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Abstract: Knowledge graph completion (KGC), the process of predicting missing knowledge
through known triples, is a primary focus of research in the field of knowledge graphs. As an im-
portant graph representation technique in deep learning, graph neural networks (GNNs) perform
well in knowledge graph completion, but most existing graph neural network-based knowledge
graph completion methods tend to aggregate neighborhood information directly and individually,
ignoring the rich hierarchical semantic structure of KGs. As a result, how to effectively deal with
multi-level complex relations is still not well resolved. In this study, we present a hierarchical
knowledge graph completion technique that combines both relation-level and entity-level attention
and incorporates a weight matrix to enhance the significance of the embedded information under
different semantic conditions. Furthermore, it updates neighborhood information to the central en-
tity using a hierarchical aggregation approach. The proposed model enhances the capacity to cap-
ture hierarchical semantic feature information and is adaptable to various scoring functions as de-
coders, thus yielding robust results. We conducted experiments on a public benchmark dataset and
compared it with several state-of-the-art models, and the experimental results indicate that our pro-
posed model outperforms existing models in several aspects, proving its superior performance and
validating the effectiveness of the model.

Keywords: knowledge graph completion; hierarchical semantic feature; graph neural network

1. Introduction

In recent years, the exponential growth of information technology and data resources
has generated significant interest in organizing and processing data effectively. Conse-
quently, in 2012, Google introduced the concept of knowledge graphs, which have re-
ceived widespread attention. In essence, a knowledge graph is a semantic network that
stores structured knowledge as triples. Each triple is a fact pair consisting of (head entity,
relation, tail entity) or (h,r,t). For example, (The Great Wall, IsLocatedIn, China).

Knowledge graphs have revolutionized many solution paradigms in natural lan-
guage processing and bolstered numerous downstream applications of artificial intelli-
gence. Representative examples include recommender systems [1], question answering
[2], and dialogue systems [3]. Although knowledge graphs such as FreeBase [4], YAGO
[5], and WordNet [6] have incorporated millions of triples, they are still not enough to
meet demand, as modern society continues to evolve and knowledge expands dramati-
cally [7]. Consequently, this prompts us to undertake the task of predicting missing links,
termed knowledge graph completion or link prediction.

One prevalent technique for complementing knowledge graphs is via knowledge
graph embedding. Typically, this technique involves utilizing the existing fact triples in
the knowledge graph as a foundation, and embedding entities and relations into low-
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dimensional vectors to obtain their knowledge representation. Ultimately, the trustwor-
thiness of each fact triple is assessed by optimizing a scoring function. Knowledge graph
embedding models can be classified into three categories: translation distance models [8-
11], bilinear models [12-15], and neural network models [16-19]. While these models have
achieved impressive performance, they neglect significant semantic information, such as
graph structure information. As a result, graph neural networks (GNNs) have emerged.
GNN-based models are capable of effectively capturing graph information and propagat-
ing it hierarchically through various graph aggregation mechanisms [20,21] to obtain the
corresponding entity embeddings. For instance, CompGCN [22] suggests constructing an
encoder—decoder framework in knowledge graph complementation utilizing the excep-
tional aggregation capability of a GCN as an encoder, and then utilizing a convolutional
neural network (CNN) as a decoder for scoring purposes.

Although current graph neural networks have made considerable progress in aggre-
gating graph information, they still lack the ability to extract diverse semantic hierarchies
of graphs. An example of a graph for Harry Potter and its associated characters can be seen
in Figure 1. The entity Harry Potter has four distinct relations: friend_of, enemy_of, teacher_
of, and married. When the entity Harry Potter is paired with a particular relation, the effect
varies depending on the different semantic characteristics of the relation. Different rela-
tions hold various levels of importance for the central entity, as seen in this example map-
ping where the friend_of relation is stronger for Harry Potter than the married relation.
Moreover, distinct entities within the same relation also hold different levels of signifi-
cance for the central entity. Different individuals who are connected to Harry Potter
through the friend_of relation are {Ron Weasley, Hermione Granger, Neville Longbottom}.
However, our focus will be primarily on the first two protagonists. Furthermore, it should
be observed that the significance of an entity varies in various triple compositions. For
instance, Ron Weasley has a different semantic importance when he is linked to Hermione
Granger as a tail entity in a married relation than when he is linked to Harry Potter as a head
entity in a friend_of relation.

Ginny Weasley

married

friend_of
Harry Potter

teacher_of friend_of

Neville
Albus Dumbledore Longbottom

Figure 1. An illustrative example of a knowledge graph. Centre entity connects different tail entities
through different relations.

enemy_of

Ron Weasley Lord Voldemort

married

Hermione
Granger

teacher_of teacher_of

In this paper, we present a novel Hierarchical Perceptual Graph Attention Network
(HPGAT) that uses hierarchical attention to aggregate information from neighborhood
entities and relation features. Initially, the attention mechanism [23,24] at the relation level
combines the features of the central entity and the relations to create entity—relation vector
embedding. Subsequently, the attention coefficients for each relation are acquired through
the attention mechanism. For each entity involved in a particular relation under the central
entity, the entity-level attention mechanism combines the features of the relation and dif-
ferent entities, creating relation—entity vector embedding. Then, entity attention is calcu-
lated, and the attention coefficients for each triple level can be obtained. Finally, the vector
embedding of the central entity is updated by aggregating the feature information from
each neighborhood triple in a hierarchical manner.

The contributions of our work are summarized as follows:
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e We propose HPGAT, which is based on the attention mechanism that aggregates in-
formation by learning the hierarchical structure information in a given knowledge
graph and the importance of entities and relations in different semantics.

e Weimplement HPGAT, which can hierarchically aggregate neighborhood feature in-
formation through entity-level attention and relation-level attention and obtain se-
mantic weights of entities under different triples through weight matrices to obtain
more accurate central entity embeddings.

e  We conducted a number of comparison and ablation experiments on different da-
tasets to validate the effectiveness of our model. The experimental results show that
our model HPGAT outperforms the state-of-the-art models in knowledge graph com-
plementation, demonstrating the effectiveness of the hierarchical structure for
knowledge graph complementation.

2. Related Work
2.1. Knowledge Graph Embedding

The principal objective of embedding knowledge graphs is to master the technique
of representing entities and relationships within a low-dimensional, distributed frame-
work [25]. Broad classifications of these models include those based on translational dis-
tances, those that employ semantic matching techniques, and those that utilize neural net-
work architectures. For every triple (h,7,t), the translation distance model interprets the
relationship r as a transformation that maps the head entity h to the tail entity t. TransE
[8], an initial portrayal of such models, roughly depicts each tripleby h + r =~ t. However,
TransE [8] exhibits limitations in its capacity to handle intricate relational patterns, includ-
ing one-to-many, many-to-one, and many-to-many associations. Consequently, several
derived models such as TransH [9], TransD [10], and TransR [11], among others, attempt
to project the representations of entities and relations onto alternative spaces in order to
address the challenge of representing complex relations.

Semantic models evaluate the likelihood of a fact represented as a triple by employ-
ing a scoring function based on similarity, which aligns the potential meanings of both
entities and relationships within the vector space. The bilinear model known as RESCAL
[12] pioneered this approach using tensors and matrices to encapsulate entities and rela-
tionships, respectively. Subsequent advancements based on RESCAL’s framework have
led to the development of models like ComplEx [15], Distmult [13], and HolE [14].

Neural network models consist of neural tensor networks (NTNs) [19] and convolu-
tional neural network-based models. Among these, NTN [19] maps entities onto an input
layer and integrates the embeddings of both head and tail entities by employing a distinct
relational tensor. This tensor is utilized as input to calculate the score of the nonlinear
layer. Convolutional neural networks offer efficient parameters and fast training, making
them widely used in KGE. Convolutional embedding (ConvE) [16] produced outstanding
outcomes via feature filters on reshaped feature matrices and relational embeddings. Con-
volutional knowledge base embedding (ConvKB) [18] enhances contemporary models by
its ability to encapsulate global relationships and knowledge within its framework. Mean-
while, InteractE [26] augments the efficacy of ConvE by employing feature alignment,
square reshaping, and the use of circular convolution to refine its performance. DBKGE
[27] works by dynamically tracking the semantic representation of entities over time in a
joint metric space and making predictions into the future.

2.2. Graph Neural Network Model

To overcome the constraints of traditional neural network structures (e.g., CCN) that
can exclusively handle Euclidean data, researchers have developed graph convolutional
neural networks (GCNs) [20]. These networks assign identical weight to each entity and
carry out convolutional operations on its neighborhood. In contrast, R-GCNs [28] employ
specific relational transformations during neighborhood aggregation, thereby
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demonstrating their efficacy in link prediction and entity classification. KBGAT [29] learns
GAT-based embedding and introduces relational features, enabling it to capture richer
multi-hop neighborhood feature information. In contrast, CompGCN [22] possesses a ge-
neric framework and uses a composition-based GCN as an encoder and ConvE [16] as a
decoder, which allows for the simultaneous embedding of both entities and relations in
KG. However, the current models concentrate solely on the feature information of entities
and relations and fail to consider the elaborate hierarchical structure of the graph. This, in
turn, results in them being unable to efficiently adapt to the hierarchical semantics be-
tween entities and relations during feature embedding. In this paper, we propose a GNN
framework that utilizes the hierarchical attention mechanism. Our proposed framework
and experimental outcomes are discussed in Section 3 and Section 4, respectively.

3. The Proposed HPGAT

In this section, we present a comprehensive description of HPGAT. The overall archi-
tecture is depicted in Figure 2. HPGAT comprises three components: (1) relation-level at-
tention; (2) entity-level attention; and (3) hierarchical-based information aggregation. The
first step in relation-level attention involves combining the features of entities and rela-
tions. Entity-level attention involves the partial aggregation of semantic information via
entity paths that are connected to relations. Finally, hierarchical aggregation integrates
entity-level attention and relation-level attention for propagating features.
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Figure 2. The overall structure of HPGAT. The HPGAT model is structured around three core
modules: (1) relation-level attention, (2) entity-level attention, (3) hierarchical-based information
aggregation. Firstly, the corresponding attention scores are calculated by relation-level attention
and entity-level attention; then, the vector representation of the central entity is updated by infor-
mation aggregation, and finally it is fed into the decoder.

3.1. Relation-Level Attention

In a knowledge graph, a particular entity’s neighborhood structure can comprise one
or more relations, and the significance of various relations in representing that entity var-
ies considerably. Thus, the aggregation of each entity’s neighborhood relation features
directly is unsuitable. Consequently, we propose leveraging the attention mechanism for
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merging the semantic properties of assorted relations with the semantic data of the entity
to derive its attention coefficient. In our framework, a knowledge graph is represented as
G = (&R, T), where € is the set of entities, R denotes relations, and T constitutes the
set of edges connecting these entities. Each edge, denoted as (h,r,t), signifies the exist-
ence of a relation r € R from entity h to t. Following previous works [22,28], we extend
T and R with homologous self-referential and inverse relations.

At this point, the edges and relations are extended as follows:

T =T u{tr LR)|(hrt) e{THU{(h LhIheELR =RURy, U{L}

where R, = {r™'|r € R} and L denote the inverse and self-loop relations, respectively.
To aggregate feature information for entity—neighborhood relations and distinguish
between different weights for the same entity acting as head and tail, it is intuitive to learn
a separate weight matrix for each entity. Additionally, we propose using special weights
for relations to extract relation-specific features.
HPGAT obtains the embedding my, of the entities and relations by splicing them
and subsequently feeds it as input to the attention layer.

my, = W, [Wye,||W,r] 1)

where || denotes the concatenation operation, and e, and r are the embeddings of en-
tities and relations, respectively. W, € R% and W, € R% represent the trainable weight
matrices of entities and relations, respectively, and W, € R%0x2do signifies the linear
transformation matrix which maps the embedding vectors of entities-relations into a vec-
tor space to facilitate the learning of embedded features effectively.

At the attention layer, activation values of the embedding vectors are obtained
through a linear transformation matrix. The LeakyReLU nonlinear activation function is
then applied to acquire the attention value score.

sy = LeakyReLu(W,my,.) (2)

To ensure the comparability of attention values, we apply the SoftMax function to the
attention value, resulting in the attention coefficient.

exp(Snr)
Zr’e]\/’h exp(shr’)

Ay = softmax,(Sp,) =

®)
where %V}, denotes the neighborhood of entity h.

3.2. Entity-Level Attention

After aggregating the relations, we notice that when an entity connects different en-
tities through a specific relation, the importance of each entity to the central entity may be
different, which leads to the fact that the process of aggregating the information by con-
sidering all the entities as having the same importance cannot effectively extract the hier-
archical relations in the semantic structure. Therefore, to obtain more complete hierar-
chical semantic information, it is necessary to distinguish the importance characteristics
of different entities. To solve these problems, we propose an entity-level attention mecha-
nism and apply the same weight matrix to distinguish the semantic features of head and
tail entities.

We partition the entities for the different entities under the action of a given relation
and splice the relation with the entities under the action of the relation to obtain the feature
embedding c},.

Che = Wa[Wor||Wee,] 4)

where W; € R%*2d jg the linear transformation matrix and W, and W, € R% are the
trainable weight matrices for relations and entities, respectively. e; is the embedding of
entities.
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At the entity-level attention layer, we similarly use a nonlinear activation function to
obtain an attention score.

exp(LeakyReLu(cr,))
Ye'eny, exp(LeakyReLu(cy,,))

Bre = softmax(cy,) = ®)
where WV, denotes the tail entity of entity h under relation r.

While hierarchical attention is effective in extracting hierarchical information from
the graph structure, it is crucial to avoid the model paying excessive attention to such
features and neglecting the data’s feature information during the training process. As a
solution, we introduce a message module that transmits all feature information, mitigat-
ing the issue of weakened feature information due to the model’s over-attention to hier-
archical structures.

Ghe = WaWyep|[Wor||Wee,] (6)

where W, € R%*3%0 is the linear transformation matrix.

3.3. Hierarchical-Based Information Aggregation

Updated embedded representations are obtained through information aggregation,
which involves aggregating local information to central entities. In hierarchical structures,
for the purpose of obtaining updated entity embeddings, it is preferred to perform an
aggregation of entities and relations in a stepwise manner.

e;l =0 Z Z ahrshrﬁi:t(:;w + g;uf (7)

TENp LEN 1

Multi-head attention is suggested in [30] to stabilize the learning process and enhance
performance. In our study, we utilize multi-head attention to facilitate the model in cap-
turing semantic features from various levels of the relational parameter space, resulting
in an improved model fit. We transition the tandem operation to an averaging operation
for reduced computational complexity. Consequently, the embedding of the final message
is calculated as follows:

K

, 1
eh=olz). D D, akmibitet+ gy ®

K=1TENp tEN

3.4. Decoder

In our work, we used TransE, DistMult and ConvE as decoders. Among these, ConvE
exhibited superior performance. ConvE captures complex interactions between entities
and relations by using convolutional neural networks. When processing a given
knowledge graph triple (h,7,t), ConvE first reshapes the embedding vectors of the head
entities and relations to form a two-dimensional tensor, and then performs a standard
convolutional operation on the reshaped tensor to compute the score of the knowledge
triples. In ConvE [16], the scores of knowledge triples are:

f(h,7,t) = ReLU(vec(ReLU([en; 7] * )W )e, )

where e, and r are 2D reshapings of h and r. w denotes a set of filters and * denotes
the convolution operator. vec(-) is a vectorization function, and W is the weight matrix.
To train the model, standard cross entropy loss with label smoothing is optimized.

1
L= —ﬁz(ti log(p) + (1 -t log(1 = py)) (10)

where t; is the label of triple i and p; is the corresponding score.
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4. Experiments
To assess the efficacy of our proposed model, we carried out numerous experiments

and presented comprehensive analysis results. Following this, we assessed the model’s
ability to predict links, comparing it against the baseline model, and confirmed its validity.

4.1. Experimental Setup
4.1.1. Dataset

Our model is evaluated for validation on two open-source datasets: WN18RR [16]
and FB15K-237 [30], specifically. One disadvantage of WN18 [8] and FB15K [8] is test set
leakage, which the WN18RR and FB15K-237 datasets addressed by eliminating inverse
relations. The WN18RR dataset consists of 41K entities and 11 relations from WordNet.
On the other hand, FB15K-237 contains 15K entities and 237 relations from Freebase. De-
tailed information about the two datasets can be found in Table 1.

Table 1. Dataset statistics of FB15k-237 and WN18RR.

Dataset #Entities #Relations  #Training #Validation #Test
WN18RR 40,943 11 86,835 3034 3134
FB15k-237 14,541 237 272,115 17,535 20,466

4.1.2. Evaluation Metrics

We use several evaluation metrics to assess the model effectiveness, among which are
mean rank (MR), mean reciprocal rank (MRR), and Hits@n (for n =1, 3, and 10), respec-
tively. In addition, we predicted the head entity by incorporating the inverse relation [31].

The formulas for MRR and MR are shown below, respectively.

Is|
1 1 1 1 1 1
MRRz—Z—:— .t 1
|S] 4 - rank; |S| (rank1 + rank, e rank|s|> (b
i=

Is|

1 1
MR = EZ rank; = m(mnk1 + rank, + -+ + rankg)) (12)
i1

where S is the set of triples, |S| is the number of triple sets, and rank; is the link predic-
tion rank of the iy, triple. For MRR, alarger value corresponds to a better modeling effect,
and the opposite is true for MR.

Hits@n is the average proportion of triples with rank less than n in the link predic-
tion. This is derived by

sl

1
Hits@n = mz I (rank; < n) (13)
i=1

where I(-) is the indicator function. The value of the function is 1 if the condition is true
and 0 if the condition is false. A larger value corresponds to a better modeling effect.

4.1.3. Comparison Models

We compared our proposed model with many existing models so as to derive the
validity and excellence of our model in a comparative test comprising translational dis-
tance models (TransE [8], RotatE [32], MuRP [33] and PairRE [34]), semantic models
(DistMult [13] and ComplEx [15]), neural network models (ConvE [16], ConvKB [18],
DeepER [35] and InteactE [26]), and GCN-based models (R-GCN [28], MRGAT [36] and
CompGCN [29]).
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4.1.4. Parameter Settings

We implemented the entire model in Pytorch (https://pytorch.org/). For the optimizer
of the model, we used Adam to obtain the best results. For the hyperparameters of the
model, we obtained them through grid search, and the hyperparameters that gave us bet-
ter results were as follows: learning rate was 0.001, label smoothing was 0.1, and input
and output dimensions were 100 and 200, respectively. On the FB15k-237 dataset, we used
two attention headers with a batch size of 2048, whereas on WN18RR we used one atten-
tion header with a batch size of 256. We initialized the model parameters with Xavier.

4.2. Performance of HPGAT

This section provides a summary of how HPGAT compares to the baseline model,
and Table 2 presents the MRR and Hits@n results on the FB15k-237 and WN18RR da-
tasets. The baseline model scores were obtained from previous papers [22,26,32] and the
respective source papers of the models. The best results are in bold, and the second-best
results are underlined. HPGAT improves the MRR on FB15k-237 by about 3% over
CompGCN and by about 2% over Hit@10, showing the effect of leveraging the hierar-
chical structure of the knowledge graph. Compared to the other baselines, HPGAT out-
performs all other methods in all five metrics on FB15k-237 and in four out of five metrics
on WN18RR. Our study shows that our proposed HPGAT model outperforms existing
link prediction models, demonstrating its effectiveness.

Table 2. Link prediction results of HPGAT on FB15k-237 and WN18RR. The best results are in
bold and the second-best results are underlined.

Models FB15k-237 WN18RR
MRR Hits MRR Hits
@1 @3 @10 @1 @3 @10
TransE 0257 0174 0284 0420 0.182 0.027 0295 0444

DistMult 0241 0155 0263 0419 0430 0390 0.440 0.490
ComplEx 0247 0158 0275 0428 0440 0410 0460 0.510

RotatE 0338 0241 0375 0533 0476 0428 0492 0.571
ConvE 0325 0237 035 0501 0430 0400 0440 0.520
ConvKB 0243 0155 0371 0421 0249 0.057 0417 0524
R-GCN 0249 0151 0264 0417 0.123 0.080 0.137 0.207
MuRP 0335 0243 0367 0518 0481 0440 0495 0.566
PairRE 0351 025 0387 0.544 - - - -
MRGAT 0355 0.266 0392 0539 0481 0449 0495 0544
DeepER 0345 0255 0379 0525 0476 0446 0490 0.535

InteractE 0354 0263 038 0535 0463 0430 0483 0.528
CompGCN 0355 0264 039 0535 0479 0443 0494 0.546
HPGAT(ours) 0365 0.276 0.398 0.545 0.485 0445 0497 0.567

4.3. Evaluation on Different Relation Categories

For intricate relations, our investigation centers on 1-N, N-1, and N-N relations (as
illustrated in Table 3). As FB15k-237 possesses a more abundant variety of relation types
and a denser graph structure, it was selected for comparison with InteractE [26], RotatE
[32], and COMPGCN [22]. Our findings demonstrate that HPGAT surpasses the baseline
model in most relation types. We have observed that RotatE performs better in simple 1-1
relations, presumably due to its capacity to capture diverse relational patterns like sym-
metry/asymmetry, inversion, and combination. In contrast, our preference is to capture
the complex hierarchical relations within the graph and extract the rich underlying
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associations in entities and relations. This accounts for the superiority of our modelling
results compared to others.

Table 3. Results of link prediction by relation category on FB15k-237 dataset. Following [9], rela-
tions were classified into four categories: one-to-one (1-1), one-to-many (1-N), many-to-one (N-1),
and many-to-many (N-N). The best results are in bold.

InteractE RotatE COMPGCN HPGAT
MRR He@10 MRR He@10 MRR He@10 MRR He10
1-1 0.386 0.547 0.498 0.593 0.457 0.604 0.461 0.598
1-N 0.106 0.192 0.092 0.174 0.112 0.190 0.110 0.213

Head Pred

N-1 0.466 0.647 0471 0.674 0.471 0.656 0.472 0.659
N-N 0.276 0.476 0.261 0.476 0.275 0.474 0.278 0.483
1-1 0.368 0.547 0.484 0.578 0.453 0.589 0.457 0.625
Tail Pred 1-N 0.777 0.881 0.749 0.674 0.779 0.885 0.789 0.892
N-1 0.074 0.141 0.074 0.138 0.076 0.151 0.077 0.146
N-N 0.395 0.617 0.364 0.608 0.395 0.616 0.400 0.621

4.4. Evaluation on Different Decoders

Working with various decoders can enhance the robustness of a model. Therefore,
we implemented several decoders: TransE, DistMult, and ConvE. The statistical results
are given in Table 4. We evaluated the impact of different scoring functions on the model,
and among all the decoders, ConvE yielded the best outcomes. We conclude that when
used in conjunction with graph convolutional networks, ConvE can extract graphical
structure information, resulting in an improved model performance.

Table 4. Performance of link prediction task evaluated on FB15k-237 dataset. Similar to COMPGCN,
X +M (Y) denotes that method M is used for obtaining entity (and relation) embeddings with X as
the scoring function. Y denotes the composition operator used. The best results are in bold.

Scoring Function(X)

TransE DistMult ConvE

Methods MRR MR Hit@10 MRR MR Hit@l0 MRR MR Hit@10
X 0.294 357 0.465 0.241 354 0.419 0.325 244 0.501
X+D-GCN 0.299 351 0.469 0.321 255 0.497 0.344 200 0.524
X+W-GCN 0.264 1520 0.444 0.324 229 0.504 0.244 201 0.525
X+COMPGCN(sub) 0.335 194 0.514 0.336 231 0.513 0.352 199 0.530
X+COMPGCN(Mult) 0.337 233 0.515 0.338 200 0.518 0.353 216 0.532
X+COMPGCN(Corr) 0.336 214 0.518 0.335 227 0.514 0.355 197 0.535
X+HPGAT (ours) 0.341 185 0.522 0.339 230 0.516 0.365 216 0.545

4.5. Multi-Head Attention Mechanism

We used multi-head attention in our model to stabilize the learning process and im-
prove performance. To explore the effect of different numbers of attention heads on the
results, we used one, two and three attention heads for comparison experiments, and the
results are shown in Figure 3. The results show that two attention heads are recommended
for optimal performance with the FB15k-237 dataset. With the WN18RR dataset, the more
attention heads the worse the result is, and when there is one, the best result is achieved.
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Figure 3. The effect of different numbers of attention heads on experimental results when using
multiple heads of attention in a model.

4.6. Ablation Study

As our hierarchical structure outperforms various baseline models with various scor-
ing functions, we investigated the impact of the various modules in the model to provide
a comprehensive comparative analysis.

To reflect the different levels of contribution of neighboring relations and entities to
the central entity, we designed a relation-level attention mechanism versus an entity-level
attention mechanism and added a direct aggregation module for feature information.
Then, is it crucial to consider the importance information brought by different entities and
relations and use the propagation mechanism of such feature information to deliver mes-
sages? To this end, we remove the relation-level attention mechanism, entity-level atten-
tion mechanism, and feature information propagation mechanism, respectively, and con-
struct several variants of the model, which are called HPGAT, o —a, HPGAT, /g c—a, and
HPGAT,, o ;. For easy comparison, we put the results of the full model with each variant
into Table 5 to show them together. Compared with the full model, HPGAT,, , -, obtains
the worst results, with a substantial decrease in model performance, while HPGAT,, /, -4
and HPGAT,,¢—; also show different degrees of performance degradation. We analysed
the following reasons: (1) The semantic importance between different relations cannot be
transmitted and learned autonomously by the neural network due to the missing relation-
level attention mechanism. (2) The entity-level attention mechanism is based on relation-
level attention, which further divides the past semantic information so that finer-grained
neighborhood information can be aggregated. When entities are aggregated with equal
feature importance, it results in neighborhood features not being able to participate in the
aggregation process in a complete way. (3) The feature information transfer mechanism is
based on the assumption that the neural network learning process may pay too much
attention to the hierarchical information, and the lack of this process leads to the fact that
part of the feature information may be selectively ignored during the learning process,
which affects the performance of the model.

Table 5. Result of ablation study.

Model MRR Hits@1 Hits@3 Hits@10
w/or-a 0.355 0.264 0.381 0.531
w/o e-a 0.360 0.271 0.392 0.539
w/o f-i 0.359 0.271 0.391 0.539
HPGAT 0.365 0.276 0.398 0.545

On average, when compared with COMPGCN, our model achieved a significant per-
formance upgrade with all three decoders. Furthermore, our hierarchical structure grants
the model access to structural information and potential hierarchical characteristics of en-
tities and relations. Furthermore, the weights assigned to entities and relations accurately
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convey semantic information in different contexts during the aggregation process, result-
ing in superior performance compared to the baseline model across various metrics.

5. Conclusions

In this paper, we introduce the Hierarchical Perceptual Graph Attention Network
(HPGAT) for the link prediction task. HPGAT utilizes attention mechanisms to capture
hierarchical semantic information in complex graphs. Our proposed model utilizes entity-
level attention, relation-level attention, and hierarchical aggregation to selectively gather
structural information at each level, merge corresponding information features, and
weigh them accordingly. HPGAT consolidates entity and relation features, highlighting
the feature information of entities at different semantic levels to maximize the exploitation
of the graph’s structural information. The experiments show the efficacy of our suggested
model in predicting links. We plan to explore linkage information with the hierarchical
aggregation of entities and further optimized relations in the future.
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