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Abstract

Background

The potential benefits of gaining body muscle for cardiovascular disease (CVD) susceptibil-

ity, and how these compare with the potential harms of gaining body fat, are unknown. We

compared associations of early life changes in body lean mass and handgrip strength ver-

sus body fat mass with atherogenic traits measured in young adulthood.

Methods and findings

Data were from 3,227 offspring of the Avon Longitudinal Study of Parents and Children

(39% male; recruited in 1991–1992). Limb lean and total fat mass indices (kg/m2) were mea-

sured using dual-energy X-ray absorptiometry scans performed at age 10, 13, 18, and 25 y

(across clinics occurring from 2001–2003 to 2015–2017). Handgrip strength was measured

at 12 and 25 y, expressed as maximum grip (kg or lb/in2) and relative grip (maximum grip/

weight in kilograms). Linear regression models were used to examine associations of

change in standardised measures of these exposures across different stages of body devel-

opment with 228 cardiometabolic traits measured at age 25 y including blood pressure, fast-

ing insulin, and metabolomics-derived apolipoprotein B lipids. SD-unit gain in limb lean

mass index from 10 to 25 y was positively associated with atherogenic traits including very-

low-density lipoprotein (VLDL) triglycerides. This pattern was limited to lean gain in legs,

whereas lean gain in arms was inversely associated with traits including VLDL triglycerides,

insulin, and glycoprotein acetyls, and was also positively associated with creatinine (a mus-

cle product and positive control). Furthermore, this pattern for arm lean mass index was spe-

cific to SD-unit gains occurring between 13 and 18 y, e.g., −0.13 SD (95% CI −0.22, −0.04)

for VLDL triglycerides. Changes in maximum and relative grip from 12 to 25 y were both
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positively associated with creatinine, but only change in relative grip was also inversely

associated with atherogenic traits, e.g., −0.12 SD (95% CI −0.18, −0.06) for VLDL triglycer-

ides per SD-unit gain. Change in fat mass index from 10 to 25 y was more strongly associ-

ated with atherogenic traits including VLDL triglycerides, at 0.45 SD (95% CI 0.39, 0.52);

these estimates were directionally consistent across sub-periods, with larger effect sizes

with more recent gains. Associations of lean, grip, and fat measures with traits were more

pronounced among males. Study limitations include potential residual confounding of obser-

vational estimates, including by ectopic fat within muscle, and the absence of grip measures

in adolescence for estimates of grip change over sub-periods.

Conclusions

In this study, we found that muscle strengthening, as indicated by grip strength gain, was

weakly associated with lower atherogenic trait levels in young adulthood, at a smaller magni-

tude than unfavourable associations of fat mass gain. Associations of muscle mass gain

with such traits appear to be smaller and limited to gains occurring in adolescence. These

results suggest that body muscle is less robustly associated with markers of CVD suscepti-

bility than body fat and may therefore be a lower-priority intervention target.

Author summary

Why was this study done?

• Higher body fat likely causes heart disease, but fat loss remains difficult to maintain. Evi-

dence is less robust on whether gaining body muscle mass or strength would reduce the

risk of heart disease, and how the size of potential benefit from muscle or strength gain

compares with the expected harm of fat gain.

• Examining naturally occurring changes in lean mass, grip strength, and fat mass across

early stages of life, when ageing-related chronic diseases are rare, should naturally

reduce the potential for confounding by subclinical disease and enable less biased esti-

mates of the effect of each body compartment on markers of heart health.

What did the researchers do and find?

• We used data on approximately 3,000 young people from a British birth cohort study to

examine repeated measures of body fat and lean mass taken from body scanning per-

formed during childhood, adolescence, and young adulthood, as well as repeated mea-

sures of handgrip strength from childhood and young adulthood.

• We examined associations between these exposures and detailed measures taken from

blood samples in young adulthood including apolipoprotein-B-related cholesterol,

which reflects susceptibility to heart disease. This enabled us to compare how strongly

different body compartments relate to heart health and to pinpoint at what stage of

early life (before adulthood) each may be most impactful.
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• We found that gaining lean mass and grip strength were only weakly related to healthier

levels of blood markers in young adulthood, and mainly among males, with only lean

mass gains occurring in adolescence appearing potentially beneficial. Gaining fat mass

was more strongly and consistently related to poorer health in young adulthood, again

particularly among males.

What do these findings mean?

• These findings suggest that greater benefits to heart health may be expected from reduc-

ing body fat than from gaining body muscle. They further suggest that the regular use of

muscle matters more than the volume or intentional building up of muscle for avoiding

heart disease.

• Body muscle is still likely to benefit other functional aspects of health including mobil-

ity, and these benefits should still be relayed to patients and the public.

Introduction

Cardiovascular diseases (CVDs) remain leading causes of early mortality [1]. Multiple lines of

evidence from population and mechanistic studies support higher body fat as a likely cause of

such diseases, including coronary heart disease (CHD) [2–5]. These harms of body fatness are

thought to be driven largely by its effects on cardiometabolic intermediates including higher

blood pressure, apolipoprotein-B-containing lipoproteins, and glucose [6,7]. Population

reductions in body fat remain difficult to achieve, however [8]. This reality motivates the direct

targeting of intermediate traits and of other metabolically active, and potentially modifiable,

body tissues.

Body muscle is metabolically active and its contraction is expected to be anti-inflammatory

and anti-hyperglycaemic [9]. Higher total lean mass has shown adverse cardiometabolic pro-

files [10,11] however, possibly reflecting residual confounding by fat in abdominal regions [4].

Lean mass held within limbs may better isolate skeletal muscle as these compartments corre-

late most highly with muscle volume measured by magnetic resonance imaging [12,13]. Bene-

fits of muscle may also be reflected in strength, which can be measured directly for isolated

arm muscles using handgrip tests; grip strength correlates well (>0.7) with objectively mea-

sured strength in other muscle groups such as hips and is thus a useful and widely used proxy

for overall muscular strength in larger scale studies [14–16]. Prospective observational esti-

mates suggest that higher limb lean mass and stronger grip are both associated with lower

CHD risk independent of body mass index (BMI) [14,17,18], and factorial Mendelian rando-

misation (MR) estimates suggest that the risk ratio for CVD onset is comparable among adults

with high grip strength and high BMI (1.04; 95% CI 0.98, 1.11) and among adults with low

grip strength and high BMI (1.03; 95% CI 0.97, 1.10), compared with adults with high grip

strength and low BMI (P value for interaction = 0.50) [19]. Such factorial MR estimates for

limb lean mass, whether based on bioimpedance or more precise dual-energy X-ray absorpti-

ometry (DXA) scans, are not yet available.

The likely causality between body muscle and CVD susceptibility can be interrogated by

examining the association of body muscle with intermediate traits that have triangulated
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evidence of causality for CVD in samples that have reduced potential for confounding. Higher

limb lean mass and stronger grip are both associated with lower glycaemia, apolipoprotein B

lipids, blood pressure, and inflammation [20–23]. These associations for grip appear stronger

when expressed as a function of, rather than adjusting for, weight or BMI [20–25]. Notably,

estimates for limb lean mass and grip are based largely on middle- to older-age adults, which

limits causal inference given the high potential for confounding by subclinical disease (reverse

causation). The few studies of children or young adults suggest weak associations of stronger

grip with total cholesterol, glucose, and blood pressure [26–29], and potentially positive associ-

ations of higher limb lean mass with atherogenic lipids, glycaemia, and blood pressure [11].

Measuring muscle and strength earlier in life, when subclinical diseases are rare, should enable

less biased estimates of cardiometabolic effects.

Growing evidence suggests that associations between body fat mass and atherogenic traits

differ importantly by sex. Higher fat mass, whether measured using BMI, waist circumference,

or DXA fat mass, appears to be more strongly positively associated among males with CVD-

relevant traits including metabolomics-derived glucose, apolipoprotein B lipids, and inflam-

matory glycoprotein acetyls (GlycA) [7,30]; these sex differences in turn vary by stage of body

development, with associations appearing more adverse among males in childhood, adoles-

cence, and young adulthood, but similar or more adverse among females in middle adulthood

[30]. Such differences do not simply reflect differences in total fat volume since males tend to

carry less total fat than females throughout life [30,31]; these differences instead suggest an

important role of abdominal and ectopic fat storage, which is often higher among males [4,31],

in underpinning the effects of total fat [10]. Males tend to have higher lean mass and stronger

grip than females [14,32], but whether important sex differences exist in the associations of

muscle mass or strength with atherogenic traits is unknown. Sex differences in the potential

benefits of muscle have also not been previously examined in relation to detailed atherogenic

traits measured from targeted metabolomics [33]. Muscle tissue is thought to be more modifi-

able after childhood [34], and thus greater benefits from a higher contractile capacity may be

expected from adolescence onwards, but the common lack of repeated measures of body mus-

cle at different life stages has prevented examination of the potential modifying role of growth

and development in the associations of muscle change with atherogenic traits [35].

We aimed in this study to estimate the effects of gaining body muscle on markers of CVD

susceptibility using repeated measures of DXA limb lean mass and grip strength across early

life in relation to blood pressure and metabolomics-derived atherogenic traits in young adult-

hood. We examined associations of change in limb lean mass and grip from childhood to

young adulthood with atherogenic traits, and whether associations differ by stage of body

development and by sex. We examined associations of change in DXA fat mass index with

traits in the same manner, to directly compare the magnitude of potential benefits of gaining

muscle with the potential harms of gaining fat.

Methods

Study population

Data were from Generation 1 of the Avon Longitudinal Study of Parents and Children

(ALSPAC), a population-based birth cohort study in which 15,454 pregnant women (Genera-

tion 0) with an expected delivery date between 1 April 1991 and 31 December 1992 were

recruited from the former Avon County of southwest England [36]. Since then, 14,901 Genera-

tion 1 individuals alive at 1 y have been followed repeatedly with questionnaire- and clinic-

based assessments [37–39], including an additional 913 Generation 1 individuals enrolled over

the course of the study [40]. Written informed consent was provided, and ethical approval was
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obtained from the ALSPAC Ethics and Law Committee and the local research ethics commit-

tee. Consent for biological samples was collected in accordance with the UK Human Tissue

Act 2004. Written informed consent for the use of data collected via questionnaires and clinics

was obtained from participants following recommendations of the ALSPAC Ethics and Law

Committee at the time. The study website contains details of all available data through a fully

searchable data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/

researchers/our-data/).

Our study aims, objectives, and analytical intentions were summarised in March 2019 prior

to data handling for the purposes of an ALSPAC data application (S1 Study Plan). This study

was initially motivated by metabolomics work on type 2 diabetes susceptibility [41] and was

expanded to investigate CVD susceptibility more broadly. Examinations of sex differences

were motivated by more recent work on body fatness [30] and prior peer review recommenda-

tions. This study is reported as per the Strengthening the Reporting of Observational Studies

in Epidemiology (STROBE) guidelines (S1 STROBE Checklist).

We conducted main analyses on unrestricted samples of participants (with N varying

between traits and across occasions) to enable use of all measured data. Of the 14,901 surviving

Generation 1 ALSPAC participants who were eligible for future clinic assessments, 6,119 par-

ticipants had data on covariates used for model adjustments plus�1 of any of the following:

DXA measures (lean or fat mass) or grip strength at age 25 y; change in DXA measures across

the total observation period (10 to 25 y), across childhood (10 to 13 y), across adolescence (13

to 18 y), or across young adulthood (18 to 25 y); or change in grip strength across the total

observation period (12 to 25 y). Of those 6,119 participants with any exposure measure, 3,227

participants had data on�1 cardiometabolic trait at age 25 y and were thus considered eligible

for inclusion in at least 1 of the present set of analyses (Fig 1).

Assessing body muscle mass and strength

When aged approximately 10, 12, 13, 18, and 25 y, participants underwent body scanning using a

DXA Lunar Prodigy narrow fan beam densitometer, from which total and regional lean mass (in

kilograms, excluding fat and bone) was estimated. Scans were screened for anomalies, motion,

and material artefacts, and realigned when necessary [42]. Limb lean mass was calculated by sum-

ming lean mass in arms and legs (trunk excluded). On each occasion, height was measured in

light clothing without shoes to the nearest 0.1 cm using a Harpenden stadiometer. Limb lean

mass index was calculated using squared height (kg/m2). Separate lean mass indices for arms and

legs were also calculated. Fat mass index was calculated based on total body fat mass (kg/m2).

Participants underwent handgrip strength testing on 2 occasions: when aged approximately

12 y using a Jamar hydraulic dynamometer and when aged approximately 25 y using a Baseline

pneumatic squeeze bulb dynamometer. The latter device records grip more dynamically, with

units scaled to hand size; previous studies of younger and older adults suggest that measure-

ments from squeeze bulb dynamometers and Jamar hydraulic devices are highly correlated (r
> 0.8) and similarly detect sex differences in grip strength [43,44]. On each occasion, partici-

pants sat in a chair with arms and back supported and were asked to rest their forearms on the

arms of the chair, with their wrist just over the end of the chair arm (thumb facing upwards,

with wrist in a neutral position). Participants were asked to squeeze the device as tightly and

for as long as possible, 3 times in succession using their dominant (writing) hand, to record

maximum isometric strength (in kilograms of force at 12 y and in pounds per square inch of

force at 25 y). Maximum grip strength was estimated as the mean of 3 measures. Grip strength

as a function of body weight, here termed ‘relative grip’, was calculated as maximum grip

divided by body weight in kilograms. We scaled for weight rather than fat mass index or BMI
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when deriving relative grip following peer review; this approach was considered preferable

because it (1) accounts for overall body size rather than adiposity specifically, (2) reduces bias

from an induced negative correlation between relative grip strength and adiposity, (3) enables

consistent multivariable adjustment for fat mass index as a confounder across muscle mea-

sures, and (4) enables comparable estimates of effect with MR analyses, given that genome-

wide association studies have scaled for weight rather than BMI [45].

Assessing cardiometabolic traits

When the participants were aged approximately 25 y, systolic blood pressure (SBP) and dia-

stolic blood pressure (DBP) were examined twice in succession while the individual was seated

with the arm supported, using an appropriately sized cuff and a DINAMAP 9301 device. Mean

levels of each were used to represent resting SBP and DBP. Fasting blood samples were drawn,

from which insulin (mu/l) and C-reactive protein (CRP) (mg/l) were quantified using routine

clinical chemistry. Proton nuclear magnetic resonance (NMR) spectroscopy from targeted

metabolomics [33] was also performed to quantify 145 concentrations (mostly mmol/l) and 79

ratios describing traits including cholesterol and triglyceride content of lipoprotein subclasses,

apolipoprotein B, glucose, branched chain amino acids (BCAAs), creatinine (a muscle product

and positive control), and inflammatory GlycA.

Assessing confounders

The measured confounders included sex, ethnicity (white versus non-white), age at the time of

exposure (lean mass, grip, fat mass) assessment, and highest level of education attained by the

participant’s mother as reported shortly after delivery (certificate of secondary education,

vocational, O-level, A-level, or degree, using English standards) to indicate socioeconomic

position at birth. Smoking at age 18 y and 25 y was recorded via questionnaire and grouped as

never smoked an entire cigarette, smokes less than weekly, or smokes weekly. Alcohol con-

sumption at 18 y and 25 y was recorded and grouped as never/monthly/less than monthly, 2–4

Fig 1. Selection of Avon Longitudinal Study of Parents and Children Generation 1 participants eligible for

inclusion in�1 analysis. DXA, dual-energy X-ray absorptiometry.

https://doi.org/10.1371/journal.pmed.1003751.g001
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times/month, or�2 times/week. Puberty timing was estimated as age at peak height velocity

based on SuperImposition by Translation and Rotation (SITAR) modelling of heights from 5 y

to 20 y (detailed previously [46]).

Analyses

Pearson correlation coefficients were examined between changes in lean and fat mass indices

based on age 10 and 25 y measures, and between changes in grip and lean and fat mass indices

based on age 12 and 25 y measures. Correlations were also examined between changes in lean

and fat mass indices across sub-periods of childhood (10 to 13 y), adolescence (13 to 18 y), and

young adulthood (18 to 25 y).

Exposures and outcomes were analysed in standardised z-score units to allow comparability

of effect sizes given dissimilar variances between traits and across occasions (this also improved

comparability between handgrip strength measures, given the different units across occasions).

Because exposure distributions differed substantially by sex (S1–S5 Figs), as did exposure

change distributions (S6–S10 Figs), exposures were z-scored separately within each sex. We

then examined associations of change in lean mass indices (total limb, arm, and leg) based on

difference scores (standardised index at 25 y minus standardised index at 10 y) with cardiome-

tabolic traits at 25 y using linear regression models with robust standard errors. Models adjusted

for age, sex, ethnicity, maternal education, the 10-y value of the index being assessed, change in

the other lean mass index (other limb compartment), and change in fat mass index. We exam-

ined whether association patterns differed by stage of body development by repeating analyses

based on change in lean mass indices from 10 to 13 y (childhood), 13 to 18 y (adolescence), and

18 to 25 y (young adulthood), in relation to traits at 25 y. Models of change in adolescence were

additionally adjusted for age at peak height velocity, while models of change in young adulthood

were additionally adjusted for this plus smoking and alcohol at 18 y. Associations of change in

grip measures from 12 to 25 y with traits at 25 y were examined with adjustment for basic

demographic factors, grip strength at 12 y, and change in fat mass index.

We examined associations of change in fat mass index from 10 to 25 y, and over sub-peri-

ods, with traits at 25 y, using the same model adjustment strategies as for limb lean mass index

but adjusting for limb lean (instead of fat) mass index. Lastly, following peer review, we exam-

ined cross-sectional associations of lean mass indices, grip strength, and fat mass index with

cardiometabolic traits, all measured at 25 y, to compare the association profile of changes in

exposures to that of current levels of exposure. These models were adjusted for the same covar-

iates as in models with exposure change measured starting from 18 y, but with smoking, alco-

hol, and lean/fat mass indices now measured at 25 y. We examined whether associations differ

substantially by sex by repeating all analyses among males and females separately.

Since main analyses were conducted on unrestricted samples of participants (with N vary-

ing between traits and across occasions), we repeated models using 770 participants with data

on every DXA and grip measure at every time point, every cardiometabolic trait, and every

covariate (complete case), to examine whether results are sensitive to changing sample size.

As recommended for aims of estimation [47,48], we present exact P values and base our

interpretations of results on effect size and precision. Analyses were done using Stata 15.1 (Sta-

taCorp, College Station, Texas, US).

Results

Sample characteristics

In total, 3,227 participants contributed to analyses (39% male) (Table 1; Fig 1). Mean (SD) age

at peak height velocity was 12.4 y (1.2 y) overall (range: 9.1 y to 17.4 y). Based on this indicator,
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0.4% of participants entered puberty by 10 y (when lean/fat mass was first assessed), 29.9% did

by 12 y (when grip was first assessed), and all did by 25 y. Changes in lean mass indices were

generally positive but smaller than positive changes in fat mass index; all were highly variable

Table 1. Characteristics of 3,227 Avon Longitudinal Study of Parents and Children Generation 1 offspring eligible for analyses.

Characteristics Overall (N = 3,227) Males (N = 1,257) Females (N = 1,970)

N Percent (N) or mean (SD) N Percent (N) or mean (SD) N Percent (N) or mean (SD)

Non-white ethnicity 3,227 3.9% (126) 1,257 3.7% (47) 1,970 4.0% (79)

Maternal education is degree 3,227 21.0% (676) 1,257 22.4% (282) 1,970 20.0% (394)

Age (y) at peak height velocity 2,924 12.4 (1.2) 1,155 13.5 (0.9) 1,769 11.8 (0.8)

Smoking at 25 y 3,191 1,240 1,951

Never 36.1% (1,153) 35.4% (439) 36.6% (714)

Less than weekly 58.3% (1,859) 57.6% (714) 58.7% (1,145)

Every week 5.6% (179) 7.0% (87) 4.7% (92)

Alcohol consumption at 25 y 3,123 1,209 1,914

Never/monthly/less than monthly 24.0% (748) 17.6% (213) 28.0% (535)

2 to 4 times per month 38.5% (1,202) 36.6% (443) 39.7% (759)

2 or more times per week 37.6% (1,173) 45.7% (553) 32.4% (620)

Total limb lean mass index (kg/m2) at 25 y 3,119 7.2 (1.3) 1,222 8.2 (1.1) 1,897 6.5 (0.9)

Arm lean mass index (kg/m2) at 25 y 3,119 1.7 (0.5) 1,222 2.2 (0.4) 1,897 1.5 (0.2)

Leg lean mass index (kg/m2) at 25 y 3,119 5.4 (0.9) 1,222 6.0 (0.8) 1,897 5.1 (0.7)

Maximum grip strength (lb/in2) at 25 y 1,964 14.1 (3.9) 771 17.4 (3.7) 1,193 12.1 (2.3)

Relative grip strength (lb/in2/kg) at 25 y 1,951 0.2 (0.1) 768 0.2 (0.1) 1,183 0.2 (0.04)

Total fat mass index (kg/m2) at 25 y 3,119 7.9 (3.7) 1,222 6.3 (3.0) 1,897 9.0 (3.8)

Changes from childhood to young adulthood, 10 to 25 y

Total limb lean mass index (kg/m2) 2,808 1.8 (1.0) 1,102 2.6 (0.9) 1,706 1.3 (0.7)

Arm lean mass index (kg/m2) 2,808 0.6 (0.4) 1,102 0.9 (0.3) 1,706 0.3 (0.2)

Leg lean mass index (kg/m2) 2,808 1.2 (0.7) 1,102 1.6 (0.7) 1,706 1.0 (0.6)

Maximum grip strength (SD)� 1,739 −0.001 (1.1) 681 −0.004 (1.1) 1,058 0.001 (1.1)

Relative grip strength (SD)� 1,727 −0.04 (1.0) 678 −0.01 (1.0) 1,049 −0.1 (1.0)

Total fat mass index (kg/m2) 2,808 3.6 (3.0) 1,102 2.6 (2.4) 1,706 4.2 (3.1)

Changes in childhood, 10 to 13 y

Total limb lean mass index (kg/m2) 2,565 1.0 (0.6) 1,017 1.3 (0.6) 1,548 0.7 (0.4)

Arm lean mass index (kg/m2) 2,565 0.3 (0.2) 1,017 0.4 (0.2) 1,548 0.2 (0.1)

Leg lean mass index (kg/m2) 2,565 0.7 (0.4) 1,017 1.0 (0.4) 1,548 0.5 (0.3)

Total fat mass index (kg/m2) 2,565 0.9 (1.7) 1,017 0.3 (1.6) 1,548 1.3 (1.6)

Changes in adolescence, 13 to 18 y

Total limb lean mass index (kg/m2) 2,404 0.3 (0.6) 934 0.8 (0.7) 1,470 −0.02 (0.4)

Arm lean mass index (kg/m2) 2,404 0.2 (0.2) 934 0.4 (0.2) 1,470 0.1 (0.1)

Leg lean mass index (kg/m2) 2,404 0.1 (0.5) 934 0.3 (0.5) 1,470 −0.1 (0.3)

Total fat mass index (kg/m2) 2,404 1.1 (2.0) 934 0.3 (1.9) 1,470 1.6 (1.9)

Changes in young adulthood, 18 to 25 y

Total limb lean mass index (kg/m2) 2,543 0.5 (0.7) 983 0.4 (0.8) 1,560 0.6 (0.7)

Arm lean mass index (kg/m2) 2,543 0.1 (0.2) 983 0.1 (0.3) 1,560 0.03 (0.2)

Leg lean mass index (kg/m2) 2,543 0.5 (0.6) 983 0.3 (0.6) 1,560 0.6 (0.6)

Total fat mass index (kg/m2) 2,543 1.6 (2.4) 983 2.2 (2.1) 1,560 1.3 (2.5)

Described are those with data on change in at least 1 lean, grip, or fat measure across any occasion and covariates used for those models, and at least 1 cardiometabolic

trait at 25 y.

�Change is from age 12 y to 25 y and is based on difference in SD units, given different original measurement units between occasions.

https://doi.org/10.1371/journal.pmed.1003751.t001
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(Table 1). Overall, males experienced more positive change in lean mass indices and grip,

whereas females experienced more positive change in fat mass index; sex differences appeared

largest before young adulthood (Table 1; S6–S10 Figs).

Ineligible participants were more likely than eligible participants to be male (54.5%) and to

have lower maternal education; they also showed similar smoking patterns but lower levels of

weekly drinking at 25 y (S1 Table). Changes in lean and fat mass indices were similar.

Correlations among lean mass indices, grip strength, and fat mass index

Change in limb lean mass index between ages 12 and 25 y was positively correlated with

change in maximum grip (r = 0.33) but negatively correlated with change in relative grip (r =
−0.12) over this same period. Change in limb lean mass index was positively correlated with

change in fat mass index over this same period (r = 0.39), as well as between the ages 10 and 25

y (r = 0.47). Change in limb lean mass index was more positively correlated with change in leg

lean mass index than change in arm lean mass index, based on either time period (S2 and S3

Tables). Based on changes occurring between the ages 12 and 25 y, fat mass index change was

uncorrelated with maximum grip change (r = 0.03) but negatively correlated with relative grip

change (r = −0.44). Considering different sub-periods, change in fat mass index was more pos-

itively correlated with change in arm lean mass index than change in leg lean mass index over

childhood and adolescence (S4 and S5 Tables), but was more positively correlated with change

in leg than arm lean mass index in young adulthood (S6 Table). A similar correlation pattern

was seen cross-sectionally based on measures taken at age 25 y (S7 Table).

Associations of changes in limb lean mass indices with cardiometabolic traits

Evidence was strong for associations of change in limb lean mass index from 10 to 25 y (per

SD-unit gain) with higher creatinine and most atherogenic traits; these were of modest magni-

tude and mostly in directions assumed to reflect poorer health, e.g., 0.17 SD (95% CI 0.10,

0.24) higher very-low-density lipoprotein (VLDL) triglycerides (Fig 2; S8 Table). When exam-

ining gains in arm and leg lean mass indices separately, only gain in arm lean mass was posi-

tively associated with creatinine. The adverse pattern of associations seen across traits with

limb lean mass index gain appeared limited to gain in leg lean mass, whereas gain in arm lean

mass was associated with traits including lower VLDL triglycerides (−0.09 SD; 95% CI −0.15,

−0.02), insulin, GlycA, and DBP, but higher SBP. This pattern for creatinine and atherogenic

traits was more pronounced among males (S9 and S10 Tables).

Change in limb lean mass index from 10 to 13 y was generally associated with higher ath-

erogenic lipids at 25 y including low-density lipoprotein cholesterol and VLDL triglycerides, at

0.19 SD (95% CI 0.13, 0.26); positive associations were apparent with apolipoprotein B, insulin,

GlycA, SBP, and DBP (Figs 3 and 4; S11 Table). Gain in both limb compartments was posi-

tively associated with creatinine, and adverse trait profiles seen with childhood gain in limb

lean mass index were reflected in arms as well as legs. Effect sizes appeared larger among males

(S12 and S13 Tables).

Change in limb lean mass index from 13 to 18 y was generally unassociated with creatinine

and atherogenic traits at 25 y, apart from weak associations with higher SBP and DBP (Figs 3

and 4; S14 Table). In contrast, gain in arm lean mass index was positively associated with creat-

inine and inversely associated with atherogenic traits including VLDL triglycerides (−0.13 SD;

95% CI −0.22, −0.04), apolipoprotein B, insulin, GlycA, and DBP, but positively associated

with SBP. Associations were again stronger among males (S15 and S16 Tables).

Change in limb lean mass index from 18 to 25 y was associated with higher creatinine and

atherogenic traits at 25 y including higher VLDL triglycerides (Figs 3 and 4; S17 Table). The
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positive association with creatinine was again exclusive to arms, and gain in arm lean mass

was generally unassociated with atherogenic traits except for a positive association with DBP.

Such null associations were seen among males and females, despite a strong positive associa-

tion of gain in arm lean mass with creatinine among males (S18 and S19 Tables).

Associations of change in grip strength with cardiometabolic traits

Change in maximum grip from 12 to 25 y (per SD-unit gain) was positively associated with

creatinine, but associations were largely null with atherogenic traits, including VLDL triglycer-

ides (−0.01 SD; 95% CI −0.07, 0.04) (Fig 5; S20 Table), among males and females (S21 and S22

Tables). In contrast, change in relative grip over the same period was positively associated with

creatinine and moderately inversely associated with atherogenic traits, e.g., VLDL triglycer-

ides, at −0.12 SD (95% CI −0.18, −0.06), with similar magnitudes for apolipoprotein B, insulin,

GlycA, SBP, and DBP. These associations appeared strongest among females.

Associations of change in fat mass index with cardiometabolic traits

Change in fat mass index (per SD-unit gain) was inversely associated with creatinine and

strongly positively associated with atherogenic traits including VLDL triglycerides (0.45 SD;

95% CI 0.39, 0.52), apolipoprotein B, insulin, GlycA, SBP, and DBP (Fig 6; S23 Table). When

examining gains over sub-periods in relation to traits at 25 y, estimates were directionally con-

sistent across occasions, with a tendency for larger effect sizes with more recent gains. For

Fig 2. Associations of change in limb lean mass indices from age 10 y to 25 y with cardiometabolic traits at 25 y among Avon Longitudinal Study of Parents and

Children Generation 1 individuals. Estimates are beta coefficients and 95% CIs representing SD-unit differences in cardiometabolic traits at 25 y per SD-unit gain in

lean mass index from 10 y to 25 y (based on standardised index at 25 y minus standardised index at 10 y). Models adjusted for age, sex, ethnicity, maternal education,

lean mass index at 10 y, change in the other lean mass index, and change in total fat mass index (N range: 2,121 to 2,804). Limb lean mass index defined as sum of lean

mass in arms and legs (kg) divided by squared height (m2). Apo, apolipoprotein; LDL, low-density lipoprotein; HDL, high-density lipoprotein; IDL, intermediate-

density lipoprotein; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pmed.1003751.g002
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example, point estimates for associations of fat gain in childhood, adolescence, and young

adulthood with VLDL triglycerides at 25 y were 0.10 SD, 0.34 SD, and 0.48 SD, respectively.

Associations were more pronounced among males, at about double the magnitude of effect

size, versus females (S24 and S25 Tables).

Cross-sectional associations of lean mass indices, grip strength, and fat

mass index with cardiometabolic traits in young adulthood

Evidence was weaker for cross-sectional associations of higher limb lean mass (per SD) with

atherogenic lipid, glycaemic, and inflammatory traits, e.g., −0.04 SD (95% CI −0.10, 0.01) for

apolipoprotein B (S26 Table). Also, in contrast to estimates based on change in exposure, esti-

mates appeared more favourable for each SD higher leg lean mass index, e.g., apolipoprotein B

was −0.10 SD (95% CI −0.18, −0.01) lower but 0.05 SD (95% CI −0.02, 0.11) higher for leg and

arm lean mass indices, respectively. Leg lean mass index was more positively associated with

creatinine than was arm lean mass index (point estimates were 0.21 SD and 0.13 SD, respec-

tively). These associations were more pronounced among females than males despite similarly

positive associations of lean mass indices with creatinine between the sexes (S27 and S28

Tables).

Evidence was substantially weaker or null for cross-sectional associations of both grip

strength measures (per SD) with atherogenic lipid, glycaemic, and inflammatory traits, e.g.,

0.01 SD (95% CI −0.05, 0.07) for apolipoprotein B with stronger relative grip (S29 Table).

Associations were more evident among males, with estimates appearing positive in relation to

VLDL lipids, e.g., 0.10 SD (95% CI −0.02, 0.22) for total lipids in very large VLDL (S30 and

Fig 3. Associations of change in limb lean mass indices across different life stages with lipid traits at 25 y among Avon Longitudinal Study of Parents and

Children Generation 1 individuals. Estimates are beta coefficients and 95% CIs representing SD-unit differences in cardiometabolic traits at 25 y per SD-unit change in

lean mass index (based on standardised index at time 2 minus standardised index at time 1). Childhood models are based on change in lean mass index from 10 y to 13 y

and are adjusted for age, sex, ethnicity, maternal education, lean mass index at 10 y, change in the other lean mass index, and change in total fat mass index (N range:

1,926 to 2,557). Adolescence models are based on change in lean mass index from 13 y to 18 y and are adjusted for age, sex, ethnicity, maternal education, puberty

timing, change in the other lean mass index, and change in total fat mass index (N range: 1,747 to 2,344). Young adulthood models are based on change in lean mass

index from 18 y to 25 y and are adjusted for age, sex, ethnicity, maternal education, puberty timing, smoking, alcohol, change in the other lean mass index, and change

in total fat mass index (N range: 1,532 to 2,036). Limb lean mass index defined as sum of lean mass in arms and legs (kg) divided by squared height (m2). LDL, low-

density lipoprotein; HDL, high-density lipoprotein; IDL, intermediate-density lipoprotein; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pmed.1003751.g003
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S31 Tables). Maximum grip was more positively associated with creatinine than was relative

grip, in both sexes.

In contrast, the direction and magnitude of cross-sectional associations of higher fat mass

index with atherogenic traits were highly comparable to those from previous models of change

in exposure (S32 Table). For example, higher fat mass index (per SD) was associated with 0.42

SD (95% CI 0.36, 0.48) higher triglycerides in VLDL, 0.47 SD (95% CI 0.41, 0.53) higher insu-

lin, and 0.53 SD (95% CI 0.48, 0.58) higher GlycA. Associations for most traits were compara-

ble between the sexes, except for non-high-density lipoprotein (non-HDL) lipids, which were

more positive among males (S32 Table).

Estimates based on complete case analyses were comparable to those of the main analyses

in terms of direction and magnitude, with expectedly lower precision given smaller Ns (S8–

S32 Tables).

Discussion

This study aimed to estimate the potential benefits of gaining body muscle for markers of

CVD susceptibility in young adulthood, and how these compare with the potential harms of

gaining body fat. We integrated repeated measures of DXA limb lean and fat mass indices and

grip strength starting in childhood with metabolomic measures of atherogenic traits taken in

young adulthood. Our results suggest that muscle strengthening, as indicated by grip strength

gain, is weakly associated with lower atherogenic trait levels, particularly among males. Associ-

ations of gain in muscle mass with traits were smaller in magnitude and limited to gains occur-

ring in adolescence. Gaining body fat was more consistently associated with the same traits, in

unfavourable directions and at larger magnitudes than seen for muscle mass or strength, again

Fig 4. Associations of change in limb lean mass indices across different life stages with lipid, pre-glycaemic, inflammatory, and blood pressure traits at 25 y

among Avon Longitudinal Study of Parents and Children Generation 1 individuals. Estimates are beta coefficients and 95% CIs representing SD-unit differences in

cardiometabolic traits at 25 y per SD-unit change in lean mass index (based on standardised index at time 2 minus standardised index at time 1). Childhood models are

based on change in lean mass index from 10 y to 13 y and are adjusted for age, sex, ethnicity, maternal education, lean mass index at 10 y, change in the other lean mass

index, and change in total fat mass index (N range: 1,926 to 2,557). Adolescence models are based on change in lean mass index from 13 y to 18 y and are adjusted for

age, sex, ethnicity, maternal education, puberty timing, change in the other lean mass index, and change in total fat mass index (N range: 1,747 to 2,344). Young

adulthood models are based on change in lean mass index from 18 y to 25 y and are adjusted for age, sex, ethnicity, maternal education, puberty timing, smoking,

alcohol, change in the other lean mass index, and change in total fat mass index (N range: 1,532 to 2,036). Limb lean mass index defined as sum of lean mass in arms and

legs (kg) divided by squared height (m2). Apo, apolipoprotein; LDL, low-density lipoprotein; HDL, high-density lipoprotein; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pmed.1003751.g004
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particularly among males. Altogether, the results suggest that body muscle is less robustly asso-

ciated with markers of CVD susceptibility than body fat and may therefore be a lower-priority

intervention target.

The cardiometabolic traits considered here include several lipoproteins that previous

ALSPAC analyses suggested are positively associated with a genetic risk score for adult CHD;

higher levels of these traits are thus taken to reflect greater liability for developing CHD [49].

These liability traits/features, already apparent in childhood, include cholesterol and triglycer-

ides within non-HDL particles that contain apolipoprotein B, which enables lipid-mediated

atherosclerosis [50]. In the present study, evidence was very weak for associations of change in

limb lean mass index with these lipid types. Gain in limb lean mass in adolescence was more

strongly associated with lower apolipoprotein B lipids; this association appeared to be further

limited to adolescent gains occurring within arms and was more pronounced among males,

indicating that favourable associations of muscle gain may be sensitive to stage of body devel-

opment, limb compartment, and sex. However, the apparent specificity for arms most likely

reflects residual confounding of leg lean mass by ectopic fat; this is supported by stronger asso-

ciations of arm lean mass change (versus leg) with higher creatinine (a muscle product/positive

control), and by weaker correlations of arm lean mass change (versus leg) with fat mass

change.

Results based on cross-sectional models of lean mass indices in relation to atherogenic traits

were not consistent with results based on prospective models. When considering measures

Fig 5. Associations of change in grip strength from age 12 y to 25 y with cardiometabolic traits at 25 y among Avon Longitudinal Study of Parents and Children

Generation 1 individuals. Estimates are beta coefficients and 95% CIs representing SD-unit differences in cardiometabolic traits at 25 y per SD-unit change in grip

strength (based on standardised grip at 25 y minus standardised grip at 12 y). Models are adjusted for age, sex, ethnicity, maternal education, grip strength at 12 y, and

change in total fat mass index (except for relative grip models) (N range: 1,246 to 1,678). Maximum grip is based on maximum recorded grip strength of dominant hand

(mean of 3 measures, in kilograms). Relative grip is based on maximum grip strength divided by weight. Apo, apolipoprotein; LDL, low-density lipoprotein; HDL, high-

density lipoprotein; IDL, intermediate-density lipoprotein; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pmed.1003751.g005
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taken in young adulthood only, higher limb lean mass index was more weakly associated with

lower atherogenic trait levels, and these associations appeared to be driven by higher lean mass

held within legs; leg lean mass index was in turn more positively associated with creatinine

than was arm lean mass index. This is in strong contrast to cross-sectional associations of

higher fat mass index with atherogenic traits, which were highly consistent with prospective

associations in terms of the direction and magnitude of point estimates. Thus, if reflective of

causality, gaining muscle mass over time may be anticipated to confer greater cardiometabolic

benefits than simply having higher current or usual levels of muscle mass; but with benefits

likely of a lower magnitude than those anticipated for fat loss. Alternatively, the fragility of

results for lean mass indices, as compared with fat mass index, could be more indicative of bias

and residual confounding in estimates of lean mass than of robust causality.

Associations of muscle strengthening with atherogenic traits were highly dependent on the

grip measure used. Change in grip measured in absolute units (maximum grip) was positively

associated with creatinine but generally unassociated with atherogenic traits, with point esti-

mates close to null values of no difference. In contrast, change in grip measured in relative

units (as a function of body weight) was also positively associated with creatinine but generally

only weakly associated with atherogenic traits in directions assumed to indicate better health,

e.g., lower apolipoprotein B lipids, glycaemia, and inflammation. The magnitudes of these

Fig 6. Associations of change in fat mass index at different life stages with cardiometabolic traits at 25 y among Avon Longitudinal Study of Parents and Children

Generation 1 individuals. Estimates are beta coefficients and 95% CIs representing SD-unit differences in cardiometabolic traits at 25 y per SD-unit gain in total fat

mass index in childhood (based on standardised index at 13 y minus standardised index at 10 y), adolescence (based on standardised index at 18 y minus standardised

index at 13 y), and young adulthood (based on standardised index at 25 y minus standardised index at 18 y). Models adjusted for age, sex, ethnicity, maternal education,

initial fat mass index, and change in limb lean mass index; models of adolescence additionally adjusted for puberty timing, and models for young adulthood additionally

adjusted for puberty timing and smoking and alcohol at 18 y (N range: 1,532 to 2,804). Apo, apolipoprotein; LDL, low-density lipoprotein; HDL, high-density

lipoprotein; IDL, intermediate-density lipoprotein; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pmed.1003751.g006
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associations of change in relative grip were higher than those seen for change in arm lean mass

index but generally lower than those seen for change in fat mass index, particularly among

males, where evidence was strongest. Furthermore, associations of higher maximum and rela-

tive grip strength with atherogenic traits were even less evident when assessed cross-sectionally

in young adulthood, with point estimates close to null values. Considered alongside results on

lean and fat mass indices, this supports body muscle as less robustly associated with cardiome-

tabolic health in young adulthood than body fat, with a lower anticipated impact on CVD sus-

ceptibility from its modification. Resistance-based (muscle-building) physical activity is

supported by several randomised controlled trials (RCTs) among adults with or without meta-

bolic dysfunction as reducing blood pressure, but as having little to no effect on reducing glu-

cose or non-HDL lipids [51,52]. Such trials are typically small (N< 100), with short follow-up

(<1 y), but glycaemic and lipid benefits are seen in other RCTs of resistance- and aerobic-

based activities among adults with type 2 diabetes [53,54]. Any physical activity biomechani-

cally involves contracting some muscle, and habitual activity may mark contractile frequency.

Prospective observational evidence supports favourable associations of habitual activity with

cardiometabolic health [55,56], seen also among ALSPAC adolescents [57] at about half the

magnitude presently seen for body fat. Altogether, evidence seems to indicate that the regular

use of muscle matters more than the intentional building up of muscle for reducing CVD

susceptibility.

Whether associations of lean mass gain with susceptibility traits are truly sensitive to body

developmental stage is uncertain. Presently, associations of change in arm lean mass index

(the compartment associated with higher creatinine and taken to best reflect muscle) with car-

diometabolic traits were in directions assumed unfavourable to health for gains in childhood,

favourable for gains in adolescence, and null for gains in young adulthood. Adolescence is an

active period of growth and development following puberty [35], but how this may confer

exclusive benefits of muscle gain is unclear. Several RCTs of resistance-based activity among

children and adolescents support benefits for blood pressure, glycaemia, and lipids among

both age groups [58], and there is suggestion of larger benefits with greater maturity [34], pos-

sibly reflecting greater modifiability of muscle. In the present study, grip was not measured in

adolescence to enable comparisons, but associations seen for lean gain were distinct from

those seen for fat gain, which involved consistently unfavourable associations with traits across

sub-periods, with a tendency for larger effect sizes for more recent gains. Replication of associ-

ations in different study samples with triangulated approaches involving different sources of

bias [59] is needed.

Study limitations

This study is observational and effect estimates are prone to biases from unmeasured and

poorly measured confounders. Major sources of confounding of the relationship between

muscle and fat and cardiometabolic traits are expected to include subclinical disease and

behaviours like smoking, but both of these factors are expected to be less influential at younger

ages given their rarity or recency of onset. In addition to current exposure levels, our analyses

were based on changes in body muscle measures occurring early in life in relation to cardiome-

tabolic traits measured in young adulthood (age 25 y). These included an observation period

of young adulthood (age 18 to 25 y), which should be relevant to adulthood more broadly, but

results based on changes occurring over childhood and adolescence (periods of growth and

development with pronounced hormonal activity) may not represent the impact of changes

occurring later in life. Muscle mass and strength may plausibly be more influential for CVD

susceptibility at older ages, when CVDs commonly start to emerge; obtaining unbiased
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estimates of effect in middle to later adulthood is difficult, however, because of increased

potential for residual confounding (reverse causation). Other study designs such as MR may

prove useful here.

Muscle mass was estimated using DXA, which is more precise than bioimpedance but less

granular than MRI and less able to exclude ectopic fat stored within muscle. We examined cor-

relations among change in each limb lean mass compartment and total fat mass, which helps

identify compartments that are more susceptible to confounding by residual fat. Grip was not

measured in adolescence, preventing examination of change in grip across sub-periods. The

participants analysed were relatively lean and predominantly white European; this limits gen-

eralisability to other groups but reduces confounding by disease and ancestral population

structure. Sample sizes were modest; this is a tradeoff of detailed phenotyping and reduces pre-

cision. We applied metabolomics in a holistic manner; the large scope of analyses, particularly

given sex differences, prevented examination of the shape of associations. Changes in expo-

sures and outcomes are assumed to be linearly associated, i.e., negative change (loss) the

inverse of positive change (gain); this may not always hold. Examinations of non-linearity are

needed and would be aided by the prioritisation of cardiometabolic traits with triangulated

evidence of causality for CVD.

Conclusions

Our results suggest that muscle strengthening, as indicated by grip strength gain, is weakly

associated with lower atherogenic trait levels in young adulthood, particularly among males.

Such associations of gain in muscle mass with traits appear smaller and limited to gains occur-

ring in adolescence. Gaining body fat was more consistently associated with the same athero-

genic traits, in unfavourable directions and at larger magnitudes than seen for muscle mass or

strength, again particularly among males. Altogether, results suggest that body muscle is less

robustly associated with markers of CVD susceptibility than body fat and may therefore be a

lower-priority intervention target.
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