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Abstract: ANNs have become a cornerstone in efficiently managing building energy management
systems (BEMSs) as they offer advanced capabilities for prediction, control, and optimization. This
paper offers a detailed review of recent, significant research in this domain, highlighting the use of
ANNs in optimizing key energy systems, such as HVAC systems, domestic water heating (DHW) sys-
tems, lighting systems (LSs), and renewable energy sources (RESs), which have been integrated into
the building environment. After illustrating the conceptual background of the most common ANN
architectures for controlling BEMSs, the current work dives deep into relative research applications,
thereby exhibiting their methodology and outcomes. By summarizing the numerous impactful appli-
cations during 2015–2023, this paper categorizes the predominant ANN-based techniques according
to their methodological approach, specific energy equipment, and experimental setups. Grounded
in the different perspectives that the integrated studies illustrate, the primary focus of this paper
is to evaluate the overall status of ANN-driven control in building energy management, as well as
to offer a deep understanding of the prevailing trends at the building level. Leveraging detailed
graphical depictions and comparisons between different concepts, future directions, and fruitful
conclusions are drawn, and the upcoming innovations of ANN-based control frameworks in BEMSs
are highlighted.

Keywords: artificial neural networks; building energy management; model-free control; energy
efficiency; buildings; predictive energy modeling; energy optimization

1. Introduction
1.1. Motivation

Energy systems are fundamental elements in establishing desirable living standards
in modern buildings as they significantly impact the comfort and well-being of occupants.
With precise temperature control, optimal lighting, and efficient air circulation, a building
transforms into a space that promotes comfort, health, and productivity, elevating the living
and working experience within the structures [1–8]. However such systems inevitably
render buildings, as significant energy consumers, as devastating sources of impact on the
environment degradation that is affecting the quality of life outdoors. Given the growing
emphasis on sustainability and the rising cost of energy, the efficient control of such systems
has become paramount. Improving their operational efficiency may lead to significant
energy savings, lower operational costs, and a reduced impact on the environment [9–12].

To address such challenging demands, several control approaches have been devel-
oped over the years. Traditional methods, such as the ON/OFF control or even rule-based
controls (RBCs), have provided a foundational approach to energy management with
substantial advantages in energy efficiency and comfort [13–15]. However, while these
straightforward strategies offered initial benefits in terms of simplicity and ease of im-
plementation, they often fall short in considering optimization and adaptability aspects.
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Limited by the integrated predefined rules, such frameworks have proven insufficient
in adapting toward dynamic building conditions and occupant preferences. Without the
capacity to manage the intricate interactions of building systems and external influences
like weather changes, these approaches often lead to inefficiencies, heightened energy
usage, and compromised comfort for occupants [15–19]. Such a challenge grows even
further by integrating demand response approaches, which require quick changes based
on grid demands, or RESs in buildings, which hold significant unpredictability [20–23].

Emerging from these foundational methods, intelligent adaptive and predictive
methodologies have begun to gain significant interest in various fields of research [24–27].
Such control strategies offer a more refined approach for balancing energy efficiency and
comfort in BEMSs by adapting to changing conditions and learning from data, ensuring
optimal energy use without compromising comfort [28]. By processing real-time informa-
tion and making predictive adjustments, such intelligent systems have proven adequate in
providing a harmonized solution, outpacing traditional control methods in both efficiency
and user satisfaction [29–33].

Within the context of intelligent control for systems like BEMSs, two primary segments
are often highlighted: model-based and model-free control strategies [34]. Model-based
approaches rely on accurate mathematical models of the system being controlled. These
models describe how the system behaves under different conditions, allowing for predictive
and optimized control [35–38]. Techniques such as model predictive control (MPC) are
classic examples of this approach [39]. Model-free approaches, on the other hand, do
not depend on an explicit model of the system. Instead, they learn directly from data
or experiences, adapting their control strategies over time. Primary examples of model-
free approaches concern reinforcement learning (RL), deep reinforcement learning (DRL),
neural networks, fuzzy logic, or the hybrid approaches between them. Figure 1 portrays
the prevalence of each model-free approach for the 2015–2023 period [40–43].

Figure 1. The Model-free HVAC control citations share (%) per methodology (left) and the HVAC
citations count per methodology (right) for the 2015–2023 period.

One particular segment of the model-free control considers the mathematical frame-
work of ANNs. Inspired by the human brain’s processing capabilities, it has the potential
to be trained, to learn from data, and to adapt over time. Unlike many traditional and
intelligent methodologies, ANNs do not require explicit programming or extensive system
knowledge [44–46]. Leveraging their capability to identify patterns, such mathematical
frameworks become exceptionally proficient at predicting energy system behaviors in
dynamic environments such as buildings. According to the literature [47], ANNs have
shown a remarkable ability in handling non-linearities, uncertainties, and multi-variable
systems, often outperforming other techniques in terms of accuracy and adaptability. Their
capacity to integrate vast amounts of data, from various sensors and sources, and to derive
actionable insights sets them apart [48–50]. The potential of ANNs in BEMSs has been
further enhanced with the introduction of deeper neural network architectures that con-
sider large-scale mathematical structures that are able to capture complex relationships
and patterns in vast amounts of building data [51–53]. Such frameworks allow for even
more accurate insights into building dynamics, from occupant behavior to equipment
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inter-dependencies. This evolution in control strategy, driven by deep learning, heralds
a new era for BEMSs, where energy savings and comfort are optimized and adapted to
both external factors and internal demands [49]. Figure 1 illustrates the importance of an
ANN-based control as a mandatory model-free approach for HVAC systems (2015–2023),
which portrays the most common BEMSs in building structures [34]. At this point, it should
be noted that deep learning principles may extend beyond traditional artificial neural
networks (ANNs), such as through incorporating elements from other machine learning
methods such as regression, random forests, and SVMs.

Yet, as with any technology, ANNs are not without their challenges as training them
requires a considerable amount of data, and ensuring their robustness and reliability in
real-world scenarios remains a pressing concern. Moreover, their black box nature may
raise concerns, particularly in critical systems where understanding the rationale behind
decisions is crucial [49,51].

Motivated by the extended use of ANNs for predicting and optimizing energy system
behavior in buildings in a building environment, the current work evaluates several highly
cited ANN-based works from 2015–2023, and it considers the optimization of different
BEMSs, such as HVAC, DHW, LS, and RES frameworks, along with their integrated
applications. By analyzing different ANN methodologies and concepts, the primary aim of
the current work is to gather, categorize, and evaluate their different attributes, as well as
to consider the aggregated studies and to provide a thorough evaluation of the different
patterns and trends that the ANN control frameworks exhibit toward BEMSs. Identifying
such patterns is essential for identifying future directions, to obtain meaningful conclusions
regarding the capacity and potential of ANN-driven applications in BEMSs, and to deliver
a comprehensive overview of the particular control domain.

1.2. Paper Structure

This paper is structured as follows: In Section 1, the motivation of this work is assessed
along with the literature analysis scheme that was adopted. In addition, prior related works
in the literature are also considered, as well as the novelties and contributions of the current
effort. In Section 2, the general framework of BEMSs is assessed, the operation of the
different equipment of the BEMSs at the building level are described. Section 3 illustrates
the mathematical background of the following different ANN architectures for the BEMS
control under different BEMSs: feedforward neural networks (FNNs) and recurrent neural
networks (RNNs). Section 4 includes the primary literature review of the integrated papers
per ANN type, where each concept and approach is analyzed along with their particular
outcome. Also, the tables include the common features of the integrated works that are
generated and summarized in order to help the reader identify a general overview of
the 2015–2023 studies. Section 5 includes an evaluation section, which is grounded in
the examination of numerous impactful works of 2015–2023 in an effort to identify the
different trends, trajectories, and concepts in ANN-based control toward BEMSs. Numerous
diagram-based comparisons were conducted between the different concepts in order to
identify the forthcoming tendencies in the field. To this end, Section 6 identifies the current
trends and future directions in the field of ANN applications for BEMSs. Last but not least,
Section 7 summarizes the overall conclusions of the current research effort.

The aforementioned seven sections illustrate the structure of the paper, and they may
be described by the following Figure 2.
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Figure 2. The paper structure.

1.3. Literature Analysis Approach

In this comprehensive review, the primary objective was to explore, in depth, the
impactful publications on ANN-based controls for different energy management systems
at the building level (BEMSs), thus generating fruitful trends and conclusions, as well as
determining the future directions in the field. To this end, the study dives deep into a
broad range of studies, inspecting their core concepts, management techniques, utilized
algorithms, and distinct implementations. Moreover, by illustrating the different fields
of ANN-based control into different sub-divisions depending on the ANN type, train-
ing methodology, individual model characteristics, as well as the type of BEMS and the
building testbed characteristics, this study provides a holistic overview of the field to the
potential user. Our procedure is systematic, and it guarantees that each chosen study is
meticulously analyzed.

• Article Criteria: The integrated studies were selected based on the subsequent themes:
ANNs for building management; ANNs for HVAC management in buildings; ANNs
for hot water management in buildings; ANNs for lighting management in build-
ings; ANNs for renewable energy management in buildings; and ANNs for storage
management in buildings;

• Keyword Selection: The appropriate keywords linked to our topic were explored
in contemporary studies. The search strings encompassed the following: predicting
BEMS behavior via ANNs; predicting HVAC behavior via ANNs; predicting domestic
hot water via ANNs; predicting building lighting via ANNs; and predicting building
renewable energy via ANNs. These phrases were selected as they recognize the
distinct challenges and aspects of predicting or optimizing the behavior of BEMSs.

• Article Selection: This particular research was grounded primarily on platforms like
Scopus and Google Scholar, which directed the exploration of the numerous studies.
After the preliminary overview of more than 200 papers via their summaries, the most
pertinent ones were pinpointed for an in-depth examination.

• Data Collection: Subsequently, the data from each publication were classified, em-
phasizing the utilized ANN technique for BEMS management and the context of its
use. Several aspects were taken into account, such as advantages, constraints, and
real-world implications, especially in relation to optimal BEMS management scenarios.

• Quality Assessment: Every chosen study underwent a validity evaluation based
on multiple standards. These standards involved the paper’s citation count, the
academic input of the contributors, and the research techniques utilized. This helped
in determining the relative significance and influence of each study.

• Data Analysis: In conclusion, the collected insights were arranged into distinct groups,
thus facilitating straightforward comparison and comprehension.
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1.4. Previous Literature Work

In the literature, numerous reviews regarding ANNs toward BEMSs have been con-
ducted. In [54], Georgiou et al. illustrated the core principles of ANNs and explored
their diverse applications in the realm of building operations, including energy efficiency,
system regulation, and forecasting energy usage. Such work revealed that the employment
of ANNs in building environments may potentially lead to notable decreases in energy
use—though this varied with the application. Additionally, the review underscored the
significant promise of ANNs for advancing effective control strategies and energy reduc-
tion in the broader energy and construction industries. In [55], Runge et al. presented an
analysis of the research conducted since 2000, and they focused on the use of ANNs in
predicting energy usage and demand in buildings. Their work was focused on examining
the various applications, datasets, predictive models, and evaluation criteria employed in
the studies analyzed. Moreover, in [56], Mohandes et al. illustrated numerous key studies
that utilized ANNs in building energy analysis (BEA). Such work covered the extensive
research on ANNs applied to energy issues in buildings, focusing on areas like water
heating and cooling systems, the prediction of heating and cooling loads, heating ventila-
tion air conditioning system modeling, indoor air temperature forecasting, and building
energy consumption estimations. Last but not least, in [57], Guyot et al. introduced an
in-depth analysis of the research utilizing neural networks for energy-related applications
in buildings, and they emphasized their deployment and technical aspects such as learning
algorithms, network layers, neuron count, input/output variables, and performance met-
rics. Their review identified the limitations and research gaps in the use of neural networks
in the building sector, as well as suggested potential avenues for future investigation.

1.5. Novelties and Contributions

The current work stands out in the landscape of the existing literature by offering
an unprecedented synthesis of the most influential research from 2015 to 2023. This
work delves into the framework of ANN methodologies and their applications within
BEMSs, casting a wide net to capture a holistic picture of the field. The current effort
analyzes the domain into distinct categories, examining ANN techniques as they specifically
apply to different BEMSs, such as HVAC equipment, DHW systems, LSs, and RESs in
buildings. Each category is thoroughly analyzed through the prism of the unique features
and challenges of the respective test bed cases, with a sharp focus on the delicate differences
between them.

Contrary to the majority of the aforementioned works, the current effort illustrates, in
detail, the concept of each integrated work, highlighting the ANN model architectures and
individual characteristics along with the outcomes of each research. Then, different impor-
tant fields were evaluated, such as the different data elements that were utilized for training
the models (5.1), the prevalence per ANN type (5.2), training scheme prevalence (5.3),
utilized transfer functions (5.4), the depth of the ANNs (5.5), the computational complexity
of the ANNs (5.6), as well as the utilized statistical indices (5.7). Last but not least, this
work also focused on the test bed characteristics by evaluating the prevalence of each BEMS
type (5.8) and the features of the building test bed (5.9). The following Table 1 provides a
comparison of the evaluation that previous works and the current review conducted.

It should be also mentioned that the current research effort does not just stack research
side by side but quantifies their impact by citation share, illustrating the relative influence
and traction each segment has gained in the research community. To this end, this study
provides an in-depth comparative analysis between the different ANN architectures, and
it draws conclusions that are both meaningful and well founded on robust comparative
frameworks. Consequently, the trends and future directions in the field are established,
and insightful directions for forthcoming research are provided. By navigating through the
complexities of ANN-based control and modeling—and their efficacy in different BEMS
applications—the current effort lays out a path forward for the field, highlighting emerging
trends and potential paradigm shifts that could redefine building energy management.
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Table 1. Comparisons of the current work with previous works.

Evaluation [54] [55] [56] [57] Current Work

Data Analysis x x x x x
Network Type x x x x x
Training Scheme x x x
Transfer Functions x x
Network Depth x x x
Computational Demand x x
Statistical Metrics x x x x
BEMS Type x x x
Building Testbed x x
Citations Count x
Trends Identification x x x x
Future Directions x x x x

2. Building Management Systems and Operation
2.1. Primary BEMS Types

BEMSs are crucial for the automation and optimization of energy use within a build-
ing’s various systems. ANNs play a pivotal role in such devices by enabling the predictive
control and optimization of energy usage. They analyze historical and real-time data to fore-
cast energy demand, enhancing the efficiency of heating, cooling, and lighting equipment.
ANNs also adapt to changing environmental conditions and user behaviors, ensuring
optimal energy consumption while maintaining the comfort levels in buildings. The follow-
ing attributes break down the operation of the most common BEMSs and illustrate their
challenges regarding the relative ANN applications [7,58]:

• Heating, Ventilation, and Air Conditioning (HVAC): HVAC systems regulate the
indoor climate to maintain comfort. They are complex with fluctuating loads and
numerous sub-components, thus making them prime candidates for ANN-based
optimization. The challenge lies in creating sufficient ANN models to accurately
predict thermal loads and system responses to various conditions. ANNs need exten-
sive training data to capture all possible scenarios, including seasonal changes and
occupancy patterns.

• Domestic Hot Water (DHW): DHW systems provide hot water for residential or com-
mercial use. ANN-based controls for DHW systems may predict hot water demand
and optimize energy use while ensuring availability. The challenge is to model the
sporadic usage patterns and integrate them with other systems like solar heating,
which can be unpredictable due to weather variations.

• Lighting Systems (LSs): Smart lighting controls adjust based on occupancy and am-
bient light levels. ANN can optimize lighting for energy savings while maintaining
comfort. The challenges include the need for real-time responsiveness to sudden envi-
ronmental changes and accurately modeling human presence and movement patterns.

• Renewable Energy Systems (RESs): These include photovoltaic panels, wind tur-
bines, etc., which supply sustainable energy. ANN-based controls are adequate for
predicting energy production and managing storage or grid exports. Challenges
arise from the inherent unpredictability of renewable sources and the complexity of
integrating them with traditional energy systems. (It should be mentioned that, while
RESs like wind and solar power are inherently variable, advancements in weather
forecasting and predictive analytics have greatly improved their predictability. This
technological progress enables more reliable energy production forecasts, thereby
mitigating the impact of their natural unpredictability. Thus, the integration and
stability of renewable energy in power systems are continuously enhancing).

• Energy Storage Systems: Batteries and thermal storage systems are used to balance
supply and demand. ANNs may provide predictions of when to store energy and
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when to release it based on predictions of future energy prices and demand. The main
challenge is the dynamic nature of energy markets and consumption patterns.

• Integrated Building Management Systems (IBEMSs): IBEMSs concern the integra-
tion of multi-device systems, including the abovementioned BEMSs, or any other
appliances in the building environment, for holistic building energy management.

The multiverse role of ANNs with respect to the different BEMSs are summarized in
the following Figure 3.

Figure 3. The role of ANN applications for BEMS control and optimization.

2.2. General Description of ANN-Based Control in BEMSs

In order to provide the abovementioned functionalities for the different BEMSs, ANNs
may be utilized in a specific manner. To this end, the general operation of ANNs in control-
ling the different BEMS frameworks typically follows a process of data collection, model
training, prediction, and control action. The following Figure 4 provides a diagrammatic
representation of the process:

More specifically, the five-step methodology of Figure 4 integrates the following
aspects:

1. Data Collection: This involves gathering BEMS-related real-time data from environ-
mental sensors, energy meters, and other IoT devices, along with historical energy
usage patterns, current weather conditions, occupancy levels, equipment status, and
utility rates. These data form the basis for making informed decisions.

2. Data Preparation: The raw data undergo rigorous cleaning to rectify inconsistencies
and fill gaps, and this is followed by feature engineering to highlight relevant predic-
tive factors. This process is crucial for fostering the ANN’s predictive accuracy, thus
ensuring it receives quality input for optimal energy management performance.

3. Model Training: In this step, the ANN is configured and trained using historical data,
weather forecasts, and feature selection to recognize patterns and dependencies. The
ANN architecture is designed and the parameters are optimized.

4. Model Validation: In this stage, a dedicated validation dataset is utilized to evaluate
the model’s predictions, while cross-validation ensures the model’s performance
is consistent across different subsets of the data. A performance metric analysis is
conducted assessing accuracy, precision, and other relevant metrics to gauge the
model’s predictive power.

5. Model Predictions: The trained model is then used to forecast future energy demand,
predict indoor environmental conditions, and perform optimization with the help
of the model predictive control. This includes determining the best start and stop
times for equipment, anticipating system loads, and conducting economic analysis
for cost-saving measures.

6. Control Actions: The final step is where the BEMS acts on the ANN and outputs to
the control the building’s energy systems. This includes adjusting HVAC settings,
regulating lighting, operating shades and blinds, managing RES, integrating demand
response strategies, adapting to user preferences, and monitoring/reporting on energy
savings to stakeholders.
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Figure 4. The general scheme of ANN-based control for building management systems (BEMSs).

3. Conceptual Background of the Neural Network Architectures for BEMS Control

Neural networks, at their core, are computational architectures/mathematical frame-
works inspired by the neuronal structures of biological brains. These networks are com-
posed of layers of interconnected nodes, often termed “neurons” (Figure 5—left). As
Figure 5—right illustrates, each connection carries a weight and every neuron processes its
input using an activation function to produce an output, thereby determining the strength
and influence of the transferred information. Additionally, each neuron possesses a bias
(Figure 5—right), a unique baseline from which it operates, thus ensuring that, even in the
absence of any input, it holds influence. This layered and interconnected structure enables
neural networks to model/express intricate and non-linear relationships within data. For a
potential building management system, the predictive process of ANNs is most commonly
tailored to optimize energy usage and efficiency. The network starts by receiving diverse in-
put data, such as temperature, occupancy, energy consumption patterns, weather forecasts,
and time of day. As this data traverses through the network’s layers, each layer performs
specialized transformations, extracting key features relevant to energy management. The
flow of the data from node to node is governed by activation functions. Such functions
introduce the necessary non-linearities, enabling the neural network model to capture the
intricate relationships in the data they process, and they thus provide predictions aligned
with the behavior of a potential BEMS framework.

Figure 5. From a single perceptron to an ANN.

Training a neural network involves iteratively adjusting its internal parameters, pri-
marily the weights and biases associated with each neuron, to better fit a given dataset.
This adjustment process typically uses optimization algorithms, with gradient descent
being among the most prevalent. The process begins with a forward pass of data, resulting
in a prediction. This prediction is then compared with the actual behavior of a potential
BEMS framework, which thus produces an error. Algorithms—such as the well-known
gradient descent—are commonly used to back-propagate this error, analyze it, and deli-
cately adjust the weights and biases throughout the network using techniques like the chain
rule of calculus. In using multiple iterations, over multiple passes—or epochs—through
the training data, the network fine tunes its parameters to approximate the underlying
function of the data it is exposed to. Over time, as the network is exposed to more data
and feedback, it fine tunes its predictions, leading to a more intelligent and efficient energy
management system.
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Beyond these internal parameters, neural networks also include hyperparameters,
which are not learned from the training process but are set beforehand. These include
choices such as the number of layers in the network, the number of neurons in each layer,
the type of activation function, and the parameters related to the optimization process
like the learning rate. The proper selection of hyperparameters is crucial and portrays an
interesting topic in research as they can significantly influence the performance, training
speed, and generalization capability of the network.

3.1. The General Concept of ANNs for BEMS Control

To this end, before its utilization as a BEMS prediction tool, the neural network is
trained on historical data and applies learned weights and biases to these inputs, refining
them at each step. This continuous refinement helps the ANN framework to be aligned
toward complex relationships and patterns in the data, such as how weather impacts energy
use or the correlation between occupancy and heating needs. In the final stage, the output
layer synthesizes these insights into predictions or decisions, such as adjusting thermostat
settings, optimizing lighting, or scheduling maintenance activities for energy systems. The
network’s predictions are most commonly geared toward reducing energy consumption
while maintaining comfort and efficiency, thus aligning with the primary goals of a BEMS.
As already mentioned, the neural networks are composed of layers of interconnected nodes
(or the so-called neurons).

To properly describe the operation of an ANN, we can detail the simplest form of an
ANN, which can be described by a perceptron. Introduced in 1957, a perceptron consists of
input nodes (or units), weights, a bias, and an activation function. It is primarily used for
binary classification tasks, and it serves as a foundational concept for understanding more
complex neural network architectures. The perceptron concept is described in Figure 5—left.
The formula for directly expressing the output y of a perceptron, including the bias term, is
as follows:

y = f

(
n

∑
i=1

wixi + b

)
(1)

where ∑n
i=1 wixi is the weighted sum of the inputs; wi is the weights; xi is the input values;

b is the bias term, which is added to the weighted sum; and f is the activation function
applied to the sum of the weighted inputs and the bias. It should be noted that, for the
simple perceptron, this is typically a step function as follows:

f (z) =

{
1 if z ≥ 0
0 otherwise

(2)

where y takes the value of 1 if the weighted sum plus the bias is non-negative, or it
is 0 otherwise. This binary output is what makes the perceptron suitable for binary
classification tasks.

The real strength of ANNs is unveiled when multiple perceptrons are stacked in
layers to overcome the limitation of linear decision boundaries, which a single perceptron
integrates. (Figure 5—right). Such networks are adequate for a modeling the complex,
non-linear relationships in data. The training process for ANNs involves adjusting the
weights and biases of all neurons (including perceptrons in the network) based on the
network’s performance on training data. Such a form of a neural network consists of an
input layer, one or more hidden layers, and an output layer, as illustrated. The operation
may be described as follows:

• Input Layer: Receives raw input data that are analogous to the external stimuli in
biological systems.

• Hidden Layers: Process the inputs via weights adjusted during training. The neurons
in these layers apply activation functions to the weighted inputs and relay the result
to the next layer.

• Output Layer: Produces the final result or prediction.
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Similarly, the mathematical representation of the general neural network concept may
be described as follows:

Neuron Computation: As already mentioned, the basic computational unit of an
ANN is the neuron. Each neuron receives inputs, processes them, and produces an output.
The output yj of the jth neuron is computed as follows:

yj = f

(
n

∑
i=1

wijxi + bj

)
,

where f is the activation function; wij represents the weight connecting the ith input to the
jth neuron; xi is the ith input to the neuron; bj is the bias term for the jth neuron; and n is
the number of inputs.

Activation Functions: Activation functions introduce non-linearities into the network,
thereby allowing it to model complex, non-linear relationships. Some common activation
functions include the following:

• Sigmoid: Sigmoid is an activation function that maps any input value to a value
between 0 and 1. It is commonly used for models where the output represents a
probability, such as in binary classification problems. (sig): f (z) = 1

1+e−z ;
• Hyperbolic Tangent: Tanh is a mathematical function used in neural networks as an

activation function. It outputs values between -1 and 1, making it effective in handling
negative inputs. (tanh): f (z) = tanh(z);

• Rectified Linear Unit: ReLU is a popular activation function in neural networks,
particularly in deep learning models. It outputs the input directly if it is positive, and
if it is such, it outputs zero.

• It offers efficient computation and mitigating the vanishing gradient problem (ReLU):
f (z) = max(0, z),

where z concerns the pre-activation value computed from the inputs to a neuron, which
it serves as the input to the activation function, thus determining the neuron’s output
based on the non-linear transformation applied by the activation function. Meanwhile, f (z)
represents the output of the activation function for that given input z.

Training Algorithm: The most common training algorithm for ANNs is backprop-
agation. The goal is to minimize the difference between the network’s output and the
desired output for a given set of inputs. The process involves the following: (1) performing
a forward pass to compute the network’s output; (2) calculating the error between the
network’s output and the desired output; and (3) propagating this error backward through
the network to update the weights and biases. The weights are updated most commonly
using the gradient descent method:

∆wij = −η
∂E

∂wij
,

where η is the learning rate and E is the error function, which is commonly the mean
squared error for regression problems. This process is repeated for multiple iterations or
epochs until the network converges to an optimal solution.

3.2. Primary Artificial Neural Network (ANN) Architectures for Building Energy Management
Systems (BEMS) Control

Common architectures concerning BEMSs consider, most commonly, FNNs—especially
the multilayer perceptron (MLP)—while the presence of RNNs is evident in numerous
applications. A specialized RNN type—the long short-term memory network (LSTM)—
concerns the most common type of RNNs utilized in the literature, which are particularly
effective toward sequences and time series data.
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3.2.1. Feedforward Neural Networks

FNNs portray the foundational type of neural networks with a linear architecture,
where data flow unidirectionally from the input to output layers without any cycles or
loops. They consist of multiple layers of neurons, each layer fully connected to the next,
and they are typically used for tasks like classification. FNNs excel in learning mappings
from inputs to outputs, making them versatile for a wide range of applications. FNNs
concern the most common generalized architecture for controlling BEMSs in the literature
due to numerous reasons:

• Simplicity and Efficiency: FNNs offer a straightforward architecture, making them rela-
tively easier to implement and train compared to recurrent or more complex networks.

• Capability to Capture Non-linearities: BEMS systems, especially components like
HVAC, water heating, and lighting, exhibit non-linear behaviors. FNNs can model
these non-linear relationships effectively, making them ideal for such applications.

• Scalability: FNNs can be scaled with multiple hidden layers and neurons to handle
the complexity introduced by integrating RES and storage systems in BEMSs.

It should be noted that, while simple FNNs—which have a single layer—are poten-
tially adequate for approximating linear relationships, the interactions within BEMSs are
inherently non-linear and multi-faceted given the myriad of subsystems like HVAC, light-
ing, and water heating operating in tandem. This is where MLPs come to the fore: MLPs
concern a type of FNN with one input layer, one or more hidden layers, and one output
layer. Each layer is fully connected to the subsequent layer. By integrating multiple layers
of neurons, MLPs introduce additional depths of transformation to the data, allowing them
to capture and represent more complex and non-linear relationships. The MLP conceptual
background may described as follows: for a given input vector X, the output from the first
hidden layer H1 is

H1 = f (XW1 + B1),

where W1 is the weight matrix connecting the input layer to the first hidden layer and B1 is
the bias vector for the first hidden layer. For subsequent layers, the output is computed
similarly, using the output of the previous layer as the input. For example, the output from
the second hidden layer H2 is as follows:

H2 = f (H1W2 + B2),

and so forth, until the final output layer. Each additional layer in an MLP can be viewed
as enabling the network to learn hierarchical features, where initial layers capture basic
patterns and subsequent layers build upon them to understand more intricate relationships.
This hierarchical learning capability ensures that MLPs are adequate for modeling the
nuanced behaviors and interactions in BEMSs with a higher degree of accuracy.

Furthermore, the depth provided by multiple layers in MLPs allows for a richer set of
weights and biases, thereby offering more degrees of freedom during training. This results
in a more flexible model that can better adapt to the complexities of BEMS data. In essence,
while simpler FNNs might suffice for rudimentary tasks, the multifaceted challenges posed
by BEMS control and modeling necessitate the enhanced capabilities and depth offered
by MLPs. A typical FNN (MLP) is illustrated in Figure 6—left, whereby four nodes are
integrated in the input layer, three nodes in the first hidden layer, four nodes in the second
hidden layer, and two nodes in the output layer.
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Figure 6. Primary ANN architectures utilized for BEMS applications: feedforward neural networks
and recurrent neural networks.

3.2.2. Recurrent Neural Networks

RNNs portray a type of neural network suitable for processing sequential data, where
the output from previous steps is fed back into the network as the input for the current
step. This looped architecture enables RNNs to maintain a form of ’memory’, making
them ideal for tasks involving time series data. RNNs are distinguished by their ability to
capture temporal dynamics and contextual information in sequences, which is not possible
with traditional FNNs. To achieve this objective, RNNs take into account the time-related
changes in Building Energy Management System (BEMS) control. This approach enables
previous circumstances and activities to impact current control choices, rendering them
highly suitable for forecasting extended environmental alterations. A typical RNN is
illustrated in Figure 6—right, where four nodes are integrated into the input layer, three
nodes in the first hidden layer, four nodes in the second hidden layer, and two nodes in the
output layer.

Given an RNN, the basic operation can be described as follows:

1. Hidden State Update:
ht = σ(Whhht−1 + Wxhxt + bh) (3)

where ht is the hidden state at time t; ht−1 is the hidden state at the previous time
step; xt is the input data at time t; Whh is the weight matrix for the hidden state; Wxh
is the weight matrix for the input; bh is the bias for the hidden state; and σ is the
activation function.

2. Output:
yt = Whyht + by (4)

where yt is the output at time t; ht is the current hidden state; Why is the weight matrix
for the output; and by is the bias for the output. Training an RNN involves adjusting
the weights and biases (Whh, Wxh, Why, bh, and by) using historical data to minimize
the prediction error.

As MLPs, RNNs also hold specific advantages:

• Memory Capability: The intrinsic ability of RNNs to remember past inputs makes
them exceptionally suitable for systems with temporal dependencies, like the energy
consumption patterns in BEMSs.

• Handling Sequence Data: BEMSs often deal with time series data, such as the hourly
energy consumption or daily temperature variations. RNNs are naturally suited to
process and predict based on such data.

3.2.3. Long Short-Term Memory Networks

In the context of BEMS control and modeling, LSTMs offer a distinct advantage
over traditional RNNs. BEMSs often deal with time series data that contain long-term



Energies 2024, 17, 570 13 of 47

dependencies, such as seasonal patterns or latent factors from historical data. Conventional
RNNs, while designed to handle sequences, struggle with such long-term dependencies
due to the vanishing gradient problem, thus leading to difficulties in retaining information
from earlier time steps. LSTMs, on the other hand, are specifically engineered to combat this
issue. With their unique architecture comprising forget, input, and output gates, LSTMs can
selectively remember or forget information, making them adept at capturing and modeling
long-term patterns in BEMS data. This ability ensures more accurate predictions and robust
control strategies, making LSTMs a preferred choice for complex BEMS applications where
understanding temporal dependencies is crucial. Given the foundational structure of an
RNN, LSTM extends its capabilities with specialized gates to better handle long-term
dependencies. The primary operations in an LSTM are as follows:

1. Forget Gate:

ft = σ
(

W f · [ht−1, xt] + b f

)
(5)

2. Input Gate:
it = σ(Wi · [ht−1, xt] + bi) (6)

C̃t = tanh(WC · [ht−1, xt] + bC) (7)

3. Update of the Cell State:
Ct = ft · Ct−1 + it · C̃t (8)

4. Output Gate:
ot = σ(Wo · [ht−1, xt] + bo) (9)

ht = ot · tanh(Ct) (10)

where ft, it, ot concern the forget, input, and output gates, respectively, at time t; C̃t portrays
the candidate cell state at time t; Ct portrays the cell state at time t; ht−1 portrays the hidden
state at the previous time step; xt portrays the input data at time t; W f , Wi, WC, Wo concern
the weight matrices for the forget gate, input gate, candidate cell state, and output gate,
respectively; b f , bi, bC, bo concern the biases for the forget gate, input gate, candidate cell
state, and output gate, respectively; σ portrays the sigmoid activation function; and tanh
portrays the hyperbolic tangent activation function.

Within the realm of BEMS control and modeling, LSTMs have emerged as a superior
choice over traditional RNNs. One of the key challenges with RNNs is the vanishing
gradient problem, where the gradients of the loss function become too small for effec-
tive learning, thus causing the network to forget long-term dependencies. Conversely,
RNNs may also suffer from the exploding gradient problem, where the gradients become
excessively large, thereby leading to unstable training. LSTMs, with their intricate gate
mechanisms—comprising forget, input, and output gates—are ingeniously designed to
mitigate both of these issues.

4. Literature Review of Neural Network Applications for BEMS Control

This section exhibits numerous highly cited ANN research applications related to
BEMS control and optimization in order to discriminate them into the aforementioned
ANN types: FNNs; RNNs; hybrid control applications—which concern the integration of
ANNs with each other or with other methodologies; and other ANN applications that do
not concern any of the aforementioned types. To this end, the current section explores the
integrated research applications, in which their underlying motivations and the conceptual
methodologies of ANNs used are thoroughly detailed. It elaborates on the structure of
each potential ANN, encompassing a comprehensive characterization of inputs, outputs,
hidden layers, and the overall architecture of the models. Additionally, the outcomes of
these applications are thoroughly analyzed in terms of statistical measures.
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In the final part of each sub-section, the tables conclude by providing additional
summarized information on the related highly cited research works of 2015–2023. To this
end, Tables 2–5 contain the following features toward each ANN application:

• Reference: Denoted as Ref. in the first column;
• Year: Illustrates the publication year of each research application;
• ANN Type: Illustrates the specific ANN type utilized in each work;
• Training Scheme: This attribute concerns two elements. The first defines which

algorithm was utilized for training the particular ANN model (e.g., GD—gradient
descent), while the second (which is separated by “/”) defines the optimization
methodology (e.g., BP—backpropagation) that was utilized;

• Transfer Function: Denotes which transfer function(s) were integrated into the nodes
of the ANN model;

• Hidden Layers: Defines the number of hidden layers of the selected ANN model, as
denoted in the literature;

• BEMS Type: Illustrates the specific BEMS type that concerns each of the follow-
ing applications as denoted in the published work—heating, ventilation, and air-
conditioning are denoted as HVAC; water heating and DHW applications are donated
as DHW; lighting systems are denoted as LSs; renewable energy source-related appli-
cations are denoted as RES;

• Residential: Defines whether the testbed application concerns a residential building
control application with an “x”;

• Commercial: Define whether the testbed application concerns a commercial building
control application with an “x”;

• Citations: Last but not least, the citation count of each work is illustrated according
to Scopus.

The abbreviation “N/A” or “-” represents the “not identified” elements in the Tables
and Figures.

Table 2. Summarized FNN approaches for BEMS control (2015–2023).

Ref. Year ANN
Type

Training
Scheme

Transfer
Function

Hidden
Layers

BEMS
Type

R
es

id
en

ti
al

C
om

m
er

ci
al

C
it

at
io

ns
[59] 2015 MLP -/BP sig 1 HVAC x 101
[60] 2015 MLP N/A tanh/lin 2 DHW x 115
[61] 2016 RBF N/A Gaussian 1 HVAC x 56
[62] 2016 MLP GD/BP tanh 1-3 DHW x x 166
[63] 2016 MLP LM/BP sig/tan/lin 1 RES x 76
[64] 2017 MLP GD/BP sig 1 HVAC x 576
[65] 2018 MLP Rprop tanh 3 HVAC x 57
[66] 2018 MLP -/BPBR sig/lin 1 LS x 76
[67] 2018 MLP N/A ReLU N/A HVAC x 66
[68] 2018 MLP N/A sig 1 HVAC x 103
[69] 2018 MLP GD/BP sig/tanh 1 HVAC x 54
[70] 2019 MLP -/BPBR id/sig/tanh/sm3-10 HVAC x 66
[71] 2019 MLP -/BPM N/A 1 RES 97
[72] 2019 MLP N/A N/A N/A HVAC 98
[73] 2020 MLP LM/BP sig 1 HVAC x 44
[74] 2020 MLP GDADAM/BP ReLU 6 HVAC 132
[75] 2020 MLP LM/BP sig 1 RES x 53
[76] 2021 MLP BP N/A 2 RES 50
[77] 2022 MLP -/BPSVM sig/tanh N/A HVAC x 37
[78] 2022 MLP GDADAM/- ReLU 3 HVAC x 44
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Table 3. Summarized RNN approaches for BEMS control (2015–2023).

Ref. Year ANN Type Training
Scheme

Transfer
Function

Hidden
Layers

BEMS
Type

R
es

id
en

ti
al

C
om

m
er

ci
al

C
it

at
io

ns

[79] 2016 NAR LM/BP sig/lin 1 DHW x 41
[80] 2017 RNN GD/BPM ReLU N/A HVAC/LS x 30
[81] 2017 RNN LM/BP tanh 2 RES x 112
[82] 2019 TLRN/FRNN GDTT/BPM TanhAxon 1-2 RES x x 40
[83] 2020 LSTM GDTT/BP sig/tanh/lin 2 HVAC x 76
[84] 2020 LSTM GDTT/BP tanh/ReLU N/A RES x 71
[85] 2020 LSTM N/A sm 2 HVAC x 48
[86] 2021 LSTM GDTT/BP N/A 4 HVAC x 42
[87] 2021 LSTM -/- N/A 3-5 HVAC x 42

Table 4. Summarized hybrid approaches for BEMS control (2015–2023).

Ref. Year ANN Type Training
Scheme

Transfer
Function

Hidden
Layers

BEMS
Type

R
es

id
en

ti
al

C
om

m
er

ci
al

C
it

at
io

ns

[88] 2015 MLP/NAR -/BPBR sig/lin 3 HVAC x 116
[89] 2015 RNN/GA N/A N/A 3 HVAC x 65
[90] 2015 MLP/GA CC/- sig/lin N/A HVAC x 54
[91] 2015 MLP/PSO BFGS/- id/exp/tanh 1 HVAC x 113
[92] 2016 RBF/EC N/A Gaussian 1 HVAC 57
[93] 2016 MLP/GA LM/BP sig/lin 3 HVAC/LS x 68
[94] 2016 MLP/GA LM/BP logsig 1 RES x 110
[95] 2019 MLP/GA LM/BP tansig 2 HVAC x x 91
[96] 2019 MLP/GA -/BPBR tansig 1 HVAC x 148
[97] 2020 MLP/GA N/A N/A 1 RES x 54
[98] 2021 CNN/LSTM GDADAM/BP ReLU 4 HVAC x 74
[99] 2021 CNN/LSTM GDAD/- sig/tan/sm 5 HVAC x 37
[100] 2021 MLP/ACO N/A WBF N/A HVAC x 35
[101] 2022 NAR/PSO N/A tansig/lin 10-12 HVAC x 30

Table 5. Summarized other approaches for BEMS control (2015–2023).

Ref. Year ANN Type Training
Scheme

Transfer
Function

Hidden
Layers

BEMS
Type

R
es

id
en

ti
al

C
om

m
er

ci
al

C
it

at
io

ns

[102] 2016 RandNN PSO-SQP N/A 1 HVAC 87
[103] 2016 RandNN PSO-SQP N/A 1 HVAC x 72

4.1. Review of the FeedForward Neural Network Applications for BEMS Control

In a 2015 study, Afram et al. [59] focused on developing and comparing models for
various HVAC subsystems, such as the energy recovery ventilator (ERV model structure—
4:10:2), air handling unit (AHU model structure—1:10:1), buffer tank (BT model structure
8:10:1), radiant floor heating (RFH model structure—1:10:2), and ground-source heat pump
(GSHP model structure 2:10:1). The hidden layers for each ANN model structure was
defined at 10 nodes, while sigmoid was elected as the activation function for each node of
the models. Except from the FNNs, the different model types were thoroughly examined—
including the transfer function (TF), process, state-space (SS), and autoregressive exogenous
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(ARX) types—and this was achieved using system identification techniques in MATLAB.
The study also contrasted these newly created black box models with previously established
gray box models. After evaluating the models in the visual and analytical mode, FNNs
emerged as the top performer, followed by the ARX, TF, SS, process, and gray box models
in descending order of performance.

The same year, Zhang et al. [60] examined the efficiency of the data-driven models
in predicting HVAC hot-water energy consumption in office buildings. Four models—
change-point regression, Gaussian process regression, Gaussian mixture regression, and
ANN—were evaluated using pre-retrofit building data as the baseline for retrofit projects.
Each model’s performance was gauged using metrics such as R2, RMSE, and CVRMSE. The
model structure accounted for the dry bulb temperature, solar radiation, humidity, as well
as other variables as inputs to a FNN architecture with two hidden layers, where each layer
is composed of 20 neurons and features a single-output neuron (which was aligned with the
target value). According to the evaluation, the Gaussian mixture regression model slightly
outperformed the others, while the FNN model required more training data. Despite their
differences, all models, barring FNN, aligned with the ASHRAE Guideline 14 criteria for
hourly predictions.

Also in 2015, Ardabili et al. [61], aimed to enhance the control accuracy of an HVAC
system by employing both a fuzzy control system and a radial basis function (RBF) model—
a specific type of FNN—for predictive management. The model was developed to utilize
temperature and humidity as inputs to predict the following four output variables: the
coil valve, circulation air damper, fresh air damper, and moisture pump valve. The single
hidden layer nodes varied from 4 to 24, where 20 was determined as the optimal value.
According to the evaluation, the RBF network consistently outperformed the fuzzy system
across all metrics. More specifically, the RBF network exhibited lower values for MAE
(0.045908 for temperature and 0.054455 for relative humidity), MAPE (0.002181 for temper-
ature and 0.000605 for relative humidity), and RMSE (0.0699 for temperature and 0.0903 for
relative humidity). In addition, the RBF network showcased a high correlation coefficient
(0.9243 for temperature and 0.8522 for relative humidity), thus indicating a strong linear
relationship between its predicted and actual values, as well as highlighting its superior
learning capability.

In 2016, a novel research conducted by Idowu et al. [62] presented a comprehensive
examination and forecast of heat load in buildings, which included aspects of both the
building space and DHW. This was achieved through the following various machine learn-
ing (ML) methodologies: support vector machine (SVM), FNN, multiple linear regression
(MLR), and regression tree. The information for constructing these models was derived
from ten buildings, which were split evenly between residential and commercial types,
located in Skellefteå, Sweden. The prediction models utilized inputs such as external
temperature, historical heat load data, time-based variables, and the details of the district
heating substations. The FNN algorithm was employed with N hidden layers, with the
ideal N being chosen for each building’s dataset. The models’ performances were evaluated
over forecast intervals that spanned from 1 to 48 h. The results revealed that SVM, FNN,
and MLR were more effective than the regression tree method, and that they demonstrated
comparable prediction accuracy while incorporating fewer errors in their forecasts.

The same year, Renno et al. [63] developed and evaluated two FNN models to accu-
rately predict solar radiation metrics: (a) daily global radiation (GR) and (b) hourly direct
normal irradiance (DNI). By exploiting a mix of climatic, astronomic, and radiometric data,
the models’ performances were evaluated under different neural network configurations,
and the best ones were further assessed on new datasets. In both FNN models, the hidden
neuron number started at 8 and increased until performance declined at 12 neurons, thus
indicating 10 as the optimal number. Moreover, different combinations of activation func-
tions were evaluated, indicating the tanh–tanh–lin configuration as the most appropriate
one for both models. The results indicated correlations with the MLP models, which were
then used to estimate the electrical energy output of the two different photovoltaic systems
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for a residential building. According to the evaluation, the GR model achieved a MAPE of
4.57%, an RMSE of 160.3 Wh/m2, and an R2 of 0.9918, whereas the DNI model obtained a
MAPE of 5.57%, an RMSE of 17.7 W/m2, and an R2 of 0.994.

In 2017, Ahmad et al. [64] conducted a study that assessed the effectiveness of a
standard FNN trained with backpropagation in predicting the hourly HVAC energy use
of a hotel in Madrid in comparison to a random forest (RF) model—another method that
is gaining popularity in forecasting. Incorporating factors like the guest count slightly
improved the predictions for both methods. When evaluating based on criteria such as the
root–mean–square error (RMSE), the mean absolute percentage error (MAPE), the mean
absolute deviation (MAD), the coefficient of variation (CV), and the R2 metrics, the FNN
surpassed the RF model in all measurements. Though it should be underlined that both
methods showed nearly identical accuracy, thereby indicating that they were both suitable
for building energy predictions. The structure of the MPL involved a single hidden layer
with 10–15 neurons featuring a single output neuron, which was aligned with the target
value. The quantity of the input nodes varied, including a range chosen from ten factors
like the outside air temperature, dew point temperature, relative humidity, wind velocity,
hour of the day, day of the week, month of the year, daily guest count, and the total number
of rooms reserved.

Also in 2017, Park et al. [65] investigated the performance of a ground-source heat
pump system (GSHP) that supplied heating and cooling to a hospital (Figure 7). The GSHP
system’s seasonal heating efficiency and operational characteristics were analyzed using
real-time data. The researchers then developed two prediction models for the system’s
performance: one based on multiple linear regression (MLR) and the other on an FNN.
After an exploratory data analysis (EDA) on the raw data, the final FNN model featured
13 input variables and 3 hidden layers with 10, 5, and 2 neurons each. The MLR model
was further refined to study the impact of specific variables, such as the temperatures of
the source and load water inputs. When comparing the accuracy of the two models, the
FNN model proved to be more precise than the MLR model. According to the evaluation
(which was based on the coefficient of variation of the RMSE with no significant bias),
when comparing the prediction accuracy, the MLR method exhibited a deviation of 3.56%,
while FNN showed a tighter accuracy with a deviation of 1.75%.

Figure 7. Park et al. [65] use case: University Hospital, Republic of Korea.

In an interesting study in 2018, Kandasamy et al. [66] introduced an innovative lighting
control solution for net-zero energy buildings (NZEBs). The system was modeled using an
FNN architecture integrated with the internal model control (IMC) principle for controller
creation. Using FNN for modeling the lighting system simplified the task, thereby removing
the need to handle vast and intricate systems and extensive data analysis. The suggested
ANN-IMC controller relied on sensor feedback to maintain the desired light levels, and it is
both easy to adjust and robust against variability. The training data for both modes, derived
from testbed experiments (Figure 8), comprised illuminance levels (lux) in tables and light
power settings ranging from 0 to 100% in 5% increments. The single hidden layer for both
models consisted of 10 neurons, thus reducing the overall data required for modeling. The
outcome indicated energy savings of 54% and 40% regarding the desired light intensities of
300 lux and 500 lux, respectively, when compared to the baseline control approach.
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Figure 8. Kandasamy et al. [66] use case: SinBerBest Laboratory, National University of Singapore.

The same year, Markovic et al. [67] focused on the importance of accounting for
occupant behavior, specifically window openings, in building performance simulations,
which were used to estimate indoor climate and energy usage for HVAC systems more
accurately. Traditional models often integrate biases and inefficiencies to handle large
numbers of occupants. To address this, a Deep FNN model has been introduced in the
current research for the purpose of predicting window openings in commercial buildings.
The model was trained using data from a German office, and it was then tested on three
distinct buildings. The network integrated an input layer of 25 neurons: 22 for the current
time step features, and 3 for the indoor temperature, humidity, and CO2 from 10 min
earlier (while the output layer contained one neuron for window state prediction). The
model’s practicality was evaluated by integrating it into a Modelica-based building thermal
simulation, which presented accuracy rates between 86–89%, with the F1 (F-score statistical
measure) ranging from 0.53 to 0.65 across the office buildings. Notably, while the model’s
performance saw a decline of around 15% with limited input data, the F1 score remained
relatively high.

Also in 2018, Gonzales et al. [68] presented a new multi-agent system (MAS) in a
cloud setting. This system, combined with a wireless sensor network (WSN), aimed to
improve HVAC energy efficiency. The agents in the MAS learned from data and used a
neural network (ANN) to understand the patterns. The system used sensor data to adjust
to building conditions and the number of people present. It also considered the weather
predictions and times when the building (Figure 9) was not in use to fine tune the HVAC
system’s operation. The FNN employed a sigmoidal activation function to prevent extreme
values during training with the hidden layer containing 2n + 1 neurons, where n equals
the number of input neurons. This method allowed for steadier temperature changes, thus
avoiding sudden jumps that increased energy use. Their tests showed that this approach
saved an average of 41% of energy in office environments. Interestingly, the energy saved
was not always directly tied to the difference in the indoor and outdoor temperatures.

Figure 9. Gonzales et al. [68] use case: seven offices, University of Salamanca, Spain.
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Deb et al. [69] in 2018, established two predictive tools to save energy in HVAC systems
for commercial buildings located in Singapore. By exploring both multiple linear regression
(MLR) and ANN models such as MLPs, the primary aim of the work was to efficiently
compare the aforementioned approaches and identify the best potential prediction model.
To this end, 1 to 14 input variables from pre-retrofit energy audit reports were tested to
identify the optimal MLP structure for predicting changes in the energy use intensity (EUI).
The number of neurons in the hidden layer was fixed at 4, and this was determined through
a sensitivity analysis involving 2–8 neurons. The outcome showed that the MLP illustrated
an improved prediction performance of about 14.8% in the EUI in comparison with the
MLR methodology.

In a 2019 study, Peng et al. [70] introduced a learning-based control strategy aimed at
allowing HVAC systems to adapt to individual thermal preferences as conditions change.
The preference models were built using four key factors: time, indoor and outdoor weather
conditions, and user behavior. A FNN, holding the best potential hyperparameters, was
trained to predict the room temperature setpoint (Tsp) as adjusted by occupants. The
structure of the model involved a two-layered MLP, in which the number of neurons in
the hidden layer varied between 3 and 10. Over five months, this learning-based thermal
preference control (LTPC) was tested on an HVAC system in both single-user and multi-user
office settings. The results showcased energy savings between 4% and 25% compared to
fixed temperature settings. Additionally, the need for manual temperature adjustment was
significantly reduced from 4–9 days/month to just 1 day/month.

Also in 2019, Al-Waeli et al. [71] aimed to compare various photovoltaic thermal
(PVT) integrated energy systems—including conventional PVT, water-based PVT, water-
nanofluid PVT, and nanofluid/nano-PCM—under identical conditions. A single MLP was
used for this evaluation. The study sought to understand the efficiency variations in these
systems, both thermally and electrically, using a singular MLP simulation system. The input
parameters of the model concerned two input nodes in addition to solar irradiation data,
ambient temperature data, a single hidden layer, and a single output, where the voltage,
current, electrical, and thermal efficiencies for each respective energy system were varied.
The model exhibited an MSE of 0.0229 during training and 0.0282 during cross-validation.
The results from the FNN model indicated that the nanofluid/nano-PCM system increased
electrical efficiency from 8.07% to 13.32%, while its thermal efficiency reached 72%.

In the same year, Ren et al. [72] refined a sophisticated control model for HVAC systems
to manage both indoor air quality (IAQ) and indoor thermal comfort (ITC) more effectively.
The model utilizes low-dimensional linear models (LLVM for ventilation and LLTM for
temperature) in conjunction with MLP neural networks and a contribution ratio index
(CRI). The control system was underpinned by a database informed by computational fluid
dynamics (CFD) and experimental data. The single-output ANN was specifically employed
for IAQ prediction, where the air change per hour (ACH) and indoor pollutant sources
were the inputs, and the indoor CO2 level was the output, thus aiding in expanding the
CFD database for a more accurate control of the HVAC system. This integrated approach
enabled rapid and accurate predictions of environmental conditions like the CO2 level and
temperature. According to the evaluation, the application of this model in HVAC control
can lead to significant energy savings, thereby reducing ventilation and air conditioning
energy consumption by up to 50% and 32%, respectively.

In a 2020 study by Deng et al. [73], a new approach was introduced to improve HVAC
systems in offices with multiple users by exploiting data from wearable wristbands to gather
physiological information. Using an MLP, the model was adequate for predicting thermal
feelings based on the following indoor conditions: air temperature, relative humidity (RH),
clothing level, thermal sensation, wrist skin temperature, and wrist skin. The optimal
structure of the model consisted of six neurons on the input layer feeding a single hidden
layer, as well as six neurons featuring a single output neuron, which was aligned with
the thermal sensation vote (TSV). The MLP model was trained for a year using data from
seven different offices, and it demonstrated high prediction accuracy. Using this data,
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Deng et al. developed a control system for HVAC systems to adjust the thermostat in real-
time, thus improving comfort. Testing through experiments and simulations showcased
that over 50% of the users felt neutral in terms of the temperature, while only a minor
percentage felt discomfort. The energy use was similar to standard systems, but when
combined with controls based on occupancy—achieved using light sensors or Bluetooth
from the wristbands—the heating and cooling needs dropped significantly by 90% and
30%, respectively, in certain office areas.

In another important study in 2020 [74], Chen et al., focused on improving the predic-
tive control of HVAC systems in smart buildings by utilizing a high-fidelity deep neural
network (DNN) model. This model was designed to accurately forecast the building’s
thermal responses, incorporating the dynamics of natural ventilation. The study veri-
fied numerous deep-learning architectures that exploited environmental data concerning
outdoor air temperature, dew point temperature, indoor air temperature, and relative
humidity, as well as the operational status of space heating, cooling, and natural ventilation.
The elected model integrated six hidden layers with varying node configurations, while its
purpose concerned the prediction of indoor air temperature and relative humidity at future
time steps. The key innovation of the research was the application of transfer learning,
where the pre-trained DNN with extensive data from one building was adapted for use
in a different building by retraining only a small subset of its parameters. This method
allowed accurate predictions of the indoor temperature and humidity with significantly
less data from the new building, thus demonstrating that transfer learning can expedite the
deployment of smart building technologies by reducing the time and cost associated with
model training. According to the evaluation, the study’s transfer learning model achieved
the lowest mean squared error (MSE) of 0.16 for temperature and 2.52 for humidity predic-
tions, thus outperforming other models and demonstrating superior prediction accuracy in
HVAC system control.

In 2021, Luo et al. [75] explored the integration of lighting control and a building-
integrated photovoltaic (BIPV) system to optimize energy consumption in buildings. By
introducing three machine learning frameworks—FNNs, support vector regression (SVM),
and long-short-term-memory neural networks (LSTM)—the study aimed to simultaneously
predict multiple building energy loads and BIPV power production. The primary goal was
to manage energy demands efficiently given the shared influencing factors. The structure of
the particular FNN concerned multiple input nodes receiving data from the weather station,
the building operation schedules, and the recorder energy data in order to determine the
heating, cooling, and lighting load, along with the BIPV power production in the output
layer. The single hidden layer varied between 2 and 50 to balance the model effectiveness
and computational time. According to the final evaluation of the tested models, the FNN
offered the highest accuracy, while the SVM boasted the quickest computation time.

Also in the same year, Kabilan et al. [76] introduced an energy prediction for a building-
integrated photovoltaic system by considering different building orientations via the uti-
lization of ML techniques. The prediction approach included stages for data quality, ML
algorithms, weather pattern grouping, and accuracy evaluation. The FNN approach uti-
lized therein consisted of a DNN using four input neurons forwarding solar radiation,
wind speed, relative humidity, and temperature data to a couple of hidden layers that
consisted of 10 neurons each. The PV generation was determined at the output layer and
consisted of one node. The findings indicate that, by applying linear regression coefficients
to the neural network predictions of PV energy generation, the forecast’s precision was
enhanced. The concluding model displayed accurate predictions with a root mean square
error of 4.42% using the FNN, 16.86% with quadratic support vector machine (QSVM), and
8.76% with decision tree (TREE).

In a 2022 study by Elnour et al. [77], a control strategy using FNNs was introduced to
optimize the HVAC system in Qatar University’s sports hall. This method considered pre-
dictions of future system behavior, blending both forecasting and optimization components.
The FNN model, responsible for predicting the HVAC system’s dynamic behavior, was
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tested against other machine learning (ML) techniques, including support vector regression
(SVR), k-nearest neighbor (k-NN), and decision tree (DT). According to the evaluation,
the FNN model surpassed these ML techniques, achieving an average root mean squared
error (RMSE) of approximately 0.06 and a correlation coefficient of 0.99, thus indicating
its reliability and precision. Two variations of the FNN strategy were tested for the sports
hall’s HVAC system. The results showed significant energy savings of up to 46%, while
also ensuring optimal thermal comfort and air quality indoors.

In a 2022 research, the study of [78] proposed a novel approach to occupancy prediction
in various building spaces, which was undertaken using sensorial data and advanced deep
learning techniques. The study harnessed a comprehensive set of sensor data, including
indoor and outdoor environmental parameters, Wi-Fi device connections, energy usage,
HVAC operations, and time-related information. A new feature selection algorithm was
developed to sift through this data, in which key factors critical for accurate occupancy
predictions were identified. The study implemented several deep learning models, such as
deep FNNs, LSTM networks, and gated recurrent units (GRUs), in different settings for
commercial buildings. The structure of the FNN specifically considered 3 hidden layer units
consisting of 32 neurons each, while the single-note output layer predicted the occupant
count. The findings revealed that different models excelled in different environments,
and they found that the indoor CO2 concentration and the number of Wi-Fi-connected
equipment were the highest influential attributes for accurate occupancy forecasting.

4.2. Review of Recurrent Neural Network Applications for BEMS Control

In the same year, Ferlito et al. [79] introduced a comprehensive procedure for creating
effective ANN frameworks in terms of estimating a building’s energy needs with respect to
HVAC and lighting operation. The efficacy of this procedure was validated through a case
study where a straightforward nonlinear autoregressive (NAR) model was constructed and
its precision was assessed for prediction spans of 3, 6, and 12 months. The NAR network
received historical data from the monthly electric consumption of a public building, while
the single hidden layer integrated six neurons that delivered the forecasted energy demand
(NAR output). The simulated results exhibited strong regression values across all forecast
periods, where the deviations quantified as the RMSPE (root mean square percentage error)
equated to 15.7%, 17.97%, and 14.59% at the 3-, 6-, and 12-month prediction intervals,
respectively. The results suggested that the NAR acted sufficiently toward the building
energy requirements only when energy consumption time series data was accessible.

In a 2017 study, Chen et al. [80] introduced a data-driven strategy that forms a cycle
for precise predictive modeling and the instantaneous management of building thermal
dynamics. This method relies on a deep RNN that utilizes large volumes of sensor data.
The refined RNN was then integrated into a finite horizon-constrained optimization prob-
lem. To convert this constrained optimization into an unconstrained one, the researchers
implemented an iterative momentum-based gradient descent method with momentum to
determine the best control inputs. The simulation results demonstrated that this approach
surpassed the model-based strategy in terms of both building system modeling and man-
agement. According to the simulations, this method enabled a set of control decisions that
reduced energy consumption by 30.74%. In contrast, the solution derived from the RC
model led to only a 4.07% decrease in energy usage.

Also in 2017, Sun et al. [81] proposed an advanced control method for residential solar
photovoltaic (PV) systems using RNN to optimize the power output and ensure efficient
grid integration. The RNN was trained to manage a single-phase inverter with an LCL
filter, aiming to improve system performance, safety, and reliability. The structure of the
RNN considered four nodes in the input layer to take in the error and integral of the error
terms related to the grid-connected current, two hidden layers with six nodes each, and
a single output representing the control voltage for the inverter in the d-q frame. This
control voltage was then used to adjust the operation of the solar inverter, thus ensuring
efficient power extraction and grid integration. Through simulations and experimental
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setups, the RNN strategy was benchmarked against conventional control methods. The
results showed that the RNN provided superior performance, and it maintained stability
and maximizing power extraction under various conditions, including during disturbances
and non-ideal scenarios. The research highlighted the potential of ANN-based controls in
enhancing the effectiveness of residential solar PV systems.

In 2019, Kazem et al. [82] assessed the performance of a building in an integrated
photovoltaic (PV) system located in Sohar University, Oman. The PV system’s power,
energy outputs, yield, capacity factor, energy cost, and payback period were monitored and
analyzed over a year. To efficiently predict the PV system’s energy output more accurately,
specified models using a deep learning approach, including time-lag recurrent networks
(TLRN) and various configurations of fuzzy RNNs (FRNNs), were developed (based on
temperature and solar irradiance) to forecast the PV system’s current (I) output. Both of
the types of models utilized one or two hidden layers with varying numbers of neurons
and utilized a momentum learning method. The article revealed that the highest energy
production and yield ratios were achieved with a capacity factor of 21.7%, a cost of energy
at 0.045 USD/kWh, and a payback period of over 11 years. Among the predictive models,
the FRNN-2 and FRNN-3 cases outperformed the others and displayed lower mean square
errors, thereby indicating a more accurate fit to the experimental data.

The research by Sendra et al. in 2020 [83] proposed an LSTM model for predicting a
building’s HVAC energy consumption for the next day. The system was based in Madrid’s
MagicBox, a house powered entirely by solar energy and fitted with monitoring equipment
(Figure 10). The particular study explored various LSTM neural network configurations
and employed techniques to enhance the initial data set. The LSTM model received input
data related to both indoor and outdoor conditions. These inputs included the outdoor
temperature, relative humidity, irradiance, indoor CO2 level, indoor temperature, and the
reference temperature set by the user. The hidden layers consisted of two LSTM layers that
preserved an equal number of nodes, and this was determined through hyper-parameter
optimization. The output of the LSTM layers feeds into a fully connected (dense) layer,
which is responsible for generating the predicted power consumption for the HVAC system.
According to the final evaluation, the LSTM configurations showcased a commendable
performance with a test error rate (NRMSE) of 0.13 and a 0.797 correlation between the
predicted and actual data points. When contrasted with a straightforward one-hour-ahead
forecasting model, the results were nearly on par, thus highlighting the viability of real-time
energy estimations for building structures.

Figure 10. Sendra et al. [83] use case: MagicBox, Technical University of Madrid, Spain.

In the same year, Correa et al. [84] employed deep learning techniques to predict the
performance of a solar hot water (SHW) system under varying weather conditions in Chile.
Using TRNSYS, a physical simulation model was created to generate a vast amount of
simulated data. The different NN architectures received the ambient temperature, the solar
field’s inlet temperature, the control signal of pumps (which is indicative of the operational
status of the system’s pumps), the inlet temperature at the heat exchangers, as well as the
previous values of the solar collector’s outlet temperature data. The primary aim was to
predict the future values of the solar collector’s outlet temperature, and it portrayed a key
performance indicator of the SHW system, thereby reflecting its efficiency and effectiveness
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in utilizing solar energy for heating water. Among the models tested, which included
FNN, RNN, and LSTM architectures, the LSTM showcased superior prediction accuracy.
When compared to traditional regression models, all three architectures, especially the
LSTM models, delivered more reliable results, thus indicating their potential for predicting
SHW system performance. More specifically, the LSTM model excelled in its predictions,
achieving a low mean absolute error of 0.55 °C, the smallest root mean square error of
1.27 °C, as well as minimal variance and relative prediction errors.

In an interesting study in 2020, Heidari et al. [85] proposed advanced machine learning
techniques for predicting the energy use in solar-assisted water heating systems by com-
paring multiple model architectures. The ANNs received input data as historical energy
data; temporal variables like the hour and day; as well as environmental and operational
Variables such as indoor and outdoor temperatures, solar radiation, relative humidity,
and wind speed. The number of nodes in the input layer corresponded to the number
of features used while the output layer of the models predicted the next time step of the
energy use, thus making it a regression problem. To this end, multiple model architectures
(LSTM, ALSTM, ALSTM-D, and FNN) were experimented on with different topologies,
where the best performance was observed in a configuration with two LSTM layers con-
taining 150 neurons in each hidden LSTM layer. The study compared the performance of
the enhanced LSTM models—both with and without the attention mechanism and data
decomposition—against a traditional FNN. The enhanced LSTM models demonstrated
significantly lower mean absolute errors, and they outperformed the baseline FNN model
by 25% to 41%, thus indicating a more accurate prediction of the energy use in solar
heating systems.

In 2021, Tagliabue et al. [86] presented a technique that combined indoor air quality
data, which were gathered from Internet of Things (IoT) sensors, to inform indoor envi-
ronment changes based on how many people were present in a building at the University
of Brescia’s Smart Campus (Figure 11). The method involved using a RNN that incorpo-
rates LSTM units trained on real-time data, which then guided the ventilation changes
through an IoT communication system. The structure of the networks that utilized the
CO2 in the air, the indoor temperature readings, and relative humidity (RH) data as inputs
involved four hidden layers (recurrent LSTM, additional LSTM, sequence layer, and a fully
connected layer). As its purpose was to predict the CO2 concentration as the output, the
main goal of this research effort was to adjust the HVAC system and determine the optimal
behavior for window operation in order to improve the indoor air quality. This, in turn,
aimed to boost the cognitive performance of the building’s occupants, even as conditions
changed. The research paper utilized Pearson’s correlation coefficient (R2) with values
of 0.93, 0.88, and 0.92 for the training, test, and whole datasets, respectively, as well as
the mean square error (MSE) for the test period (which was approximately 10.6% of the
average CO2 concentration).

Figure 11. Tagliabue et al. [86] use case: eLUX lab, University of Brescia, Italy.
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Also in 2021, Fang et al. [87] proposed a novel approach using a sequence-to-sequence
model grounded in LSTM neural networks, which was employed for the advanced predic-
tion of indoor temperatures and aimed to optimize the energy efficiency of HVAC systems.
The model intricately processes a blend of historical indoor temperatures, as well as external
factors such as forecasted outdoor temperatures and time-related data serving as the inputs.
These inputs are skillfully encoded through LSTM layers for predicting the forecast hori-
zon, which are adept at retaining important temporal information across sequences, thus
ensuring a robust feature extraction. The model architecture consisted of a dynamic duo:
an LSTM encoder that digests the input data, and an LSTM decoder that is fine tuned for
generating accurate multi-step future temperature predictions. This architecture was fine
tuned with hyperparameters such as the learning rate and number of hidden nodes, which
were further reinforced with dropout techniques to curb overfitting. The models optimal
prediction was determined for a single hidden layer with 128 nodes. Moreover, the effi-
ciency of the approach prowess was benchmarked against established methods like Prophet
and seasonal naive models, whereby it delivered superior performance in very short-term
forecasting scenarios. What is noticeable is that their effort integrated a real-life application
of this model, and it was tested in a real-world building environment (Figure 12) in order
to showcase its potential in enhancing energy savings without compromising occupant
comfort, thus marking a leap forward in intelligent building management systems.

Figure 12. Fang et al. [87] use case: GreEn-ER building, Université Grenoble Alpes, France.

4.3. Review of Hybrid Neural Networks Applications for BEMS Control

In an interesting hybrid study in 2015, Huang et al. [88] introduced a novel control
approach for HVAC systems in commercial buildings, where the aim was to reduce energy
use and costs. The approach combined a traditional MPC with an MLP and RNN (NARX)
feedback method. The control model was based on a simplified representation, while the
complexities in the HVAC process were addressed using an MLP structure that included
three hidden layers and a single output node. More specifically, the MPL modeled the
nonlinear input–output relationship of the building’s HVAC system, in which the system
states (e.g., temperature) or control actions (e.g., valve positions) were predicted based on
inputs like environmental conditions and desired output states. The MLPs received data
that included the past and present values of various environmental and system parameters
like the chilled water temperature, return air temperature, outdoor temperature, air mass
flow rate, and the desired output while also predicting system states like temperature.
The secondary employed RNN was a network able to capture the temporal dynamics of
the building’s HVAC system, thus making it essential for accurately predicting system
responses over time and aiding in the control process. The effectiveness of the methodology
was evaluated at Adelaide Airport’s building using simulations and real-world settings, and
this was achieved by incorporating such advanced air-conditioning strategies to optimize
the energy efficiency. The results highlighted significant energy and cost savings of 13%
without compromising comfort compared to the baseline control methods.

In a novel research effort in 2015, Papantoniou et al. [89] focused on enhancing energy
efficiency in a hospital building in Chania, Greece by integrating a building optimization
and control (BOC) algorithm into its existing BEMSs (Figure 13). The hybrid control
approach integrates Elman RNN models for predictive modeling/temperature predictions,
GAs for multi-step optimization, and fuzzy techniques for real-time control, all of which
are aimed at enhancing energy efficiency in the building. With respect to the deployed
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RNN, it was aimed to predict indoor air temperatures, and it was trained with five real data
inputs such as the indoor air temperature, time, convective transfer of windows, HVAC coil
operation, and the HVAC fan consumption. The three hidden layers of the ANN consisted
of 354 nodes each. Implemented within a web-based energy management and control
system (Web-EMCS), the BOC algorithm effectively determines optimal temperature set
points and monitors real-time data, such as energy savings. According to the real-life
evaluation, the system demonstrated a potential energy saving of 36%.

Figure 13. Papantoniou et al. [89] use case: Saint George Hospital, Crete, Greece.

In the same year, Garnier et al. [90] proposed a novel predictive control approach
targeting the enhancement of HVAC system operations in non-residential buildings. A
building in Perpignan, France was modeled using EnergyPlus to gauge comfort using the
predicted mean vote index. MLP served as the core of the predictive models that emulate
HVAC system behaviors. The study used six self-growing ANNs, which were trained by
the cascade-corellation algorithm to model variables like air and radiant temperatures, as
well as the electrical power consumed by HVAC subsystems. As inputs, the models receive
various parameters like the outdoor temperature, solar radiation, room occupancy, current
air temperatures, radiant temperatures, and HVAC temperature set-points in adjacent
rooms to predict the values of the air temperature, radiant temperature, and electrical
power consumed by the building’s HVAC subsystems for each time step. The MLPs were
developed for different operational modes (heating and cooling) and specific building
areas. Such models were employed within an optimization framework powered by genetic
algorithms (GAs), which efficiently dictate the optimal activation and deactivation times
for HVAC components in both heating and cooling modes.

In 2015, Wei et al. [91] implemented an ensemble of multi-layer perceptron FNNs to
develop an extensive energy model for a building. The model features a variable hidden
layer, where the neuron nodes in the layer are randomly set between 10 to 40 during the
training phase. It includes three indoor air quality models: the temperature model, the rela-
tive humidity model, and the CO2 concentration model. To balance the power consumption
with the indoor air quality, a four-objective optimization problem was formulated. This
challenge was tackled using an enhanced particle swarm optimization (PSO) algorithm,
which determines control parameters for the supply air temperature and static pressure in
the air management unit. By assigning different weights to the objectives within the model,
the optimized control parameters effectively balanced the HVAC system’s power usage
with the establishment’s thermal comfort. Simulation tests showed that the MLP ensemble
method outperformed seven other techniques. It was thus selected for creating both the
comprehensive energy model and the trio of indoor air quality (IAQ) models. The overall
energy savings for the dataset in this study amounted to 17.4% without IAQ constraints
and 12.4% under IAQ limitations for one of the eight user preference scenarios.
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In 2016, Attaran et al. [92] proposed an innovative method for optimizing the energy
efficiency of HVAC systems by combining a radial basis function neural network (RBFNN)
with an epsilon constraint (EC) PID approach. This hybrid method employs RBFNN
within the HVAC system to predict residual variances, which enhance the control signal
and minimize errors. The primary objective was to design and evaluate the EC-RBFNN
for a self-adjusting PID controller, and it is specifically tailored for a particular bilinear
HVAC system with a focus on temperature and humidity control. Through comparative
simulation case studies, the EC-RBFNN approach was found to be more accurate than both
standard PID optimization and the combined PID-RBFNN method. The results showed
that the hybrid EC-RBFNN methodology reduced the integral absolute error (IAE) by
18% for temperature and 20% for humidity measurements.

In the same year, Kim et al. [93] focused on improving the energy efficiency of in-
tegrated daylighting, heating, ventilating, and air conditioning (IDHVAC) systems in
buildings. The researchers developed a meta-model to predict the building’s energy perfor-
mance, which integrates artificial lighting regression and ANN models. This model was
trained on a database generated by the EnergyPlus simulation tool, where the design of
experiment (DOE) method is used to ensure robust training without overfitting in order to
predict the room temperature, total energy consumption, and indoor daylight illuminance.
The number of input variables for the ANN models varied depending on the specific
model; meanwhile, the number of hidden layers was fixed at three for the ANN models
and the number of neurons in each hidden layer was optimized using a genetic algorithm to
minimize the total energy consumption while maintaining thermal and visual comfort for
occupants. The GA optimization was applied to controllable variables within the IDHVAC
system. According to the findings, which were based on three winter months of data, the
GA-optimized IDHVAC system achieved an average energy savings of 13.7% compared to
a conventional setup. When the optimization was applied separately to the HVAC system
and Venetian blinds, the GA-optimized HVAC alone achieved 11.7% energy savings, while
the combined IDHVAC optimization provided a higher savings rate.

In 2017, Yuce et al [94] proposed a novel framework for optimizing household energy
management by scheduling appliances to operate at times that reduce peak energy demand
while also maximizing the use of renewable energy. By integrating an ANN model—
which was used to predict the energy demand and supply from RES along with a genetic
algorithm (GA)—it was found to be adequate in receiving the predictions from the ANN,
and it utilized them to create an optimized schedule for operating home appliances. With
respect to the structure of the FNN, the inputs included environmental variables (outdoor
temperature, wind speed, diffuse solar radiation, etc.), occupancy, appliance states, and time
information. The remaining duration time for each appliance was an additional input. The
outputs, on the other hand, included the total energy consumption, PV energy generation,
and wind power generation—where the individual energy consumption for each appliance
was also used as an output. The FNN used a single hidden layer, where the number of
neurons in the hidden layer was determined experimentally. The best performance was
found with 25 neurons. This smart scheduling led to a significant reduction in the grid
energy consumption and shifted energy usage with respect to the periods with available
RES energy, thus achieving more sustainable and cost-effective home energy use. The
methodology was tested in a home environment, where it demonstrated reductions in grid
energy dependence of 10%, 25%, and 40% on different occasions.

In 2019, Reynolds et al. [95] presented two different strategies for improving district
energy management. The first focuses on enhancing the production of district heat from a
multifaceted energy center, while the second combines this with direct control over building
heating demand. The FNN models utilized the input data, such as the predicted outdoor
temperature, solar irradiance, hour, day type, occupancy, the temperature set point, and
the indoor temperature, of the previous hour. Each FNN integrated 2 hidden layers with
15 neurons per layer. One FNN predicted the hourly energy consumption, while the other
predicted the hourly average indoor temperature. Such predictions were utilized with
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a genetic algorithm to determine the most efficient operation schedules for the heating
equipment, thermal storage, and heating set points. The results showed a significant profit
increase when optimizing heat production, as well as an even greater profit, as the system
was adequate enough to adjust the building energy demand directly. According to the
evaluation measurements, by focusing on optimizing the district heat production, there
was a notable 44.88% profit boost compared to a standard rule-based strategy. When the
system was also given the capability to directly influence the building energy demand, an
extra 8.04% profit enhancement was observed.

Also in 2019, Satrio et al. [96] proposed a novel hybrid framework for enhancing
the energy efficiency and thermal comfort of an educational building’s HVAC system
(Figure 14). The researchers established a typical MLP to accurately predict the building’s
energy consumption and the thermal comfort level of its occupants, as measured by the
percentage of people dissatisfied (PPD) index. The structure of the FNN involved 10 input
nodes—which received data such as the cooling set point, RH set point, starting delay,
stopping delay, supply air flow rate (VAV system), window area, wall thickness, supply
air temperature, supply radiant temperature, and supply radiant flow rate. The single
hidden layer integrated three neurons, while the output layer included two output nodes
for annual energy consumption and PPD predictions. By utilizing a multi-objective genetic
algorithm (MOGA) framework, it was found to be adequate enough to generate the optimal
operation settings for the building’s two-chiller HVAC system. The optimized system
showed significant improvements in maintaining thermal comfort while also reducing
annual energy consumption when compared to the baseline control operational settings.

Figure 14. Satrio et al. [96] use case: Educational Center, West Java, Indonesia.

In 2020, Bourhnane et al. [97] studied the prediction and management of energy
consumption in smart buildings using machine learning techniques by employing FNNs
in conjunction with GAs to model energy usage. The system was applied to a real-world
setting, and it was used to process the data from a PV solar panel installation and various
electrical appliances within the building. The networks were structured with 2 input
neurons, a single hidden layer of 10 neurons, and a single output neuron. To this end, the
model received two types of input: a timestamp of the energy consumption measurement
and a unique identifier for each AC, fridge, furnace, and microwave appliance. The sole
output of this model is the prediction of the energy consumption for each appliance. The
evaluation illustrated that the hybrid FNN-GA approach showed the highest accuracy
among all of the evaluated prediction methods that utilized the regression and the support
vector machine models.

In a 2021 study, Elmaz et al. [98] introduced an advanced hybrid (CNN-LSTM) model.
This model combines effective feature extraction with sequential learning to predict room
temperature. The data from a room at Antwerp University was used to develop this
control system. The hybrid CNN-LSTM network architecture comprised an input layer
that received sensorial data from the motion detector (binary), as well as targeted set-point
temperature, variable air volume (VAV) flow rate, window (binary), outside temperature,
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and room temperature data. The input layer is followed by two CNN layers for feature
extraction. It then transitions to two LSTM layers to capture temporal dynamics, as well
as uses a flatten layer to consolidate features. It then concludes with an output layer
consisting of a single node dedicated to predicting temperature. The new approach was
then benchmarked against the traditional MLP and a basic LSTM for short-term predictions
spanning from 1 to 120 min. While all of the neural network models performed well for
1 min predictions, the CNN-LSTM model stood out in longer forecasts by consistently
achieving an R2 value greater than 0.9 for predictions up to 120 min.

In the same year, Somu et al. [99] proposed a novel transfer learning-based approach
for the purpose of enhancing thermal comfort modeling in buildings, which is crucial
for occupant well-being and productivity. To this end, a hybrid CNN-LSTM model was
developed to capture the spatio-temporal relationships in thermal comfort data. The
sophisticated model utilizes the data from thermal comfort parameters (TCPs) as the input,
which includes the following: the indoor air temperature, indoor air temperature, indoor
relative humidity, air velocity, mean radiant temperature, outdoor air temperature, as well
as occupant age, gender, clothing insulation, and metabolic rate. The first hidden layer
of the model is a 1D convolutional layer equipped with 128 filters and a kernel size of 5,
which is followed by two LSTM layers, each with 256 nodes. Following the LSTM layers,
the two fully connected dense layers respectively include 64 and 16 nodes. To this end,
the five-node output layer provides model predictions of the different thermal comfort
levels, which are categorized into a five-point thermal sensation scale (target classes: very
cold/cold, slightly cool, neutral, slightly warm, and hot/very hot). The key modeling
parameters for the TL CNN-LSTM model were determined using the Chi-squared test. At
the same time, the issue of insufficient data samples across all of the thermal conditions
was tackled using the synthetic minority oversampling technique (SMOTE). The model’s
efficacy was tested on two source datasets (ASHRAE RP-884 and Scales Project) and a
target dataset (Medium US office), and it demonstrated an accuracy of over 55% in the
target buildings with limited data.

In their research work in 2021, Huang et al. [100] proposed an integrated ant colony
optimization (ACO)-enhanced wavelet neural network (I-ACO-WNN) for the precise
prediction of building heating and cooling loads. The model was assessed using key perfor-
mance metrics, and it showcased its superior accuracy over traditional methods. Its WNN
portrayed a special form of FNN using a wavelet basis function (WBF)—specifically the
Mexican Hat wavelet—as its transfer function. The input layer received data that included
eight building parameters: the relative compactness, surface area, wall area, roof area,
overall height, orientation, glazing area, and glazing area distribution. The prediction of
the network involved two output nodes, which represented the heating load (HL) and
cooling load (CL) of the buildings. According to the evaluation, the regression coeffi-
cients for the heating load HL and CL predictions were 0.9714 and 0.9783, respectively.
Compared to the standard wavelet neural network, the novel I-ACO-WNN model signifi-
cantly reduced the prediction errors: the RMSE for HL and CL decreased by 66.01% and
73.28%, respectively; the MAE decreased by 82.44% and 84.82%, respectively; the MAPE
decreased by 81.21% and 85.31%, respectively; and the MSE decreased by 88.44% and
92.86%, respectively.

In 2022, Afroz et al. [101] introduced a novel technique to curtail the energy use in
HVAC systems, yet they also upheld the ambient internal standards as this necessitates
extra power expenditure. The approach involved a complicated problem with several
variables, which was resolved through a particle swarm optimization (PSO) algorithm.
For regulating the internal indoor comfort and HVAC energy utilization, contemporary
predictive formulations were established utilizing a nonlinear auto-regressive exogenous
(NARX) neural network. The models utilized sophisticated information regarding multiple
HVAC system and environmental parameters for the purpose of predicting the energy
consumption, as well as indoor temperature, humidity, CO2, and VOC. NARX formulations
underwent refinement to achieve the ideal forecast precision, and an ease of integration
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was conducted in the actual systems. To this end, the formulations were enhanced to
determine the most efficient HVAC adjustments, which was achieved by considering
seasonal alterations. The best performance was found with 12 hidden neurons and 2 time
delays for the energy consumption prediction NARX, while the optimal NARX size for the
indoor temperature, humidity, CO2, and VOC predictions were determined to be 10 hidden
neurons and varying numbers of time delays (e.g., two or three). The outcomes revealed
the feasibility of decreasing the overall power consumption by 7.8% without sacrificing
internal conditions like the air warmth (19.60–28.20 °C) and moisture levels (30–65%).

4.4. Review of Other Neural Network Applications for BEMS Control

Javed et al., who also conducted a study in 2016 [102], proposed an intelligent HVAC
controller that integrates IoT equipment, cloud computing, and web services. Using
wireless sensors, the system is able to monitor the indoor conditions and control HVAC
actuators. To this end, two random neural network (RandNN) models were employed to
estimate the occupancy and set optimal HVAC operating points. The first model involved
a five-node input layer that receives IoT sensorial data such as the room temperature, air
inlet temperature, the CO2 environment, the CO2 inlet air, and the air inlet valve opening.
Its single hidden layer consists of 10 nodes, while the output layer includes occupant
predicting mean vote (PMV)-based setpoints for the purpose of HVAC control. With
respect to the secondary RandNN, it similarly integrated five input nodes and received
the data arising from IoT sensors such as the heating setpoint, cooling setpoint, heating
error, cooling error, and CO2 level. The single hidden layer includes seven nodes, while
the output layer integrates three nodes for the heating, cooling, and ventilation rates. It
was noticeable that the training algorithm for both models involved a hybrid particle
swarm optimization with a sequential quadratic programming (PSO-SQP) algorithm, and
it showed a superior performance over the other methods. The results revealed that
embedding the intelligence directly into the base station and sensor nodes reduced the
power consumption by 4.4% compared to the storing data and running RandNN models
on the cloud, as well as by 19.23% compared to the implemented RandNN models on the
base station alone.

Also in 2017, Javed et al. [103] introduced a novel concept involving the integration
of decentralized smart controllers within an Internet of Things (IoT) framework, one that
is enhanced by cloud computing for training random neural networks (RandNNs). This
setup was designed to monitor variables such as temperature, humidity, HVAC airflow, and
passive infrared sensor (PIR) data. The advanced controller system consists of three key
components (each endowed with specific functions): a base station, sensor nodes, and
cloud-based intelligence. One of the notable features was a sensor node equipped with a
RandNN-based occupancy estimator (a PMV-based setpoint estimator) that can estimate
the number of occupants in a room and relay this information to the base station. The
base station, in turn, utilizes RandNN models to control the HVAC system, where it
adjusts it based on the established setpoints for heating and cooling. The structure of the
first RandNN (a PMV-based setpoint estimator) utilized PMV and humidity as the inputs
while the single hidden layer consisted of four neurons directing information to the single
output node in order to predict the relative temperature setpoint. The secondary RandNN
exploited information regarding the heating setpoint, cooling setpoint, and heating error
(i.e., the difference between the heating setpoint and the current temperature) in order
to align the HVAC operations with the desired temperature setpoints, which were either
estimated by the RNN PMV model or set by the user. Such real-life implementation was
compared to basic RBC controllers, and the study illustrated the adequacy of the RandNN
controller in reducing HVAC energy consumption by 27.12%.
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5. Evaluation
5.1. Evaluation per Utilized Data

Building energy management systems (BEMSs) integrate a variety of input data for
ANN applications, where each component plays a critical role in enhancing the accuracy
and reliability of predictions. To this end, HVAC applications commonly utilize indoor
and outdoor temperature and humidity levels; air quality; occupancy levels and patterns;
time of day; and seasonal information, as well as historical data on energy consumption
and temperature settings to generate decisions for optimizing HVAC settings or energy
consumption forecasts [61,65,66,72,88–92]. Similarly, DHW system operations also depend
on similar aspects such as the incoming water temperature, historical energy consumption
for water heating, water usage patterns (e.g., peak usage times), or ambient temperature
and weather conditions. Such elements are commonly utilized to generate predictions
such as the energy requirements for water heating and predicted hot water demand, or to
provide optimized decisions for water heating schedules [62,79]. ANN models that include
LSs on the other hand, most commonly utilize data that consider occupancy patterns and
illuminance levels to predict lighting power settings [66]. Last but not least, RES is most
commonly utilized with climatic and radiometric data, as well as solar irradiation, wind
speed, and ambient temperature parameters to forecast renewable energy production,
availability, and variability at the building level [63,71,75,82,84,94,97].

Figure 15 illustrates the potential occurrence of the different data founded in the major-
ity of the integrated works (left) while also illustrating the occurrence (%) per different data
types that integrate the following different types of data: environmental (e.g., temperature,
humidity, wind speed, solar radiation, CO2 levels, air Quality Data, etc.); operational
(energy usage and operational status); behavioral (behavioral patterns, presence and count
of occupants, historical timestamps, etc.); and other data (right).

Figure 15. Occurrence per different types of data (left) and the data type occurrence (%) in highly
cited BEMS applications (right) .

It should also be noted that the nature and characteristics of the available data for
processing strongly affect the selection of the suitable ANN type. For instance, it is evident
that FNN structures are typically employed in scenarios where the relationship between the
input and output of the model is static, thus making them ideal for pattern recognition tasks
where the sequence of data points is not crucial. They are adept at handling various data
types, including static, numerical, categorical, and non-sequential data. This makes FNNs
suitable for applications in BEMSs, such as predicting the energy consumption of HVAC
systems and LSs based on current conditions, occupancy, and building characteristics.
On the other hand, RNNs excel in scenarios where the sequence and context of data are
vital. They are designed to process sequential and time series data, which is essential in
applications like predictive maintenance or energy load forecasting in BEMSs. RNNs are
more than adequate for analyzing the historical data patterns, including energy usage
over time and weather conditions, required to make informed predictions about future
loads or maintenance needs [86,87]. Moreover, the complexity and structure of the data
also play a crucial role. More complicated data with higher dimensionality might require
advanced architectures like DNNs for more effective feature extraction and learning. Such
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networks integrate multiple hidden layers, and they are able to unravel complex patterns
and relationships within large and multifaceted datasets; thus, they enable more effective
and accurate predictions [70,74]. In contrast, simpler data structures may be efficiently
handled by less complex models [59,61,63,64,68,71,75]. Such fundamental differences in
data handling between the different types of networks underline their distinct roles in
various applications within the domain of building energy management. The following
subsection thoroughly analyzes the distinct role of the different types of ANNs that are
found in the literature related to BEMS applications.

5.2. Evaluation per ANN Type

The selection of ANN types for different BEMS applications is largely influenced by
the specific characteristics and requirements of the systems being controlled, like HVAC
systems, DHW systems, LSs, and RESs.

MLPs, a type of FNN, are commonly chosen for BEMS applications due to their
straightforward architecture and efficacy in handling a range of prediction and classifica-
tion tasks. Such an ANN type is largely favored in BEMS applications, especially in cases
where the relationship between input and output is more direct and less influenced by
temporal factors—i.e., where the operational patterns are relatively predictable and do not
involve complex temporal dynamics. For instance, in managing DHW systems and certain
aspects of LSs, where the demand patterns are more consistent and predictable, MLPs are
adequate due to their ability to model these relationships without the need for understand-
ing sequential data. The advantage of MLPs lies in their simplicity and efficiency, i.e., in
offering a straightforward approach to modeling. However, this simplicity also translates to
a limitation, as MLPs lack the capability to process time series data effectively, thus making
them unsuitable for applications that require understanding historical patterns and predict-
ing future trends. In order to overcome such limitations, RNNs—particularly LSTMs—have
been extensively utilized in the literature toward complex BEMS tasks like HVAC con-
trol and RES management. HVAC systems, with their variable and dynamic operation,
require an approach that considers historical data to predict future needs. LSTMs are well
equipped for this given their ability to remember and leverage long-term dependencies in
data, a crucial feature for accurately predicting energy needs based on past trends. This
capability is equally important in managing RESs, where factors like weather conditions
and energy generation from sources like solar panels are highly variable and dependent on
historical patterns. It should be mentioned that LSTMs are generally considered superior
to traditional RNNs because they effectively overcome the vanishing gradient problem,
which enables them to learn from long-term dependencies in data. This feature makes
LSTMs adept at handling complex sequences where understanding past context is crucial.
Additionally, LSTMs maintain a more stable and consistent training process, thus leading
to better performances in tasks involving sequential data. However, the depth of LSTMs
comes at the cost of increased computational complexity and data requirements. They need
extensive and diverse datasets for training to capture the nuances of these complex systems.
This might not be a significant issue for commercial buildings, where such data are more
readily available, but they can be a challenge in smaller-scale applications.

Figure 16 illustrates the occurrence per ANN type (left), as well as the citation share
(%) per ANN type (right), in highly cited BEMS applications.

Another fruitful approach is in deploying BEMS control concerns to hybrid schemes,
where ANNs are integrated with other algorithms or approaches to harness the com-
bined advantages of the methodologies. According to the literature, the most prominent
combination, considering the research interest, concerns the integration of ANNs with
genetic algorithms [89,90,93–97]. This type of integrated scheme is common due to the
complementary strengths of these two methods. GAs, inspired by the process of natural
selection, excel at exploring a vast solution space and finding global optima, thus mak-
ing them ideal for optimizing the structure and parameters of ANNs, which can be a
complex, multi-dimensional problem [90,93,94]. This combination enhances the ANN’s
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ability to learn and adapt, especially in complex, non-linear environments where traditional
gradient-based methods might struggle. Moreover, GAs have been thoroughly utilized
for the scheduling and operational optimization of BEMSs [95,96], as well as in handling
multi-objective problems such as balancing energy usage with comfort and exploring com-
plex solution spaces [89,97]. Similar to GAs, PSOs that are integrated with ANNs leverage
swarm intelligence for efficient parameter optimization, thereby enhancing a network’s
performance in discovering optimal or near-optimal solutions. In [91], the role of PSOs was
to find a balance between power usage and indoor air quality, in which the trade-offs were
effectively managed between these competing objectives.

Figure 16. Occurrence per ANN type (left) and citation share (%) per ANN type (right) in highly
cited BEMS applications.

In the literature, there is also the neuro-fuzzy approach, which combines fuzzy logic
controllers (FLCs) with ANNs. It capitalizes on the ANN’s learning capabilities and the
intuitive, human-like reasoning of fuzzy logic, thus making it particularly effective for
handling uncertainty and imprecision in data [98]. Other notable combinations found
in the recent literature include ANNs with simulated annealing for robust optimization
in complex landscapes, as well as ANNs with RL, which is pivotal in decision-making
scenarios and adaptive systems that learn from interactions with their environment. These
hybrid models underscore the trend of leveraging the strengths of various algorithms to
offset the limitations of standalone methods, thus leading to more powerful, adaptable,
and efficient problem-solving tools.

5.3. Evaluation per Training Scheme: Optimization Algorithms and Training Methodologies

The prevalence of the gradient descent approach using the backpropagation (GD/BP)
method in training neural networks for BEMSs is largely due to its proven effectiveness, sim-
plicity, and adaptability to a wide range of problems [62,64,69,74,80,82–84,86,98]. GD/BP
is straightforward to implement and flexible enough to handle the diverse nature of BEMS
applications, which often involve complex datasets. Such a scheme is potentially favored
due to its computational efficiency, a crucial factor when handling large-scale data, thus
making it a widely chosen option. On the other hand, the Levenberg–Marquardt (LM)
method combined with backpropagation (LM/BP) has also emerged as a prevalent method-
ology as it is favored for its faster convergence in smaller networks or its well-behaved
loss functions [63,73,75,79,81,93,95]. However, LM’s higher computational demands in
large-scale applications has limited its wider adoption compared to GD/BP training and
optimization methodologies with respect to training ANNs in BEMS applications.

Furthermore, variations like GDADAM/BP, GD/BP with momentum (GD/BPM), or
Bayesian Regularization BPBR have been employed to address specific challenges in neural
network training within BEMSs. For instance, the Adam optimizer in the gradient descent
approach adapts learning rates for each parameter and offers improvements in complex
scenarios [74,98]. Momentum in backpropagation helps accelerate convergence and navi-
gate the optimization landscape more effectively [71,80,82], while Bayesian regularization
in backpropagation enhances the model’s generalization capability, an essential trait for
reliable performance in diverse BEMS scenarios [66,70,80].
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What is noticeable for training RNNs is the common use of the gradient descent
approach through time combined with backpropagation (GDTT/BP). Such a tendency is
deeply rooted in the temporal characteristics of these systems. BEMS applications often in-
volve time series data, such as energy consumption patterns, environmental conditions, and
user behaviors, which exhibit significant temporal dependencies. RNNs are uniquely suited
for this type of data due to their ability to maintain and learn from historical information
over time. The (GDTT/BP) approach is particularly effective here, as it adapts the gradient
descent optimization to work across time sequences, thus ensuring that the network’s
learning process takes into account the entire temporal context of the data [82–84,86]. This
ability to capture and utilize temporal dynamics is crucial for accurate modeling, fore-
casting, and decision making in BEMSs, thereby making (GDTT/BP) a preferred choice
for training RNNs in these applications. Such an integrated approach allows RNNs to
learn from dependencies and patterns that span across time steps, which is essential for
accurately modeling and predicting temporal dynamics.

With respect to random neural networks, it should be noted that the use of parti-
cle swarm optimization (PSO) combined with sequential quadratic programming (SQP)
(RandNNs) harnesses the global search capability of PSO and the precise local optimization
of SQP. This method is particularly effective for RandNNs due to their stochastic nature
and complex optimization landscapes. PSO efficiently explores the broad solution space to
identify promising regions, while SQP fine tunes the solutions, thus ensuring optimal net-
work weights are achieved. This combination is ideal for addressing the unique challenges
posed by RandNNs, especially in scenarios where traditional gradient-based methods may
fall short [102,103].

Figure 17 portrays the occurrence per optimization algorithm (left) and the occurrence
per training methodology (right) in highly cited BEMS applications.

Figure 17. Occurrence per optimization algorithm (left) and occurrence per training methodology
(right) in highly cited BEMS applications.

5.4. Evaluation per Transfer Function

In FNNs, the preference for specific activation functions is influenced by their distinct
characteristics and the network’s architectural requirements. The sigmoid (sig) function
is the most common in hidden layers due to its smooth, nonlinear nature, which allows
for gradient-based optimization and helps the network capture complex patterns in the
data (as shown in Figure 18, where its output range (0 to 1) is particularly useful in binary
classification tasks).

Tanh (hyperbolic tangent function) is the second most common function in FNN
structures. It is also preferred for its output range (−1 to 1) as it offers a centered zero mean,
which can lead to faster convergence during training. Tanh is commonly used in output
layers when the task requires mapping to a bipolar output [69,91]. This is also the case for
the linear (lin) function, which is predominantly used in the output layer and portrays a
crucial factor for tasks where the goal is to predict continuous and unbounded values, such
as in regression problems [60,63,66,83,88,90,93]. The linear function operates in a linear
nature, and it allows the network to output a range of values without applying a nonlinear
transformation, thus making it suitable for such tasks. The choice of activation functions in
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FNNs is strategic and aimed at optimizing the network’s learning and predictive abilities.
The sigmoid function’s role in hidden layers is to introduce nonlinearity, which is essential
for learning complex functions [66,69,70,77]. Meanwhile, the linear or tanh functions
in the output layer cater to the specific nature of the network’s output, whether it is
classification, bipolar mapping, or regression. This strategic selection ensures that the
network’s architecture is aligned with its intended function and the nature of the data
it processes.

Figure 18. Occurrence per transfer function in highly cited BEMS applications.

In RNNs, activation function preferences differ from FNNs due to RNNs’ unique
structure and sequential data processing. Tanh is often used in RNN hidden layers for
its range (−1 to 1) and effectiveness in mitigating the vanishing gradient problem, which
is crucial in RNN training [83,84]. ReLU and its variants are also employed for their fast
training capabilities and non-linear representation [80], which help to address gradient
issues. Sigmoid functions are less common in RNN hidden layers, but they are utilized
in specific parts of LSTM networks for their gating mechanisms. For output layers, linear
activation functions are used in RNNs for tasks requiring continuous value predictions,
similar to FNNs [79,83]. The selection of activation/transfer functions in RNNs are thus
heavily influenced by their architecture and the sequential nature of their tasks.

5.5. Evaluation per ANN Depth

The use of ANNs in BEMSs is especially influenced by the complexity and specific
requirements of the systems they are designed to control. To this end, the depth of the ANN
(denoted as the number of hidden layers) portrays a crucial consideration for each research
work. Shallow ANNs, i.e., those holding a single hidden layer, are generally sufficient for
less complicated BEMS frameworks or where data are limited. Such ANNs are quicker to
train and require less computational power. In contrast, deep ANNs, which have multiple
hidden layers—typically 2–4 layers—in BEMS applications, are capable of capturing more
complex patterns and interactions in data. This renders them more suitable for intricate
systems like advanced HVAC controls or integrated RESs, where multiple variables and
non-linear relationships must be considered.

The specific BEMS component being controlled may also dictate the ANN design. For
example, controlling a lighting system [66] might not require the depth and complexity
needed for an HVAC system, where factors like occupancy variability and energy storage
play a significant role [62,65,70,74,86,88,89,98]. Similarly, DHW systems might need a
different approach compared to HVAC systems, as the latter often involves more dynamic
and complex control strategies [79].

According to the evaluation denoted in Figure 19, shallow ANNs more commonly
appear as FNNs [59,61,63,64,66,68,69,71,75]. Such a tendency may be interpreted as being
present due to the fact that many BEMS tasks do not require the sophisticated temporal
data processing that deep RNNs offer [81,83,85,86]. Single-layer FNNs are computationally
less intensive and easier to train, thus making them suitable for applications with simpler,
more direct data relationships. Thus, they are preferred in scenarios where the focus is on
achieving quick, efficient processing with less emphasis on capturing complex, long-term
data dependencies.
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Figure 19. Occurrence of shallow and deep ANN applications (left), as well as the citation share (%)
of shallow and deep ANN applications (right), in highly cited BEMS applications.

In summary, the choice between shallow and deep ANNs, as well as the selection of a
particular architecture in BEMSs, are dictated by the specific characteristics and require-
ments of the system being managed. This includes the complexity of the system, the nature
of the data involved, and the precision required in control and prediction.

5.6. Evaluation per Computational Complexity

Evaluating the computational demand of ANN architectures, especially in the context
of BEMSs, involves a comprehensive approach that considers several intrinsic factors
related to neural network design and functioning. The complexity of a neural network
is determined not only by its size, but also by the architecture and the characteristics of
its components. For instance, the number of hidden layers in a network plays a critical
role in determining the computational complexity of the ANN model. Networks with
more layers represent more complex functions, but this comes at the cost of increased
computational requirements for both training and inference phases [74,87,101]. To this
end, the depth of the network directly correlates to the volume of computations needed.
Another crucial aspect considers the number of neurons per layer. An increased count
of neurons leads to a greater number of weights and biases within the network, and this
consequently escalates the computational load. While more neurons enable the network to
capture complex patterns, it also requires additional computational resources [78].

The type of neural network portrays another significant factor. Different architec-
tures have varying computational demands. For instance, RNNs, particularly LSTM
networks [86,87], require advanced complexity compared to standard FNNs [59,63,64].
Such complexity arises from their ability to handle sequential data, and this is attributed to
their recurrent connections. Additionally, the complexity of the activation functions used
within the network also affects the computational load. Some activation functions, like,
e.g., sigmoid and tanh [70], involve more complex mathematical operations than simpler
functions like ReLU [67]. The choice of activation function can, therefore, have a non-trivial
impact on the amount of computation required.

It should be also noted that hybrid models, which combine different neural network
types, exhibit higher complexity [98,99]. This increased complexity is due to the integration
of computational demands from each of the component models. Furthermore, the methods
used for training the networks and the optimization algorithms employed add layers of
complexity. Last but not least, training methods like backpropagation with a gradient
descent approach—or with variations such as stochastic gradient descent, momentum, or
adaptive learning rate methods—hold different computational demands.

Grounded in the aforementioned attributes, this paper justifies the computational
complexity of each case scenario. Figures 20 and 21 illustrate an estimation of the inte-
grated computational demand of each FNN, RNN, and hybrid approach. (Cases where
the computational estimation was not feasible to determine have been excluded from the
justification, such as, e.g., cases with varying number of layers or nodes.) These estima-
tions were conducted according to the number of hidden layers; number of neurons per
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layer; type of neural network; complexity of activation functions; hybrid models; training
methods; and optimization algorithms.

Figure 20. Computational complexity estimation for Feedforward neural network cases [59–61,63–
67,69–74,76–78].

Figure 21. Computational complexity estimation for recurrent neural networks (right) [79–86] and
hybrid cases (left) [87–101].

5.7. Evaluation per Statistical Index Utilization

In order to evaluate the most prevalent statistical indexes for illustrating the perfor-
mance of a potential ANN model, the current work thoroughly examined instances of
highly cited research works. According to the evaluation depicted in Figure 22—right,
the most prevalent statistical index types include the following error metrics that provide
accuracy in predictions: the RMSE (root mean square error), the MSE (mean squared
error), the MAPE (mean absolute percentage error), and the MAE (mean absolute error).
Figure 22—left includes the most prominent indexes that are commonly utilized in the liter-
ature. The RMSE and MSE are widely used since they emphasize larger errors by squaring
the residuals, thus making them particularly sensitive to outliers, which is crucial in energy
management where extreme values can have significant implications. The MAPE is also
popular due to its ability to express errors as a percentage, and it offers a clear and relatable
perspective on model accuracy, which is especially useful in communicating results to
non-technical stakeholders [59,61,64,69,71,75,76,82,91]. Also, the MAE provides a direct
average measurement of error magnitudes, thus making it intuitively easy to understand
and interpret [59,61,84,85,98].

Moreover, the utilization of correlation metrics such as R2 (i.e., the coefficient of
determination) is also significant, as shown in Figure 22—right, due to their efficiency in
capturing different aspects of model performance [60,63,69,71,76,82,84,86,89,96,98]. The
R2 metric indicates the proportion of variance in a dependent variable that is predictable
from independent variables, and it provides a measure of how well unseen samples are
likely to be predicted by the model. Standardization and normalization metrics such as
the standard deviation (std) [59,91] and the coefficient of variation (CV) [59,60,64,72,93]
are less common in ANN-BEMS research as they primarily measure data variability rather
than model prediction accuracy. This means they are not complementary to the main focus
of evaluating ANN performance in energy management tasks.
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Figure 22. Occurrence per statistical index (left) and citation share (%) of the statistical index types
(right), in highly cited BEMS applications.

Such indices collectively offer a comprehensive view of an ANN’s performance, where
accuracy, error magnitude, and the model’s ability to explain variability in the data are
covered. Their widespread adoption in BEMS applications reflects a standardized approach
to model evaluation and facilitates comparisons between different studies and models; in
addition, their utilization ensures a thorough and nuanced understanding of the model’s
predictive capabilities, which is essential for effective energy management and decision
making in BEMSs.

5.8. Evaluation per BEMS Type

According to the evaluation shown in Figure 23, HVAC systems are predominantly
featured in the ANN applications for BEMSs. Such a tendency is explained by the fact that
HVAC systems most commonly involve the largest consumers of energy in buildings in
comparison to other BEMSs. Moreover, HVAC systems are thus predominantly featured in
ANN applications for BEMSs due to their complex operational dynamics and high energy
demand. Such BEMS types present a multifaceted control challenge in being integrated
with other building systems and the external environment—a task ANNs are sufficient
enough to address by processing large data amounts from diverse sources. Additionally, the
trend toward smart buildings and IoT integration has increased data availability on HVAC
performance, thus boosting ANN learning and adaptation potential for HVAC control.
This aligns with the regulatory and sustainability goals driving advanced technologies like
ANNs for energy conservation.

Figure 23. Occurrence per BEMS type (left) and citation share (%) per BEMS type (right) in highly
cited BEMS applications.

RESs are also increasingly being utilized in ANNs for BEMSs due to their role in sus-
tainable energy management [63,71,75,76,81,84,94,97]. ANNs manage the unpredictability
of RESs for parameters like solar and wind power, and they aid in enhancing energy genera-
tion and usage. They are crucial for balancing intermittent RESs, optimizing energy storage,
and integrating RESs with conventional systems, thus supporting net-zero buildings and
carbon neutrality goals.

In contrast, DHWs [60,62,79] and LSs [66] are less featured in ANN applications due to
their simpler operational dynamics and more predictable patterns, which thus require less
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complex data processing. Their lower energy consumption and limited data availability
make simpler control methods more cost effective, thereby leading to their infrequent use
in advanced BEMSs. BEMSs often prioritize more complex systems like HVAC systems
and RESs for greater energy saving and efficiency.

Last but not least, it should be mentioned that IBEMS applications are also lim-
ited [80,93] probably due to the intricate coordination required, whereas approaches such
as DRL are preferred in such sophisticated systems.

5.9. Evaluation per Building Testbed Type

Commercial buildings are more commonly the focus of ANN applications in BE-
MSs compared to residential buildings primarily due to their larger scale and complexity.
Commercial buildings, such as office complexes, shopping centers, and hotels, often have
more varied and intensive energy needs, thereby providing a broader scope for optimiza-
tion and efficiency improvements when using ANNs. The diversity in usage patterns,
occupancy rates, and energy systems in commercial buildings presents a rich dataset for
ANNs to analyze and learn from, thus making them ideal candidates for advanced energy
management research.

Additionally, the potential for energy savings and cost reductions is generally higher
in commercial settings due to their larger energy consumption. This makes the investment
in sophisticated ANN-based BEMSs more financially justifiable for commercial properties.
Moreover, commercial buildings often have more resources and infrastructure to implement
and benefit from advanced technologies like ANNs. Lastly, commercial buildings are
subject to stricter regulatory and sustainability mandates; therefore, they drive the adoption
of innovative energy management solutions like ANNs to meet these requirements. This
combination of factors contributes to the higher research interest and prevalence of ANNs
in commercial BEMS applications. The predominance of ANN applications in commercial
buildings, as opposed to residential ones [59,68,81,94,97], is clearly illustrated in Figure 24.
Both graphs effectively showcase the trends in occurrence and research interest, and they
also highlight the significant focus on commercial settings for ANN implementations
in BEMSs.

Figure 24. Occurrence per building testbed type (left) and citation share (%) per building testbed
Type (right) in highly cited BEMS applications.

6. Current Trends and Future Directions
6.1. Trend Identification

According to the evaluation, the selection of the ANN type for such optimization
tasks is strongly influenced by the characteristics and requirements of the targeted energy
management system. To this end, MLPs, which are empowered by a straightforward imple-
mentation, illustrate the dominant ANN architecture applied in both simple, as well as in
more elaborate, BEMS frameworks. However, for elaborate tasks requiring training toward
large-scale time series historical data, ANN types such as RNNs—especially LSTMs—
present an advantageous alternative. MLPs are also dominant in hybrid applications,
where their integration with evolutionary algorithms—such as GAs and PSOs—are increas-
ingly used to enhance learning and adaptability in complex environments. Neuro-fuzzy
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approaches are also present in the literature for the purpose of integrating fuzzy logic with
ANNs, specifically for handling uncertainty and imprecision in data. With respect to the
depth of the deployed ANN per applications, it should be mentioned that such attributes
are elected—or experimentally determined—based on the system’s complexity. Shallow
ANNs are sufficient for simpler frameworks, whereas deep ANNs, which feature multiple
hidden layers, are suitable for complex systems like advanced multi-BEMS controls or inte-
grated RESs. In general, hyperparameter optimization is considered another meaningful
research objective for multiple research applications that concern ANNs in BEMSs.

In terms of optimization algorithms and training methodologies, the popular gradient
descent algorithm deployed in the backpropagation (GD/BP) methodology is prevalent in
BEMS applications due to its effectiveness and computational efficiency. Variations such as
the GDAdam optimizer, BPM (BP with momentum), or BPBR (BP with Bayesian regulation)
cater to specific challenges in neural network training. Particularly for training RNNs,
it is noticeable that the GDTT (gradient descent through time) algorithm is widely used,
especially for handling temporal data characteristics in BEMSs. The activation or transfer
functions that are utilized in FNNs and RNNs are strategically chosen based on their
distinct characteristics and the network’s architectural requirements. Sigmoid functions
are common in the hidden layers of FNNs, while tanh and linear functions are deployed
to specific tasks in output layers. In RNNs, the tanh function is often used in hidden
layers to mitigate the vanishing gradient problem, while ReLU variants are employed for
faster training.

With respect to the typical cost functions for evaluating ANN model performance,
statistical indices are commonly used, including certain error metrics like the RMSE, MSE,
MAPE, and MAE, which focus on the accuracy of predictions and error magnitude. The use
of correlation metrics such as R2 is another widely utilized approach as they are specialized
for capturing different aspects of an ANN model’s performance. Regarding the types of
BEMSs, HVAC systems are predominantly featured, followed by RESs due to their complex
operational dynamics challenges and significant energy demand requirements in buildings.
Conversely, systems like DHW and LS are less emphasized due to their simpler operational
dynamics and more predictable patterns. Finally, commercial buildings are more commonly
the focus in ANN applications compared to residential buildings due to their larger scale,
complexity, and higher potential for energy savings. The diverse usage patterns, occupancy
rates, and energy systems in commercial buildings provide a broad scope for optimization
and efficiency improvements when using ANNs, and this is further driven by stricter
regulatory and sustainability mandates.

6.2. Future Directions

As we look toward the future of ANNs in BEMSs, several key directions emerge
that researchers are likely to pursue in order to optimize their efficiency and effectiveness.
One of the foremost areas concerns the enhancement of data preprocessing techniques.
This involves developing more sophisticated methods for cleaning, normalizing, and
segmenting time series data, thereby ensuring that the data fed into ANNs are highly
relevant. This step is crucial because the accuracy of ANNs largely depends on the quality
of input data. For instance, employing innovative strategies like outlier detection and
missing data imputation to identify and correct data errors or min-max normalization
may prove quite beneficial. Moreover, partitioning time series data is also a key aspect
in preprocessing, which can be performed based on time intervals or specific events via
utilizing approaches like the sliding window technique. Additionally, feature engineering,
including time series decomposition and the creation of derived features, may potentially
expose relevant patterns and trends in the data.

Regarding this same aspect, the efficient integration of multi-source data into ANNs
also represents a significant future direction. By combining the information from various
sources like weather forecasts, occupancy sensors, and historical energy usage data, ANNs
can help with gaining a more holistic understanding of building energy dynamics. To this
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end, future research needs to focus on aligning diverse datasets like weather forecasts, occu-
pancy sensors, and energy usage history, thus ensuring compatibility through preprocessing
methods, such as normalization. Ensemble learning, i.e., combining multiple models that
are trained on different datasets, will also be explored to enhance prediction accuracy.

Ensuring the scalability of ANNs is another critical area. As buildings become more
complex and interconnected, the ANNs used in BEMSs must be capable of scaling accord-
ingly. This means they should handle larger and more diverse datasets without a loss in
performance or efficiency. The trend of using deep ANNs for more complex BEMSs is
aligned to future directions when emphasizing the scalability of ANNs. Deep ANNs have
the advantage of being able to model complex, non-linear relationships, thus making them
well suited for the multifaceted challenges of modern and future BEMSs, which includes
integrating RESs, dynamic occupancy patterns, and varying environmental conditions. To
this end, deep architectures, which are characterized by multiple hidden layers, will be
more effective in capturing the intricate patterns and dependencies in the data; thus, they
will become more prevalent in research.

To this end, the improvement of training algorithms will also be essential in order to
efficiently train deep architectures. Researchers need to intensively focus on developing
algorithms that are adequate for training DNNs more efficiently, i.e., where the aim is to
reduce the time and computational resources required while also minimizing the risk of
overfitting. The prevalent use of the gradient descent method and its variations, like GD
through time (GDTT) for RNNs, aligns with the future emphasis on improving training
algorithms. Optimizing these algorithms is key to efficiently training DNNs, especially
as they grow in complexity and scale. Such enhanced algorithms would enable ANNs to
learn from BEMS data more effectively, thus making them more accurate and reliable in
their predictions and decisions. Moreover, addressing computational efficiency is vital for
the practical deployment of ANNs in BEMSs. This involves optimizing the algorithms
and computational processes used by ANNs so that they can operate effectively (even in
resource-constrained environments).

In parallel, tailoring the architecture of ANNs to suit the specific needs of BEMS data
will be a focus area. This might involve the selection of the appropriate ANN Type, the
architecture design of the network, the utilization of advanced techniques, hyperparam-
eter optimization, as well as the continuous testing and validation of the models toward
real-world data. In the future, ANN research for BEMSs will likely need to focus on more
innovative ANN types and architectures to handle the increasing volume and complexity
of time series data. This will potentially include a greater emphasis on RNNs, particu-
larly LSTMs, for their superior ability to process sequential data. Additionally, attention
mechanisms and transformer models, known for their effectiveness in handling long-range
dependencies in time series, may play a significant role. The expansion and complexity of
data will further necessitate exploring more innovative hybrid models that combine the
strengths of different architectures—e.g., neuro-fuzzy approaches—which will have to be
achieved by ensuring both efficiency and accuracy in handling diverse building energy
management scenarios. Beyond the selection of more suitable ANN architecture, the cus-
tomization of ANN structure so as to better suit the specific characteristics of energy and
environmental data may foster the development of ANN architectures that are specifically
tuned to the complex demands of BEMSs, thereby resulting in more accurate and efficient
energy management systems.

Moreover, a promising direction for future research would be to explore the interplay
between ANN prediction uncertainties and the efficiency of control strategies in BEMSs.
Specifically, an investigation on the integration of ANN models within MPC systems,
in conjunction with feedback controllers, would impact the overall energy optimization.
There is a delicate balance to be struck here: while feedback mechanisms can compensate
for prediction inaccuracies, they might also reduce the energy savings achieved through
optimization. Hence, future studies should also focus on a comprehensive evaluation
that encompasses the total energy savings by considering both the predictive accuracy of
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ANN models and the effectiveness of feedback adjustments in maintaining operational
conditions like temperature. Such a holistic approach could yield insights into optimizing
ANN-based BEMSs for enhanced energy efficiency while accounting for uncertainties.

Another important direction is related to the incorporation of real-time learning
capabilities into ANNs. To incorporate real-time learning into ANNs for BEMSs, the focus
will be on implementing online learning, where the model continuously updates with new
data. This involves setting up systems to process data streams efficiently by employing
incremental learning to prevent loss of prior knowledge, as well as for establishing feedback
loops for adaptive responses. Real-time data augmentation and utilizing edge computing
are crucial for handling live data variations and reducing latency. Additionally, developing
strategic model update protocols and ensuring a robust infrastructure are essential. These
steps will enable ANNs to dynamically adapt to immediate changes in energy usage,
occupancy, and environmental conditions in real time.

Lastly, ensuring data security and privacy in the use of ANNs will be paramount.
As ANNs handle sensitive information about building operations and occupant behavior,
safeguarding this data against breaches is crucial. This includes encrypting data both in
transit and at rest, using secure protocols for data transmission, and applying rigorous
access controls. Regular security audits and updates to address emerging threats will
be essential. Additionally, incorporating privacy-preserving techniques like differential
privacy, where individual data points are obscured to protect user identity, will be key.
Researchers will also focus on compliance with data protection regulations to ensure that
the handling of sensitive information about building operations and occupant behavior is
both secure and legally sound.

7. Conclusions

The current review was focused on the examination and analysis of the most impactful
research of recent years (2015–2023) with respect to the applications of ANNs toward
BEMSs. By thoroughly investigating numerous research applications, the primary aim of
this work was to deliver a summarized overview of such a framework and to deliver to the
interested reader the trends, potential, and future directions in the current field.

According to the evaluation, the current trends in ANN applications for BEMSs reveal
a nuanced approach to selecting appropriate ANN types and architectures. The use of
shallow ANNs in simpler BEMS tasks, and the shift toward more complex structures
like deep MLPs and RNNs, particularly LSTMs, for handling dynamic and time-sensitive
BEMS tasks, underscore the need to match ANN architecture with a system’s specific
requirements. This trend is anticipated to continue with an increasing emphasis on tailoring
ANN architectures to suit the unique demands of BEMS data. In terms of optimization
algorithms and training methodologies, the prevalent use of the gradient descent approach
and its variations for training ANNs in BEMSs is likely to evolve. Future advancements
are expected to focus on developing more efficient training algorithms and enhancing
computational efficiency, especially for deep learning architectures. This will be crucial in
accommodating the growing complexity and scale of BEMSs.

In conclusion, the field of ANNs in BEMSs is evolving toward more sophisticated and
efficient systems to fully supporting energy saving, as well as occupancy, requirements. The
focus on customizing ANN architectures, improving data preprocessing, and enhancing
real-time adaptability underscores the commitment to advancing energy management
solutions that are not only effective, but also aligned with the broader goals of sustainability
and energy conservation.
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Abbreviations

ACH Air Change per Hour
AE Absolute Error
AHU Air Handling Unit
ANN Artificial Neural Network
APE Absolute Percentage Error
ARX Autoregressive Exogenous
BEMSs Building Energy Management Systems
BFGS Broyden–Fletcher–Goldfarb–Shanno
BIPV Building Integrated Photovoltaics
BP Backpropagation
BPBR Backpropagation with Bayesian Regularization
BPM Backpropagation with Momentum
CC Cascade-Correlation
CFD Computational Fluid Dynamics
CNNs Convolutional Neural Networks
CV Coefficient of Variation
DRL Deep Reinforcement Learning
DHW Domestic Hot Water
DOE Design of Experiment
DNI Direct Normal Irradiance
DNNs Deep Neural Networks
DTs Decision Trees
EC Epsilon Constraint
EDA Exploratory Data Analysis
ERV Energy Recovery Ventilator
FLC Fuzzy Logic Control
F1 F-score or F-measure
FRNNs Fuzzy Recurrent Neural Networks
FNNs Feedforward Neural Networks
GD Gradient Descent
GDADAM Gradient Descent with Adaptive Moment Estimation
GDTT Gradient Descent Through Time
GA Genetic Algorithm
GR Global Radiation
GSHP Ground Source Heat Pump
HVAC Heating Ventilation and Air Conditioning
IAQ Indoor Air Quality
IAE Integrated Absolute Error
IBEMSs Integrated Building Energy Management Systems
IMC Internal Model Control
ITC Indoor Thermal Comfort
k-NN k-Nearest Neighbor
LM Levenberg–Marquardt
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LSTMs Long-Short-Term Memory Neural Networks
LTPC Learning-based Thermal Preference Control
LSs Lighting Systems
MAD Mean Absolute Deviation
MADP Mean Absolute Deviation Percentage
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MAS Multi-Agent System
MBE Mean Bias Error
ML Machine Learning
MLP Multi-Layer Perceptron
MLR Multiple Linear Regression
MOGA Multi-objective Genetic Algorithm
MPC Model Predictive Control
MSE Mean Squared Error
NAR Nonlinear Autoregressive
NMSE Normalized Mean Squared Error
NMBE Normalized Mean Bias Error
NRMSE Normalized Root Mean Squared Error
NZEB Net-Zero Energy Building
PID Proportional Integral Derivative
PIR Passive Infrared Sensor
PMV Predicting Mean Vote
PPD Percentage of People Dissatisfied
PSO Particle Swarm Optimization
PVT Photovoltaic Thermal
R Correlation Coefficient
RandNN Random Neural Network
RBC Rule-Based Control
RBF Radial Basis Function
RF Random Forest
RFH Radiant Floor Heating
RL Reinforcement Learning
ReLU Rectified Linear Unit
RES Renewable Energy Sources
RH Relative Humidity
RMSPE Root Mean Square Percentage Error
RNN Recurrent Neural Network
Rprop Resilient Propagation
SHW Solar Water System
sig Sigmoid
SLP Single-Layer Perceptron
sm Softmax
SQP Sequential Quadratic Programming
SS State Space
Std Standard Deviation
SVM Support Vector Machine
SVR Support Vector Regression
tanh Hyperbolic Tangent
TF Transfer Functions
TLRNs Time-Lag Recurrent Networks
TSV Thermal Sensation Vote
WSNs Wireless Sensor Networks
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