

International Journal of Environment and Climate Change

Volume 14, Issue 2, Page 750-770, 2024; Article no.IJECC.113403 ISSN: 2581-8627 (Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)

Standardization on Effect of Storage and Packaging Materials on Shelf Life and Quality of Ridge Gourd (*Luffa acutangula* L.)

K. Sushma ^{a++*}, M. Padma ^{b#}, M. Rajkumar ^{c†}, Ch. Raja Goud ^{d‡}, B. Naveen Kumar ^{e^} and P Gouthami ^{f##}

^a Department of Vegetable Science, College of Horticulture, Sri Konda Laxman Telangana State Horticultural University, Hyderabad, India.

 ^b Sri Konda Laxman Telangana State Horticultural University, Mulugu, Siddipet, Telangana, India.
 ^c Fruit Research Station, Sri Konda Laxman Telangana State Horticultural University, Sangareddy, Telangana, India.

^d Horticultural Polytechnic, Sri Konda Laxman Telangana State Horticultural University, Adilabad, Telangana, India.

e (SSAC), Grape Research Station, Sri Konda Laxman Telangana State Horticultural University, Rajendranagar, Telangana, India.

^f College of Horticulture, Sri Konda Laxman Telangana State Horticultural University, Mojerla, Telangana, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJECC/2024/v14i23987

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/113403

> Received: 15/12/2023 Accepted: 20/02/2024 Published: 22/02/2024

Original Research Article

⁺⁺ Ph. D Scholar;

[#] Senior Professor (Hort.) Retd. and Former Dean of PG Studies;

[†] Principal Scientist (Hort.) & Head;

[‡] Vice-Principal;

[^] Scientist;

^{##} Assistant Professor;

^{*}Corresponding author: E-mail: kothasushma20@gmail.com;

Int. J. Environ. Clim. Change, vol. 14, no. 2, pp. 750-770, 2024

ABSTRACT

An experiment was conducted on "Standardization on effect of storage and packaging materials on shelf life and quality of ridge gourd (*Luffa acutangula* L)" during *Kharif* 2021 and Summer 2022 on shelf life and quality of ridge gourd at PG laboratory, College of Horticulture, Rajendranagar. The experiment design is factorial completely randomized design with eight packaging materials as factor-1 and three elite treatments as factor-2 with a total of twenty four (24) treatments replicated thrice. The results revealed that, the Polyethylene 200 gauge with 2% vent and Vermicompost 12 t/ha + Arka microbial consortium recorded lowest physiological loss in weight, titrable acidity and highest shelf life, TSS, ascorbic acid, firmness, chlorophyll content with increase in days of storage.

Keywords: Ridge gourd; packaging materials; shelf life; storage.

1. INTRODUCTION

Ridge gourd (Luffa acutangula L) which is also called as silky gourd, kalitori. It belongs to family Cucurbitaceae and is native to India. It can be found throughout the tropical and subtropical regions and is cultivated for its green tender fruits during spring-summer and rainy seasons when the temperature ranges between 20 - 32°C. The unripe fruits are consumed as a cooked vegetable and nutritionally the fruits are rich in several minerals and vitamins. Each 100 g of edible fresh fruit contains around 5 mg vitamin C. 0.01mg riboflavin, 33 µg carotene, 92.5% moisture, 0.5g protein, 0.5 g fat, 3.4 g calcium, carbohvdrate. 18 mg 26 mg phosphorous and 0.5 mg iron [1] and it is an excellent blood purifier, possessing laxative properties, beneficial for diabetes, jaundice and weight loss.

The primary objective of packaging fruits and vegetables is to protect them during transportation distribution storage, and from deterioration, which may be physical, chemical or biological. Packaging is hence provided at the point of production or at distribution centers. Though packaging constitutes the last link in the chain of production, storage, marketing and distribution. It still plays an important role in delivering the the end contents safely to consumers. Increase in production can have an impact on the consumer only when good quality produce available to them, at an economical is price. Approximately 20 to 30 percent of vegetables decay or deteriorate during distribution and storage, as was previously said. This enormous wastage, which results in product scarcity and higher prices, attributed to improper handling methods, poor packaging,

and inadequate transportation facilities [2]. Packaging has a great significance in reducing wastage of fresh fruits and vegetables. Thus, research was done to find out how packaging materials affected the ridge gourd's shelf life.

2. MATERIALS AND METHODS

The laboratory experiment was conducted during Kharif 2021 and Summer 2022, and the experimental design followed is Factorial consisting of 24 treatments which CRD replicated thrice at PG Laboratory, College of Horticulture, Rajendranagar to standardize the suitable packaging material on shelf life of ridge gourd at ambient temperature. Among the 24 treatments, factor-1 consists of 8 treatments *i.e.*, P₁: Polyethylene 200 guage with 1% ventilation, P2: Polyethylene 200 guage with 2% ventilation, P3: CFB box (1% vent), P4: Newspaper, P5: Polyethylene + CFB box (1% vent), P6: Newspaper + CFB box (1% vent), P7: Wetted gunny bag, P8: Without packing and three treatments in **F**1: factor-2 First best viz., from first experiment (Among organic manure T7-Vermicompost (12t/ha) Arka microbial + consortium). F₂: First best from second RDF+ experiment (T₁-Trichoderma viride), F₃: First best from third experiment (T₅-RDF+ Silver black polythene sheet). The physico-chemical parameters like Physiological loss in weight (%), Shelf life (days), TSS (°Brix), Ascorbic acid content (mg/100g),(kg/cm²), Titratable acidity (%), Firmness Chlorophyll (DA content of fruit meter reading) data were recorded. The data were analyzed statistically and interpreted.

3. RESULTS AND DISCUSSION

3.1 Physiological Loss in Weight (%)

The effect of packaging materials and elite treatments on physiological loss in weight (PLW) (%) in ridge gourd stored at room temperature are presented in Tables 1 and 2.

The per cent PLW values showing an increasing trend from 3rd day to 7th day. There was a significant difference observed among all the treatments. Interaction effect between packaging materials and factors was also significant.

Kharif season: On 3^{rd} day of storage, P₂ (Polyethylene 200 guage with 2% vent) recorded the least PLW (7.71) followed by P₁ (Polyethylene 200 guage with 1% vent) (8.24) and the highest PLW (15.32) was recorded in P₈ (without packing).

With respect to the elite treatments, the lowest PLW (9.95) was recorded in F₁-First best from first experiment T₇- Vermicompost (12t/ha) + Arka microbial consortium and the highest PLW (11.41) was recorded in F₃-First best from third experiment (T₅- RDF+ Silver black polythene sheet).

Among interactions, effect between different packaging materials and elite treatments, P_2F_1 -Polyethylene 200 guage with 2% vent+Vermicompost (12t/ha) + Arka microbial consortium recorded significantly the least PLW (6.84) followed by P_1F_1 (7.59), while the highest PLW (15.85) recorded in P_8F_2 - Control.

Summer season: On 3^{rd} day of storage, P₂ (Polyethylene 200 guage with 2% vent) recorded the least PLW (7.73) followed by P₁ (Polyethylene 200 guage with 1% vent) (8.19) and the highest PLW (15.33) was recorded in P₈-(without packing).

With respect to the different elite treatments, the lowest PLW (10.08) was recorded in F_1 -First best from first experiment T_{7} - Vermicompost (12t/ha) + Arka microbial consortium and the highest PLW (10.70) was recorded in F_3 : First best from third experiment (T_5 - RDF+ Silver black polythene sheet).

Among interactions, effect between different packaging materials and elite treatments, P_2F_1 -Polyethylene 200 guage with 2% vent+Vermicompost (12t/ha) + Arka microbial

consortium recorded significantly the least PLW (7.06) followed by P_1F_1 (7.65), while the highest PLW (15.62) was recorded in P_8F_2 - Control (15.62).

The mean values recorded among the PLW of ridge gourd fruits at 5th and 7th day at storage during *Kharif* and Summer season. A similar trend of increasing in respect of PLW was observed.

At room temperature, there was a gradual increase in physiological loss in weight percentage with increase in days of storage. The reduction in physiological loss in weight of ridge gourd stored in ventilated polythene bags arrest moisture loss and maintained turgidity. However, oxygen depletion, CO_2 accumulation occurred in polythene bags resulting in low rate of respiration [3]. The similar result was observed by Attri et al. [4] in chilli and Mangal et al. [5] in brinjal.

3.2 Shelf Life (days)

Shelf life of ridge gourd with the effect of packaging materials and elite treatments stored at room temperature was significant and are presented in the Table 3.

Kharif season: Higher shelf life (6.34) was recorded in P_2 (Polyethylene 200 guage with 2% vent) which was on par with P_1 (Polyethylene 200 guage with 1% vent) (6.23) and lower shelf life (4.08) was recorded in P_8 -(without packing).

With respect to the different elite treatments, the highest shelf life (6.94) was recorded in F₁-First best from first experiment T₇- Vermicompost (12t/ha) + Arka microbial consortium and the lowest shelf life (4.66) was recorded in F₃-First best from third experiment (T₅- RDF+ Silver black polythene sheet).

Among interactions, effect between different packaging materials and elite treatments, P_2F_1 -Polyethylene 200 guage with 2% vent+Vermicompost (12t/ha) + Arka microbial consortium recorded significantly highest shelf life (7.83) followed by P_1F_1 (7.73), P_3F_1 (7.67), while the lowest shelf life was recorded in P_8F_2 (3.08).

Summer season: Higher shelf life (6.26) was recorded in P_2 (Polyethylene 200 guage with 2% vent) followed by P_1 (Polyethylene 200 guage with 1% vent) (6.09) and the lowest shelf life (3.97) was recorded in P_8 -(without packing).

Treatments				Ph	ysiological lo	ss in weight	(g)			
					Elite treat	ments (F)				
Packaging materials	3 rd day				5 th day			7 th day		
(P)	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F₃
P ₁	7.59	8.41	8.73	8.24	14.43	16.29	18.12	21.82	*	*
P ₂	6.84	7.63	8.66	7.71	13.75	15.02	17.16	21.19	*	*
P ₃	7.97	8.72	8.96	8.55	14.68	19.57	16.56	22.67	*	*
P ₄	12.84	15.36	13.17	13.79	19.87	*	*	*	*	*
P ₅	10.24	11.16	12.42	11.27	16.15	18.27	*	*	*	*
P ₆	11.49	12.03	13.59	12.37	18.34	*	*	24.54	*	*
P ₇	8.09	9.97	10.13	9.40	15.45	17.51	*	*	*	*
P ₈	14.50	15.85	15.61	15.32	21.54	*	*			
Mean	9.95	11.14	11.41							
	3 rd day									
	Factor (P)	Fac	tor (F)	P×F						
SEm±	0.09	0.06	6	0.16						
CD at 5%	0.27	0.16	5	0.46						

 Table 1. Effect of different packaging material and elite treatments on physiological loss in weight (g) in shelf life of ridge gourd during Kharif,

 2021

Treatments				Ph	ysiological lo	ss in weight (g)			
					Elite treat	ments (F)				
Packaging	3 rd day				5 th day			7 th day		
materials (P)	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
P ₁	7.65	8.27	8.65	8.19	14.39	17.19	18.92	24.66	*	*
P ₂	7.06	7.79	8.34	7.73	13.42	15.52	17.27	23.86	*	*
P ₃	7.98	8.53	8.78	8.43	14.92	*	19.35	*	*	*
P ₄	12.18	13.04	12.06	12.43	20.86	*	*	*	*	*
P₅	10.90	11.11	11.35	11.12	16.38	*	*	*	*	*
P ₆	11.87	11.33	11.56	11.59	19.47	*	*	*	*	*
P ₇	8.04	9.51	9.45	9.00	15.56	19.84	*	*	*	*
P ₈	14.95	15.62	15.43	15.33	22.88	*	*	*	*	*
Mean	10.08	10.65	10.70							
	3 rd day	/								
	Factor	· (P)	Factor (F)	P×F						
SEm±	0.09		0.05	0.15						
CD at 5%	0.25		0.15	0.44						

 Table 2. Effect of different packaging material and elite treatments on physiological loss in weight (g) in shelf life of ridge gourd during Summer,

 2022

Treatments		Shelf life (c	lays) <i>Khari</i>	if 2021	Treatments		Shelf life (d	lays) Sumi	mer, 2022
		Elite tr	eatments (F)			Elite	reatments	s (F)
Packaging materials (P)	F ₁	F ₂	F ₃	Mean	Packaging materials (P)	F ₁	F ₂	F ₃	Mean
P ₁	7.73	5.82	5.13	6.23	P ₁	7.65	5.11	5.51	6.09
P ₂	7.83	5.98	5.21	6.34	P ₂	7.79	5.75	5.23	6.26
P ₃	7.67	5.02	5.38	6.02	P3	6.83	4.95	5.15	5.64
P ₄	6.25	4.14	3.98	4.79	P ₄	6.22	3.43	3.76	4.47
P₅	6.46	5.19	4.75	5.47	P₅	6.39	4.42	4.99	5.27
P ₆	6.31	4.11	4.54	4.99	P ₆	6.28	4.17	3.89	4.78
P ₇	7.53	5.21	4.87	5.87	P ₇	6.46	5.02	4.65	5.38
P ₈	5.75	3.08	3.41	4.08	P ₈	5.63	3.02	3.27	3.97
Mean	6.94	4.82	4.66		Mean	6.66	4.48	4.56	
	Factor (P)	Factor	(F)	P×F		Factor (P)	Factor	r (F)	P×F
SEm±	0.05	0.03		0.08	SEm±	0.05	0.03		0.08
CD at 5%	0.13	0.08		0.23	CD at 5%	0.13	0.08		0.22

Table 3. Effect of different packaging material and elite treatments on shelf life (days) of ridge gourd during *Kharif*, 2021 and Summer, 2022

With respect to the different elite treatments, the highest shelf life (6.66) was recorded in F_1 -First best from first experiment T_7 - Vermicompost (12t/ha) + Arka microbial consortium and the lowest shelf life (4.48) was recorded in F_2 :First best from second experiment (T_1 - RDF+ *Trichoderma viride*).

Among interactions, effect between different packaging materials and elite treatments, P_2F_1 -Polyethylene 200 guage with 2% vent+Vermicompost (12t/ha+ Arka microbial consortium recorded significantly the highest shelf life (7.79) followed by P_1F_1 (7.65), while the lowest shelf life was recorded in P_8F_2 (3.02).

The extended shelf life observed with ventilated polyethylene bags may be due to optimum level of humidity and modified gaseous composition inside the bags which did not favour the growth of fungus, but in polyethylene bags without ventilation, which favours fungal growth leading to reduced storage life. These results are in confirmation with the results obtained by similar findings of Singh et al. [6] in bottle gourd.

3.3 Total Soluble Solids (^oBrix)

The effect of packaging materials and elite treatments in ridge gourd on total soluble solids stored at room temperature and are presented in the Tables 4 and 5.

Kharif season: Total soluble solids increased with the storage period at room temperature up to 7th day. There was a significant difference observed among all the treatments. Interaction effect between packaging materials and elite treatments was non-significant.

On the 1st day of storage, P_2 (Polyethylene 200 guage with 2% vent) recorded the highest TSS (4.55) which was on par with P_1 (Polyethylene 200 guage with 1% vent) (4.48) and the lowest TSS (3.99) was recorded in P_8 -(without packing).

On 3rd day P₂ (Polyethylene 200 guage with 2% vent) recorded the highest TSS (4.75) followed by P₁ (Polyethylene 200 guage with 1% vent) (4.62) and the lowest TSS (4.21) was recorded in P₈-(without packing).

With respect to the different elite treatments, the highest TSS (4.62, 4.71) was recorded in F_1 - First best from first experiment T_7 - Vermicompost

(12t/ha) + Arka microbial consortium and the lowest TSS was recorded in F_3 :First best from third experiment (T_5 - RDF+ Silver black polythene sheet) (4.05, 4.20) on 1st and 3rd day of storage respectively.

Among interactions effect, there was no significant difference between different packaging materials and elite treatments on 1st day, Whereas, on 3rd day there was significant difference observed among the interactions. The highest TSS (4.93) was recorded in P₂F₁-Polyethylene 200 guage with 2% vent+ Vermicompost (12t/ha) + Arka microbial consortium followed by P_1F_1 (4.82), P_2F_2 (4.78), while the lowest TSS (3.93) was recorded in P₈F₃- Control.

Summer season: Total soluble solids increased with the storage period at room temperature up to 7th day. There was significant difference observed among all the treatments. Interaction effect between packaging materials and elite treatments was non-significant.

On the 1st day of storage, P_2 (Polyethylene 200 guage with 2% vent) recorded the highest TSS (4.60) which was on par with P_1 (Polyethylene 200 guage with 1% vent) (4.50) and the lowest TSS (4.05) was recorded in P_8 -(without packing).

On 3^{rd} day, P_2 (Polyethylene 200 guage with 2% vent) recorded the highest TSS (4.78) which was on par with P_1 (Polyethylene 200 guage with 1% vent) (4.71) and the lowest TSS (4.26) was recorded in P_{8} -(without packing).

With respect to the different elite treatments, the highest TSS (4.60, 4.72) was recorded in F_1 - First best from first experiment T_7 - Vermicompost (12t/ha) + Arka microbial consortium and the lowest TSS was recorded in F_3 : First best from third experiment (T_5 - RDF+ Silver black polythene sheet) (4.12, 4.31) on 1st and 3rd day of storage respectively.

Among interactions effect, there was no significant difference between different packaging materials and elite treatments.

The mean values recorded among the TSS of ridge gourd fruits at 5th and 7th day at storage during *Kharif* and Summer season. A similar increasing trend in respect of TSS was observed.

Treatments							TSS (°Bı	rix)						
							Elite treatme	ents (F)						
Packaging	1 st day				3 rd day	/			5 th day	1		7 th day	1	
materials (P)	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
P ₁	4.74	4.49	4.22	4.48	4.82	4.61	4.43	4.62	4.99	4.83	4.55	5.02	*	*
P ₂	4.79	4.56	4.31	4.55	4.93	4.78	4.55	4.75	5.02	4.89	4.68	5.11	*	*
P ₃	4.70	4.35	4.17	4.41	4.75	4.57	4.28	4.53	4.94	4.79	4.53	4.98	*	*
P ₄	4.49	4.17	3.81	4.16	4.63	4.32	3.99	4.31	4.69	*	*	*	*	*
P₅	4.63	4.28	4.01	4.31	4.67	4.41	4.15	4.41	4.74	4.62	*	*	*	*
P ₆	4.54	4.21	3.97	4.24	4.64	4.5	4.07	4.40	4.71	*	*	*	*	*
P ₇	4.66	4.31	4.08	4.35	4.70	4.68	4.18	4.52	4.86	4.72	*	4.90	*	*
P ₈	4.43	3.76	3.79	3.99	4.57	4.13	3.93	4.21	4.64	*	*	*	*	*
Mean	4.62	4.27	4.05		4.71	4.50	4.20							
	1 st day				3 rd day	/								
	Factor	(P)	Factor (F)	P×F	Factor	· (P)	Factor (F)	P×F						
SEm±	0.04	`	0.02	0.06	0.04		0.02	0.06						
CD at 5%	0.10		0.06	NS	0.10		0.06	0.18						

Table 4. Effect of different packaging material and elite treatments on TSS (°Brix) in shelf life of ridge gourd during Kharif, 2021

Treatments							TSS (°B	srix)						
							Elite treatm	ents (F)						
Packaging	1 st day				3 rd day	/			5 th day	1		7 th day	1	
materials (P)	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
P ₁	4.70	4.53	4.27	4.50	4.91	4.77	4.46	4.71	5.01	4.89	4.54	5.07	*	*
P ₂	4.73	4.62	4.45	4.60	4.98	4.83	4.52	4.78	5.03	4.97	4.61	5.14	*	*
P ₃	4.68	4.47	4.23	4.46	4.82	4.64	4.41	4.62	4.95	*	4.67	*	*	*
P ₄	4.52	4.18	3.97	4.22	4.55	4.43	4.17	4.38	4.60	*	*	*	*	*
P₅	4.60	4.37	4.07	4.35	4.66	4.59	4.22	4.49	4.84	*	*	*	*	*
P ₆	4.58	4.26	4.02	4.29	4.63	4.48	4.20	4.44	4.79	*	*	*	*	*
P ₇	4.63	4.44	4.18	4.42	4.72	4.61	4.32	4.55	4.87	4.75	*	*	*	*
P ₈	4.33	4.05	3.76	4.05	4.51	4.11	4.15	4.26	4.58	*	*	*	*	*
Mean	4.60	4.37	4.12		4.72	4.56	4.31							
	1 st day				3 rd day	/								
	Factor	(P)	Factor (F)	P×F	Factor	r (P)	Factor (F)	P×F						
SEm±	0.04		0.02	0.06	0.04		0.02	0.06						
CD at 5%	0.10		0.06	NS	0.11		0.06	NS						

Table 5. Effect of different packaging material and elite treatments on TSS (°Brix) in shelf life of ridge gourd during Summer, 2022

Treatments						As	corbic acid	l (mg/100g)						
							Elite treatm	nents (F)						
Packaging	1 st day				3 rd day				5 th day			7 th day		
materials (P)	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
P ₁	13.75	12.59	12.40	12.91	13.64	12.51	12.31	12.82	13.50	12.29	12.01	12.36	*	*
P ₂	13.84	12.66	12.45	12.98	13.76	12.52	12.43	12.90	13.59	12.38	12.11	13.41	*	*
P ₃	13.70	12.57	12.23	12.83	13.59	12.49	12.20	12.76	13.48	12.21	11.82	12.25	*	*
P ₄	13.51	12.28	12.38	12.72	13.17	12.23	12.37	12.68	12.14	*	*	*	*	*
P₅	13.59	12.34	12.44	12.79	13.35	12.29	12.38	12.71	12.29	12.15	*	*	*	*
P ₆	13.50	12.31	12.43	12.75	13.33	12.22	12.33	12.70	12.20	*	*	*	*	*
P ₇	13.64	12.30	12.30	12.80	13.43	12.29	12.05	12.73	13.31	12.18	*	12.03	*	*
P ₈	13.22	12.20	12.65	12.69	13.11	12.12	12.74	12.66	12.07	*	*	*	*	*
Mean	13.59	12.40	12.41		13.30	12.33	12.37							
	1 st day				3 rd day									
	Factor	(P)	Factor (F)	P×F	Factor	(P)	Factor	P×F						
		. ,	()			. ,	(F)							
SEm±	0.11		0.07	0.19	0.11		0.06	0.18						
CD at 5%	NS		0.19	NS	NS		0.18	NS						

Table 6. Effect of different packaging material and elite treatments on ascorbic acid (mg/100g) in shelf life of ridge gourd during Kharif, 2021

Treatments						As	corbic acid	l (mg/100g)						
							Elite treatm	nents (F)						
Packaging	1 st day				3 rd day				5 th day			7 th day		
materials (P)	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
P ₁	13.69	12.48	12.30	12.82	13.52	12.37	12.19	12.69	13.28	12.16	11.98	12.06	*	*
P ₂	13.72	12.58	12.41	12.90	13.63	12.42	12.23	12.76	13.37	12.21	12.07	12.24	*	*
P ₃	13.55	12.46	12.27	12.81	13.37	12.28	12.14	12.65	13.24	*	11.62	*	*	*
P ₄	13.40	12.21	12.11	12.59	13.28	12.15	11.95	12.46	12.08	*	*	*	*	*
P₅	13.51	12.32	12.15	12.66	13.42	12.21	12.09	12.57	12.17	*	*	*	*	*
P ₆	13.43	12.22	12.13	12.60	13.37	12.19	12.07	12.54	12.12	*	*	*	*	*
P ₇	13.53	12.41	13.08	12.76	13.46	12.25	12.11	12.61	13.20	11.97	*	*	*	*
P ₈	13.22	12.15	12.33	12.57	13.17	12.09	11.89	12.38	11.03	*	*	*	*	*
Mean	13.51	12.35	12.44		13.40	12.25	12.08							
	1 st day				3 rd day									
	Factor	(P)	Factor (F)	P×F	Factor	(P)	Factor	P×F						
							(F)							
SEm±	0.11		0.06	0.18	0.10		0.06	0.18						
CD at 5%	NS		0.18	NS	NS		0.18	NS						

Table 7. Effect of different packaging material and elite treatments on ascorbic acid (mg/100g) in shelf life of ridge gourd during Summer, 2022

3.4 Ascorbic Acid Content (mg/100g)

The effect of packaging materials and elite treatments in ridge gourd on ascorbic acid content stored at room temperature and are presented in the Tables 6 and 7.

Kharif season: Ascorbic acid content decreasing trend with the increase in storage period at room temperature up to 7th day. There was no significant difference observed among the packaging materials.

With respect to the different elite treatments, there was significant difference among the treatments observed. The highest ascorbic acid content (13.59, 13.30) was recorded in F₁-First best from first experiment T₇- Vermicompost (12t/ha) + Arka microbial consortium and the lowest ascorbic acid content (12.40, 12.33) was recorded in F₂: First best from second experiment (T₁- RDF+ *Trichoderma viride*) on 1st and 3rd day respectively.

Among interactions effect, there was no significant difference between different packaging materials and elite treatments.

Summer season: Ascorbic acid content decreased with the increase in storage period at room temperature up to 7th day. There was no significant difference observed among the packaging materials.

With respect to different elite treatments, the highest ascorbic acid content (13.51, 13.40) was recorded in F₁-First best from first experiment T₇- Vermicompost (12t/ha) + Arka microbial consortium and the lowest ascorbic acid content (12.35) was recorded in F₂:First best from second experiment (T₁- RDF+ *Trichoderma viride*) on 1st day and whereas in 3rd day of storage, F₃:First best from third experiment (T₅-RDF+ Silver black polythene sheet) recorded was the least (12.08).

Among interactions effect, there was no significant difference between different packaging materials and elite treatments.

The mean values recorded among the ascorbic acid content of ridge gourd fruits at 5th and 7th day at storage during *Kharif* and Summer season respectively.

3.5 Titratable Acidity (%)

The effect of packaging materials and elite treatments stored at ambient temperature in ridge gourd and are presented in Tables 8 and 9.

Titratable acidity decreased with the progress in the storage period. There was significant differences among treatments on storage conditions from 1st to 7th day.

Kharif season: On 1st day P₂ (Polyethylene 200 guage with 2% vent) recorded the lowest acidity (0.255) followed by P₁ (Polyethylene 200 guage with 1% vent) (0.276) and highest acidity (0.341) was recorded in P₈-(without packing).

On 3^{rd} day of storage, P₂ (Polyethylene 200 guage with 2% vent) recorded the lowest acidity (0.208) followed by P₁ (Polyethylene 200 guage with 1% vent) (0.238) and highest acidity (0.320) was recorded in P₈-(without packing).

With respect to the different elite treatments, the lowest acidity (0.260, 0.241) was recorded in F_1 -First best from first experiment T₇- Vermicompost (12t/ha) + Arka microbial consortium and the highest acidity (0.327, 0.290) was recorded in F_3 : First best from third experiment (T₅- RDF+ Silver black polythene sheet) on 1st and 3rd day respectively.

Among interactions effect, between different packaging materials and elite treatments, P_2F_1 -Polyethylene 200 guage with 2% vent+Vermicompost (12t/ha) + Arka microbial consortium recorded significantly the lowest acidity (0.205) which was on par with P_1F_1 (0.224), while the highest acidity (0.359) recorded in P_8F_3 - Control on 1st day of storage. Whereas in 3rd day of storage, the lowest acidity (0.195) was recorded in P_2F_1 - Polyethylene 200 guage with 2% vent+ Vermicompost (12t/ha) + Arka microbial consortium which was on par with P_1F_1 (0.208) and the highest acidity (0.336) was recorded in P_8F_2 - Control.

Summer season: On the 1^{st} day P_2 (Polyethylene 200 guage with 2% vent) recorded the lowest acidity (0.246) followed by P_1 (Polyethylene 200 guage with 1% vent) (0.262) and highest acidity (0.330) was recorded in P_{8-} (without packing).

On 3^{rd} day P₂ (Polyethylene 200 guage with 2% vent) recorded the lowest acidity (0.217) followed by P₁ (Polyethylene 200 guage with 1% vent) (0.223) and highest acidity (0.313) was recorded in P₈-(without packing).

With respect to the different elite treatments, the lowest acidity (0.253, 0.237) was recorded in F_1 -First best from first experiment T_7 -Vermicompost (12t/ha) + Arka microbial consortium and the highest acidity (0.333, 0.277) was recorded in F_3 :

First best from third experiment (T₅- RDF+ Silver black polythene sheet) on 1st and 3rd day of storage respectively.

Among interactions effect between the different packaging materials and elite treatments, P₂F₁-Polyethylene 200 guage with 2% vent+ (12t/ha) Vermicompost + Arka microbial consortium recorded significantly lowest acidity (0.219) which was on par with P₁F₁ (0.234), while the highest acidity recorded in P₈F₃ (0.363) on 1st day of storage. Whereas in 3rd day of storage, lowest acidity (0.196) was recorded in P₂F₁-Polyethylene 200 guage with 2% vent+ Vermicompost (12t/ha) + Arka microbial consortium followed by P_1F_1 (0.207) and the highest acidity (0.338) was recorded in P8F3-Control.

The mean values recorded among the titratable acidity of ridge gourd fruits at 5th and 7th day of storage during *Kharif* and Summer season. Regarding acidity, a similar declining tendency was noted.

Retention of quality parameters were better in ventilated polythene bags when compared to other treatments. The ascorbic acid and titratable acidity decreased with increase in days of storage. Whereas, total soluble solids (TSS) increased with increase in days of storage. Within the sealed packages, a micro atmosphere developed which was saturated with water and possessed elevated CO₂ and decreased O₂ concentrations. It is well known that both these changes in atmospheric gas composition are beneficial for extending shelf life of fruits and vegetables [7].

3.6 Firmness (kg/cm²)

Results on firmness of ridge gourd stored at room temperature affected by the packaging materials and elite treatments are presented in the Tables 10 and 11. Firmness of ridge gourd showed decreasing trend with increase in storage period.

Kharif season: On 1st day of storage, P₂ (Polyethylene 200 guage with 2% vent) recorded the highest firmness (4.56) which was on par with P₁ (Polyethylene 200 guage with 1% vent) (4.49) and the lowest firmness (4.03) was recorded in P₈-(without packing).

On 3^{rd} day, P_2 (Polyethylene 200 guage with 2% vent) recorded the highest firmness (4.48) which was on par with P_1 (Polyethylene 200 guage with

1% vent) (4.40) and the lowest firmness (3.90) was recorded in P_{8} -(without packing).

With respect to the different elite treatments, the highest firmness (4.52, 4.33) was recorded in F_1 -First best from first experiment T_7 -Vermicompost (12t/ha) + Arka microbial consortium and the lowest firmness (4.05, 4.03) was recorded in F_3 :First best from third experiment (T_5 - RDF+Silver black polythene sheet) on 1st and 3rd day of storage respectively.

Among interactions effect, there was no significant difference observed between different packaging materials and elite treatments.

Summer season: On 1st day of storage, P_2 (Polyethylene 200 guage with 2% vent) recorded highest firmness (4.48) which was on par with P_1 (Polyethylene 200 guage with 1% vent) (4.40) and the lowest firmness (4.04) was recorded in P_8 -(without packing).

On 3rd day, P_2 (Polyethylene 200 guage with 2% vent) recorded the highest firmness (4.34) which was on par with P_1 (Polyethylene 200 guage with 1% vent) (4.27) and the lowest firmness (3.49) was recorded in P_8 -(without packing).

With respect to the different elite treatments, the highest firmness (4.42, 4.32) was recorded in F₁-First best from first experiment T₇- Vermicompost (12t/ha) + Arka microbial consortium and the lowest firmness (4.10, 3.90) was recorded in F₃: First best from third experiment (T₅- RDF+ Silver black polythene sheet) on 1st and 3rd day respectively.

Among interactions effect, there was no significant difference observed between different packaging materials and elite treatments.

The mean values recorded among the firmness of ridge gourd fruits on 5th and 7th day of storage during *Kharif* and Summer season. A similar decreasing trend in respect of firmness was observed.

The firmness of ridge gourd fruits in terms of pressure was found to be reduced with the increase in the storage period. However fruits packed with polyethylene bags with ventilation were more firmer than other treatments. This can be attributed to less moisture from the other packaging fruits. Where packaging helped to prevent moisture stress and softening and thereby maintained a high firmness. Similar findings were observed by Nihar et al. [8] in pointed gourd.

Treatments						T	itratable ad	cidity (%)						
							Elite treatm	nents (F)						
Packaging	1 st day				3 rd day				5 th day			7 th day		
materials (P)	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F₃	F ₁	F ₂	F ₃
P ₁	0.224	0.296	0.309	0.276	0.208	0.243	0.264	0.238	0.203	0.191	0.157	0.181	*	*
P ₂	0.205	0.272	0.287	0.255	0.195	0.187	0.243	0.208	0.190	0.176	0.134	0.172	*	*
P ₃	0.231	0.307	0.312	0.283	0.216	0.255	0.274	0.248	0.212	0.213	0.238	0.187	*	*
P ₄	0.293	0.339	0.347	0.326	0.271	0.315	0.329	0.301	0.261	*	*	*	*	*
P₅	0.272	0.323	0.335	0.310	0.233	0.282	0.292	0.269	0.227	0.253	*	*	*	*
P ₆	0.281	0.328	0.339	0.316	0.267	0.291	0.298	0.285	0.245		*	0.193	*	*
P ₇	0.252	0.315	0.327	0.298	0.228	0.272	0.286	0.262	0.216	0.238	*	*	*	*
P ₈	0.323	0.341	0.359	0.341	0.307	0.318	0.336	0.320	0.297	*	*	*	*	*
Mean	0.260	0.315	0.327		0.241	0.272	0.290							
	1 st day				3 rd day									
	Factor	(P)	Factor (F)	P×F	Factor	(P)	Factor	P×F						
		. /				• •	(F)							
SEm±	0.002		0.002	0.004	0.002		0.001	0.004						
CD at 5%	0.007		0.004	0.012	0.006		0.004	0.011						

Table 8. Effect of different packaging material and elite treatments on titratable acidity (%) in shelf life of ridge gourd during Kharif, 2021

Treatments	Titratab	ole acidit	y (%)											
	Elite tre	atments	(F)											
Packaging	1 st day		• •		3 rd day				5 th day			7 th day		
materials (P)	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F₃	F ₁	F ₂	F ₃
P ₁	0.234	0.238	0.315	0.262	0.207	0.219	0.242	0.223	0.195	0.201	0.218	0.199	*	*
P ₂	0.219	0.221	0.298	0.246	0.196	0.217	0.237	0.217	0.183	0.190	0.186	0.171	*	*
P ₃	0.239	0.247	0.325	0.270	0.219	0.223	0.251	0.231	0.201	0.212	*	*	*	*
P ₄	0.276	0.315	0.352	0.314	0.266	0.287	0.319	0.290	0.264	*	*	*	*	*
P₅	0.253	0.271	0.334	0.286	0.240	0.242	0.275	0.252	0.228	*	*	*	*	*
P ₆	0.262	0.295	0.346	0.301	0.251	0.258	0.289	0.266	0.247	*	*	*	*	*
P ₇	0.245	0.255	0.327	0.276	0.228	0.233	0.266	0.242	0.212	0.237	*	*	*	*
P ₈	0.298	0.329	0.363	0.330	0.285	0.316	0.338	0.313	0.281	*	*	*	*	*
Mean	0.253	0.271	0.333		0.237	0.250	0.277							
	1 st day				3 rd day									
	Factor	(P)	Factor (F)	P×F	Factor	(P)	Factor	P×F						
		. ,	()			. ,	(F)							
SEm±	0.002		0.001	0.004	0.002		0.001	0.004						
CD at 5%	0.007		0.004	0.012	0.006		0.004	0.011						

Table 9. Effect of different packaging material and elite treatments on titratable acidity (%) in shelf life of ridge gourd during Summer, 2022

Treatments							Firmness ((g/cm ²)						
							Elite treatm							
Packaging	1 st day				3 rd day	/			5 th day	1		7 th day	1	
materials (P)	F ₁	F ₂	F ₃	Mean	F 1	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
P ₁	4.66	4.50	4.31	4.49	4.55	4.42	4.22	4.40	4.41	4.20	4.02	3.79	*	*
P ₂	4.75	4.57	4.36	4.56	4.67	4.43	4.34	4.48	4.50	4.29	3.92	3.82	*	*
P ₃	4.61	4.48	4.14	4.41	4.50	4.40	4.11	4.34	4.39	4.12	4.73	3.67	*	*
P ₄	4.42	4.19	3.89	4.17	4.08	4.14	3.78	4.00	4.05	*	*	*	*	*
P₅	4.50	4.25	3.97	4.24	4.26	4.20	4.08	4.17	4.20	4.06	*	*	*	*
P ₆	4.41	4.22	3.94	4.19	4.24	4.13	4.09	4.15	4.03	*	*	*	*	*
P ₇	4.55	4.36	4.03	4.31	4.34	4.20	3.97	4.18	4.22	4.09	*	3.34	*	*
P ₈	4.23	4.10	3.76	4.03	4.02	4.03	3.65	3.90	3.98	*	*	*	*	*
Mean	4.52	4.33	4.05		4.33	4.24	4.03							
	1 st day				3 rd day	/								
	Factor	(P)	Factor (F)	P×F	Factor	· (P)	Factor (F)	P×F						
SEm±	0.04		0.02	0.06	0.03		0.02	0.06						
CD at 5%	0.10		0.06	NS	0.10		0.06	NS						

Table 10. Effect of different packaging material and elite treatments on firmness (kg/cm²) in shelf life of ridge gourd during Kharif, 2021

Treatments							Firmness (H	(g/cm²)						
							Elite treatm	ents (F)						
Packaging	1 st day				3 rd day	/			5 th day	1		7 th day	1	
materials (P)	F ₁	F ₂	F ₃	Mean	F 1	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
P ₁	4.6	4.39	4.21	4.40	4.43	4.28	4.10	4.27	4.19	4.07	3.89	3.53	*	*
P ₂	4.63	4.49	4.32	4.48	4.54	4.33	4.14	4.34	4.28	4.12	3.98	3.75	*	*
P ₃	4.46	4.37	4.18	4.34	4.41	4.19	4.05	4.22	4.15	*	3.93	*	*	*
P ₄	4.31	4.12	4.02	4.15	4.19	4.06	3.86	4.04	3.99	*	*	*	*	*
P₅	4.42	4.23	4.06	4.24	4.33	4.12	4.00	4.15	4.08	*	*	*	*	*
P ₆	4.34	4.13	4.04	4.17	4.28	4.10	3.98	4.12	4.03	*	*	*	*	*
P ₇	4.44	4.32	3.99	4.25	4.37	4.16	4.02	4.18	4.13	3.98	*	*	*	*
P ₈	4.13	4.06	3.94	4.04	3.98	3.41	3.08	3.49	3.94	*	*	*	*	*
Mean	4.42	4.26	4.10		4.32	4.08	3.90						*	*
	1 st day				3 rd day	/								
	Factor	(P)	Factor (F)	P×F	Factor	· (P)	Factor (F)	P×F						
SEm±	0.04		0.02	0.06	0.03		0.02	0.06						
CD at 5%	0.10		0.06	NS	0.10		0.06	NS						

Table 11. Effect of different packaging material and elite treatments on firmness (kg/cm²) in shelf life of ridge gourd during Summer, 2022

Treatments							Chlorophyll	content						
							Elite treatm	ents (F)						
Packaging	1 st day				3 rd day	/			5 th day	1		7 th day	1	
materials (P)	F ₁	F ₂	F ₃	Mean	F 1	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
P ₁	1.65	1.42	1.31	1.46	1.52	1.18	0.96	1.22	1.45	1.06	0.87	1.18	*	*
P ₂	1.75	1.59	1.38	1.57	1.63	1.2	0.99	1.27	1.52	1.15	0.91	1.31	*	*
P ₃	1.63	1.37	1.26	1.42	1.48	1.22	0.94	1.21	1.36	0.99	0.85	1.06	*	*
P4	1.46	1.15	1.05	1.22	1.12	0.96	0.69	0.92	1.07	*	*	*	*	*
P₅	1.52	1.25	1.14	1.30	1.25	1.10	0.73	1.03	1.14	0.72	*	*	*	*
P ₆	1.49	1.23	1.09	1.27	1.18	1.01	0.79	0.99	1.09	*	*	*	*	*
P ₇	1.58	1.33	1.15	1.35	1.32	1.15	0.81	1.09	1.25	0.88	*	1.03	*	*
P ₈	1.37	1.11	0.99	1.16	1.04	0.87	0.53	0.81	0.96	*	*	*	*	*
Mean	1.56	1.31	1.17		1.32	1.09	0.81							
	1 st day				3 rd day	/								
	Factor	(P)	Factor (F)	P×F	Factor	· (P)	Factor (F)	P×F						
SEm±	0.01		0.01	0.02	0.01		0.01	0.01						
CD at 5%	0.03		0.02	NS	0.03		0.02	0.02						

Table 12. Effect of different packaging material and elite treatments on Chlorophyll content in shelf life of ridge gourd during Kharif, 2021

Treatments Packaging materials (P)	Chlorophyll content Elite treatments (F)													
	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	Mean	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
	P ₁	1.62	1.41	1.32	1.45	1.42	1.17	0.95	1.18	1.15	1.02	0.74	0.83	*
P ₂	1.64	1.55	1.46	1.55	1.49	1.23	1.05	1.26	1.23	1.12	0.98	1.17	*	*
P ₃	1.54	1.39	1.31	1.41	1.39	1.15	0.88	1.14	1.07	0.97	*	*	*	*
P ₄	1.28	1.11	1.08	1.16	1.03	0.91	0.64	0.86	0.73	*	*	*	*	*
P₅	1.37	1.33	1.12	1.27	1.21	1.06	0.71	0.99	0.97	*	*	*	*	*
P ₆	1.29	1.23	1.11	1.21	1.17	1.02	0.69	0.96	0.88	*	*	*	*	*
P ₇	1.46	1.35	1.25	1.35	1.27	1.09	0.73	1.03	1.04	0.76	*	*	*	*
P ₈	1.16	1.10	1.05	1.10	0.99	0.83	0.57	0.80	0.67	*	*	*	*	*
Mean	1.42	1.31	1.21		1.25	1.06	0.78							
	1 st day				3 rd day									
	Factor (P)		Factor (F)	P×F	Factor (P)		Factor (F)	P×F						
SEm±	0.01		0.01	0.02	0.01		0.01	0.02						
CD at 5%	0.03		0.02	0.05	0.02		0.02	0.04						

Table 13. Effect of different packaging material and elite treatments on chlorophyll content in shelf life of ridge gourd during Summer, 2022

3.7 Chlorophyll Content (DA Meter Reading)

The effect of packaging materials and factors stored at ambient temperature of ridge gourd are presented in Tables 12 and 13.

Kharif season: The chlorophyll content showed a decreasing trend with the increase in the storage period. There was significant difference among treatments in storage conditions from 1^{st} to 7^{th} day.

On the 1st day P₂ (Polyethylene 200 guage with 2% vent) recorded the highest value of chlorophyll content (1.57) followed by P₁ (Polyethylene 200 guage with 1% vent) (1.46), while the lowest chlorophyll content (1.16) was noticed in P₈-(without packing).

On 3rd day P_2 (Polyethylene 200 guage with 2% vent) recorded the highest value of chlorophyll content (1.27) followed by P_1 (Polyethylene 200 guage with 1% vent) (1.22) and the lowest chlorophyll content (0.81) was recorded in P_8 -(without packing).

With respect to the different elite treatments, the highest chlorophyll content (1.56, 1.32) was recorded in F₁ -First best from first experiment T₇- Vermicompost (12t/ha) + Arka microbial consortium and the lowest chlorophyll content (1.17, 0.81) was recorded in F₃: First best from third experiment (T₅- RDF+ Silver black polythene sheet) on 1st and 3rd day respectively.

Among the interactions effect, on 1st day of storage there was no significant difference observed between the packaging materials and elite treatments. Whereas in 3rd day of storage, highest chlorophyll content (1.63) was recorded in P₂F₁- Polyethylene 200 guage with 2% vent+ Vermicompost (12t/ha) + Arka microbial consortium followed by P₁F₁ (1.52) and the lowest chlorophyll content (0.53) was recorded in P₈F₃- Control.

Summer season: The chlorophyll content showed a decreasing trend with the progress in the storage period. There was significant difference among treatments in storage conditions from 1st to 7th day.

On 1^{st} day P₂ (Polyethylene 200 guage with 2% vent) recorded the highest value of chlorophyll content (1.55) followed by P₁ (Polyethylene 200 guage with 1% vent) (1.45), while the lowest

chlorophyll content (1.10) was noticed in P₈- (without packing).

On 3^{rd} day P₂ (Polyethylene 200 guage with 2% vent) recorded highest value of chlorophyll content (1.26) followed by P₁ (Polyethylene 200 guage with 1% vent) (1.18) and lowest chlorophyll content (0.80) was recorded in P₈-(without packing).

With respect to the different elite treatments, the highest chlorophyll content (1.42, 1.25) was recorded in F₁ -First best from first experiment T_{7} - Vermicompost (12t/ha) + Arka microbial consortium and the lowest chlorophyll content (1.21, 0.78) was recorded in F₃:First best from third experiment (T_{5} - RDF+ Silver black polythene sheet) on 1st and 3rd day respectively.

Among interactions effect between different packaging materials and elite treatments, P₂F₁-Polyethylene 200 guage with 2% vent+ Vermicompost (12t/ha+ Arka microbial consortium) recorded significantly the highest chlorophyll content (1.64) which was on par with P_1F_1 (1.62), while the lowest chlorophyll content (1.05) was recorded in P₈F₃ on 1st day of storage, Whereas in 3rd day of storage, the highest chlorophyll content (1.49) was recorded in P₂F₁- Polyethylene 200 guage with 2% vent+ Vermicompost (12t/ha)+ Arka microbial consortium followed by P_1F_1 (1.42) and the lowest chlorophyll content (0.57) was recorded in P₈F₃- Control.

The mean values recorded among the chlorophyll content of ridge gourd fruits on 5th and 7th day of storage during *Kharif* and Summer season. A similar increasing trend in respect of chlorophyll content was observed.

The CO_2 accumulation evolved during respiration in polyethylene films was an important factor in preventing chlorophyll degradation in fruits. Rapid chlorophyll degradation in control fruits may be due to higher water loss in these fruits which led to higher degradation of pigments [9].

4. CONCLUSION

In the present study, it was concluded that ridge gourd fruits stored in polyethylene 200 gauge with 2% vent and Vermicompost 12 t/ha + Arka microbial consortium retained good quality with maximum shelf life of 6.34 days during the *Kharif* and 6.26 days during the Summer season compared to other treatments at room temperature.

ACKNOWLEDGEMENT

The authors are highly thankful to SKLTSHU, Rajendranagar, Hyderabad for the help and support rendered in carrying out the research trial.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Sheshadri VS, Parthasarthy UA. Cucurbits in vegetable crops In: Bose TK, Kabir J, Maity, TK, Parthasarthy VA. Som MG. (editors.). Vegetable crops. 1980;496-497.
- Chakravarty A, Mujumdar AS, Ragavan VGS, Ramaswamy HS. Handbook of postharvest technology cereals, Fruits, Vegetables, Tea and Spices. Library of congress cataloging in Publication Data, New York, pp. 2003;505.
- 3. Bindiya Y, Srihari D. Influence of polyethylene packaging on shelf life and quality of gherkin (*Cucumis anguria* L.) under ambient condition. Karnataka Journal of Agricultural Science. 2013; 26(4):534-538.

- 4. Attri BL, Kishan S, Medhi RP. Effect of storage on postharvest life of different cultivars of chilli (*Capsicum frutescence*) under tropical conditions of Andaman and Nicobar Islands. Indian Journal of Horticulture. 2002;59(2):171-176.
- 5. Mangal JL, Kumar J, Batra VK, Singh J. Effect of cultivars, packing types and waxing on shelf life of brinjal (*Solanum melongena* L.). Vegetable Science. 2001;28(1):43-44.
- Singh H, Chaurasis SNS, Singh S, Singh DK, Jha A. Effect of sources of nutrients and packaging materials on shelf life of bottle gourd fruits (*Lagenaria Siceraria*) at ambient temperature. Vegetable Science. 2010;37(2):175-180.
- 7. Khader AA. Prevention of ripening in fruits by use of controlled atmospheres. Food Technology. 1980;34(3):51.
- 8. Nihar RS, Lalit MB, Uma SP, Dipika S. Effect of packaging conditions on quality and shelf-life of fresh pointed gourd (*Trichosanthes dioca*) during storage. 2015;5:56-62.
- Singh BP, Dhankar BS, Pandita ML. Effect of prepackaging materials on storage life of fresh okra fruits. Haryana Journal of Horticultural Science. 1980;9:91-94.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/113403