0,

a s s s s a s s s s

a s s s s a a s s s s

a a s s s s a a s s s s

+ + + + − + + + + −
+ +

+ + + + − + + + + + −
+ +

+ + + + + − + + + + + −
+ +

− × × + − × ×

+ − × × + − × ×

+ − × × + − × × =

 

multiply both sides by ( )
1 2 3 4 1 2 3 4 7

21
a a a a s s s s+ + + + + + + −

− , if and only if  

https://doi.org/10.4236/jamp.2023.1112243


X. J. You, H. C. Ma 
 

 

DOI: 10.4236/jamp.2023.1112243 3848 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 1 3 41 2 4

2 3 3 42 4

2 2 2

2 2 2

1 1 1

1 1 1 0,

a a a a a aa a a

a a a aa a

+ + + ++ +

+ ++

− − − − − −

+ − + − + − =
 

if and only if  

( ) ( ) ( ) ( )
2 3 3 41 2 4

2 2 2 21 1 1 1 1 0,
a a a aa a a+ ++  − − + − + − + − =  

  
 

due to ( ) ( ) ( )
2 3 3 42 4

2 2 21 1 1 0
a a a aa a+ ++

− + − + − ≠ , the above equation holds if and only 
if 14 | a , if and only if the length of any cycle is a multiple of 4. 

4.2 Three s are even. 
4.2.1 If s1 is contained in three s. Let’s assume that s1, s2, s3 are even, s4 is odd. 

The spanning Sachs subgraphs of graph G with four cycles have:  

1 2 3 4
1 2 3 4

2
7

2a a a a
s s s sC C C C P+ + + −

∪ ∪ ∪ ∪  (one).  

The spanning Sachs subgraphs of graph G with three cycles have:  

2 3 4
1 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (two).  

The spanning Sachs subgraphs of graph G with two cycles have:  

1 2
3 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one),  

1 3
2 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one).  

The spanning Sachs subgraphs of graph G with one cycle have:  

2
1 3 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (two),  

3
1 2 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (two).  

There is no perfect matching. 
By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

( ) ( )

1 2 3 4 1 1 2 3 4

3 4 1 2 3 4 2 4 1 2 3 4

1 3 4 1 2 3 4 1 2 4 1 2 3 4

7 74 34 32 2

7 72 22 22 2

7 71 1
2 2

1 2 1 2 2

1 2 1 1 2 1

1 2 2 1 2 2 0,

s s s s a s s s s

a a s s s s a a s s s s

a a a s s s s a a a s s s s

+ + + − + + + + −
+ +

+ + + + + − + + + + + −
+ +

+ + + + + + − + + + + + + −
+ +

− × + − × ×

+ − × × + − × ×

+ − × × + − × × =

 

multiply both sides by ( )
1 2 3 4 7

21
s s s s+ + + −

− , if and only if  

( ) ( ) ( ) ( ) ( )
3 4 1 3 41 2 4 1 2 4

2 2 2 2 24 4 1 1 1 1 1 0,
a a a a aa a a a a a+ + ++ + +

− − + − + − − − − − =  

if and only if  

( ) ( ) ( )
3 41 2 4

2 2 21 1 4 1 1 0,
a aa a a+ +  − − + − + − =  

  
 

if and only if 14 | a , if and only if the length of any cycle is a multiple of 4. 
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4.2.2 If s1 is not contained in three s. Let’s assume that s2, s3, s4 are even, s1 is 
odd. Similar to case 1.2, we can get that G is singular if and only if the length of 
any cycle is a multiple of 4. 

4.3 Two s are even. 
4.3.1 If s1 is contained in two s. Let’s assume that s1, s2 are even, s3, s4 are odd. 

There is no the spanning Sachs subgraph with four cycles. The spanning Sachs 
subgraphs of graph G with three cycles have:  

1 2 3
4 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one),  

1 2 4
3 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one).  

The spanning Sachs subgraphs of graph G with two cycles have:  

2 3
1 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two),  

2 4
1 3 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (two).  

The spanning Sachs subgraphs of graph G with one cycle have:  

1
2 3 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (one).  

It contains 2 perfect matchings. 
By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

( ) ( )

4 1 2 3 4 3 1 2 3 4

1 4 1 2 3 4 1 3 1 2 3 4

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

7 73 33 32 2

7 72 22 22 2

7 71
2 2

1 2 1 1 2 1

1 2 2 1 2 2

1 2 1 2 0,

a s s s s a s s s s

a a s s s s a a s s s s

a a a s s s s a a a a s s s s

+ + + + − + + + + −
+ +

+ + + + + − + + + + + −
+ +

+ + + + + + − + + + + + + + −
+

− × × + − × ×

+ − × × + − × ×

+ − × + − × =

 

multiply both sides by ( )
1 2 3 4 1 2 3 4 7

21
a a a a s s s s+ + + + + + + −

− , if and only if  

( ) ( ) ( ) ( ) ( )
1 2 3 2 31 2 4 2 4 1

2 2 2 2 24 1 1 1 1 1 1 0,
a a a a aa a a a a a+ + ++ + + − − − − + − + − − − + = 

 
 

if and only if  

( ) ( ) ( )
2 31 2 4

2 2 21 1 4 1 4 1 1 0,
a aa a a+ +  − − + − + − + =  

  
 

if and only if 14 | a , if and only if the length of any cycle is a multiple of 4. 
4.3.2 If s1 is not contained in two s. Let’s assume that s3, s4 are even, s1, s2 are 

odd. Similar to case 1.2, we can get that G is singular if and only if the length of 
any cycle is a multiple of 4. 

4.4 One s or no s is even. Similar to case 4.1, in these cases we can get that G is 
singular if and only if the length of any cycle is a multiple of 4. 

5 Four a are odd. 
5.1 Four s are even. There is no the spanning Sachs subgraph with four cycles. 

The spanning Sachs subgraphs of graph G with three cycles have:  
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1 2 3
4 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one),  

1 2 4
3 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one),  

1 3 4
2 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one),  

2 3 4
1 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one).  

There is no the spanning Sachs subgraph with one or two cycles. There is no 
perfect matching. 

By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

4 1 2 3 4 3 1 2 3 4

2 1 2 3 4 1 1 2 3 4

7 73 33 32 2

7 73 33 32 2

1 2 1 1 2 1

1 2 1 1 2 1 0,

a s s s s a s s s s

a s s s s a s s s s

+ + + + − + + + + −
+ +

+ + + + − + + + + −
+ +

− × × + − × ×

+ − × × + − × × =
 

multiply both sides by ( )
1 2 3 4 6

21
s s s s+ + + −

− , if and only if  

( ) ( ) ( ) ( )
31 2 411 1 1

2 2 2 21 1 1 1 0,
aa a a−− − −

− + − + − + − =  

if and only if four a is exactly two module 4 remainder 1 and two module 4 re-
mainder 3. 

5.2 Three s are even. We can assume that s1, s2, s3 are even, s4 is odd. The 
spanning Sachs subgraphs of graph G with four cycles have:  

1 2 3 4
1 2 3 4

2
7

2a a a a
s s s sC C C C P+ + + −

∪ ∪ ∪ ∪  (one).  

There is no the spanning Sachs subgraph with three cycles. The spanning 
Sachs subgraphs of graph G with two cycles have:  

1 2
3 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one),  

1 3
2 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one),  

2 3
1 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one).  

There is no the spanning Sachs subgraph with one cycle. There is no perfect 
matching. 

By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

1 2 3 4 3 4 1 2 3 4

2 4 1 2 3 4 1 4 1 2 3 4

7 74 24 22 2

7 72 22 22 2

1 2 1 2

1 2 1 2 0,

s s s s a a s s s s

a a s s s s a a s s s s

+ + + − + + + + + −
+ +

+ + + + + − + + + + + −
+ +

− × + − ×

+ − × + − × =
 

multiply both sides by ( )
1 2 3 4 7

21
s s s s+ + + −

− , if and only if  

( ) ( ) ( )
3 4 2 4 1 4

2 2 24 1 1 1 0,
a a a a a a+ + +

+ − + − + − =  

it is impossible to establish. 
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5.3 Two s are even. We can assume that s1, s2 are even, s3, s4 are odd. There is 
no the spanning Sachs subgraph with four cycles. The spanning Sachs subgraphs 
of graph G with three cycles have:  

1 2 3
4 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one),  

1 2 4
3 1 2 3 4

2
7

2a a a
a s s s sC C C P+ + + + −

∪ ∪ ∪  (one).  

There is no the spanning Sachs subgraph with two cycles. The spanning Sachs 
subgraphs of graph G with one cycle have:  

1
2 3 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (one),  

2
1 3 4 1 2 3 4

2
7

2a
a a a s s s sC P+ + + + + + −

∪  (one).  

There is no perfect matching. 
By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

4 1 2 3 4 3 1 2 3 4

2 3 4 1 2 3 4 1 3 4 1 2 3 4

7 73 33 32 2

7 71 1
2 2

1 2 1 2

1 2 1 2 0,

a s s s s a s s s s

a a a s s s s a a a s s s s

+ + + + − + + + + −
+ +

+ + + + + + − + + + + + + −
+ +

− × + − ×

+ − × + − × =
 

multiply both sides by ( )
1 2 3 4 6

21
s s s s+ + + −

− , if and only if  

( ) ( ) ( ) ( )
3 2 3 4 1 3 44 1 1 11

2 2 2 24 1 1 1 1 0,
a a a a a a aa − + + − + + −− − + − + − + − = 

 
 

if and only if 1 2,a a  is module 4 with different remainder and 3 4,a a  is module 
4 with different remainder. 

5.4 One s is even. We can assume that s1 is even, s2, s3, s4 are odd. There is no 
the spanning Sachs subgraph with four or three cycles. The spanning Sachs sub-
graphs of graph G with two cycles have:  

1 2
3 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one),  

1 3
2 4 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one),  

1 4
2 3 1 2 3 4

2
7

2a a
a a s s s sC C P+ + + + + −

∪ ∪  (one).  

There is no the spanning Sachs subgraph with one cycle. It contains 1 perfect 
matching. 

By Lemma 2.2, G is singular if and only if  

( ) ( )

( ) ( )

3 4 1 2 3 4 2 4 1 2 3 4

2 3 1 2 3 4 1 2 3 4 1 2 3 4

7 72 22 22 2

7 72 22 2

1 2 1 2

1 2 1 0,

a a s s s s a a s s s s

a a s s s s a a a a s s s s

+ + + + + − + + + + + −
+ +

+ + + + + − + + + + + + + −
+

− × + − ×

+ − × + − =
 

multiply both sides by ( )
1 2 3 4 1 2 3 4 7

21
a a a a s s s s+ + + + + + + −

− , if and only if  
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( ) ( ) ( )
1 31 2 1 4

2 2 24 1 1 1 1 0,
a aa a a a++ + − + − + − + = 

 
 

it is impossible to establish. 
5.5 Four s is odd. Similar to case 5.1, we can get G is singular if and only if 

four a is exactly two module 4 remainder 1 and two module 4 remainder 3. 
The Theorem 1.1 is proved by summarizing the above cases. 
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