A Co-infection Model for Monkeypox and HIV/AIDS: Sensitivity and Bifurcation Analyses

Ossaiugbo Ifeanyi Marcus ${ }^{\text {a** }}$, Atonuje Augustine ${ }^{\text {a }}$ and Tsetimi Jonathan ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Mathematics, Delta State University, Abraka, Delta State, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JSRR/2024/v30i51951
Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/113994

Original Research Article

Received: 15/01/2024
Accepted: 20/03/2024
Published: 22/03/2024

Abstract

Monkeypox can make people very sick. The skin becomes infected with bacteria, thus causing severe skin damage. This can lead to corneal infection with loss of vision, pneumonia, difficulty swallowing, diarrhoea and vomiting leading to harsh malnutrition or dehydration, several organs inflammation or death. HIV-AIDS is a life-threatening and chronic condition. In HIV-infected individuals whose immune systems have been compromised, monkeypox mortality alone may be much higher. The co-infection of monkeypox and HIV/AIDS infections has been studied from a mathematical perspective by constructing a 13-compartment deterministic model. Basic mathematical analyses were performed on the co-infection model and the sub-models. The disease equilibrium points, the non-negativity of solutions, the basic reproduction numbers, the invariant region and the stability patterns. When the basic reproduction number is less than unity, the disease-free equilibrium points of each sub-model are globally asymptomatically stable. Certain calculations were done using the maple 18 programming language. The sensitivity analysis reveals that the parameters of the basic reproduction of the monkeypox sub-model with positive sensitivity

[^0]
Abstract

indices are the probability of catching the monkeypox virus, the rate of effective contact, the compartment I_{m} 's coefficient of infection and the monkeypox vaccine's waning rate, while the parameters of the basic reproduction of the HIV/AIDS sub-model with positive sensitivity indices are the probability of catching HIV virus, the rate effective contact, the compartment I_{n} 's coefficient of infection and the compartment A_{h} 's coefficient of infection. Via the centre manifold theorem, the bifurcation analysis reveals a forward bifurcation pattern for the monkeypox sub-model and the HIV/AIDS sub-model, and under a certain condition, a critical value of the monkeypox basic reproduction exists such that an effective management and possible elimination of the monkeypox infection would require that the monkeypox basic reproduction number should be kept below unity and above the critical value.

Keywords: Bifurcation analyses; HIV/AIDS infections; co-infection model; monkeypox.

1. INTRODUCTION

According to World Health Organisation [1], the monkeypox virus causes monkeypox and it usually lasts between 2 weeks and 4 weeks. They further revealed that monkeypox has 6 to 13 days incubation period but can also range from 5 to 21 days, and the monkeypox infection is severe in persons with weak immune systems, pregnant women and children. Lack of energy, muscle aches, swollen lymph nodes, skin rash, headache and backache are typical symptoms of monkeypox. Although smallpox, measles and chickenpox may initially appear similar, the lymph nodes' swelling is a unique feature of monkeypox. The rash due to monkeypox often starts on the face, then extends to other parts. After the fever onset, the eruption of the skin starts within 1 to 3 days. At close contact with body fluids, lesions and contaminated materials, monkeypox virus is transferred from one individual to another. Normally, between 2 and 4 weeks, anyone with monkeypox is infectious as long as this individual manifests the symptoms. Transmission also occurs from mother to fetus via the placenta. Monkeypox can make people very sick. The skin becomes infected with bacteria, thus causing severe skin damage. This can lead to corneal infection with loss of vision, pneumonia, difficulty swallowing, diarrhoea and vomiting leading to harsh malnutrition or dehydration, several organs inflammation or death.

Kannan, Shaik, Sheeza [2] stated that monkeypox which was dominant in Western and Central African countries is a zoonotic disease, lately, human to human transfer was observed in Australia, developed European countries and North America. They further stated that the strain in Central African is relatively dangerous with high death rate, and advised suitable measures such as wearing of masks, hand hygiene and
vaccination. Petersen, Kabamba, McCollum, Lushima, Wemakoy, Muyembe, Nguete, Hughes, Monroe and Reynolds [3] stated that monkeypox virus can infect diverse kinds of domestic animals and wild animals, and that wild squirrels, primates, mongoose, dormice and African pouched rodents are some of the natural hosts.

The immune cells also known as the CD4 cells are attacked by the human immunodeficiency virus (HIV). The immune cells are white blood cells which assist in spotting anomalies and infections in other cells. When there is no treatment, HIV can develop to AIDS (Acquired immunodeficiency syndrome). AIDS is a lifethreatening and chronic condition. In HIVinfected individuals whose immune systems have been compromised, monkeypox mortality alone may be much higher. The impact and the risk of other diseases are increased by the presence of HIV. In Nigeria, the number of HIV/AIDS infected individuals is high, thus the human monkeypox outbreak in Nigeria demands a critical study on the co-infection of these two diseases.

According to Getachew [4], models are constructed to study the transmissions dynamics of infectious diseases and to suggest plans on the effective control. Tsetimi, Ossaiugbo and Atonuje [5] and Ossaiugbo and Okposo [6] constructed mathematical models for the study of Pneumonia and COVID-19 infection dynamics respectively. Ayele, Goufo, and Mugisha [7], Somma, Akinwande, and Chado [8], Usman and Adamu [9] and Bhunu, Mushayabasa and Mac Hyman [10] have done some research on HIV/AIDS and monkeypox.

Sensitivity and bifurcation analyses have been performed on several models including the Kumar,Basu,Ghosh,Santra,Mahapatra [11] analysis of COVID-19 epidemic model; Santra, Mahapatra and Phaijo [12] bifurcation analysis and chaos control of discrete pre-predator model;

Kumar, Basu, Santra, Ghosh and Mahapatra [13] optimal control design; Basu, Kumar, Santra, Mahapatra and Elsadany [14] Covid-19 pandemic's second wave's preventive control strategy; Kumar, Mahapatra, Parshad and Santra [15] model for dengue re-infection; Kumar, Santra and Mahapatra [16] stability and sensitivity analyses of the parameters of a SARS-CoV-2 model; Kumar,Basu, Santra, Elsadany, Elsonbaty, Mahapatraand Al-khedhairi [17] stability and sensitivity analyses of an Omicron variant epidemic's model parameters.

The co-infection of HIV/AIDS and Monkeypox is not a desirable condition. This work developed and mathematically analyzed a deterministic model of 13 classes with ordinary differential equations for HIV/AIDS and Monkeypox. The results shall help in the management and possible eradication of HIV/AIDS and Monkeypox co-infection.

2. MODEL DESCRIPTION FORMULATION

The animal population is divided into four compartments according to their monkeypoxinfection status, namely the susceptible compartment (S_{n}), the exposed compartment $\left(E_{n}\right)$, the infectious compartment $\left(I_{n}\right)$ and the recovered compartment $\left(R_{n}\right)$. Animals are recruited into the susceptible compartment at rate Λ_{n}. The animals become exposed at rate λ_{n} - the force of infection. Animals that are exposed to monkeypox infection become infectious at rate v_{n}. The exposed animals can recover from the monkeypox infection at rate ϱ_{n}, andanimals that are already infectious of monkeypox infection can recover at rate ρ_{n}. We accept that natural death occurs in all the animal compartments and we take the natural rate of death as μ_{n}. We also assume that death due to the monkeypox infection only occurs in the infectious compartment, and we take the death rate due to the monkeypox infection as d_{n}. The co-infection model also divides the humans into nine mutually exclusive compartments namely, the susceptible compartment (S), the monkeypox-vaccinated compartment (V_{m}), the monkeypox-exposed compartment (E_{m}), the monkeypox-infectious compartment (I_{m}), the monkeypox-recovered compartment $\left(R_{m}\right)$, the HIV-only compartment $\left(I_{h}\right)$, the HIV/AIDS-infectious compartment $\left(A_{h}\right)$, the HIV-only and Monkeypox co-infectious compartment ($I_{h m}$), and the HIV/AIDS and Monkeypox co-infectious compartment ($A_{h m}$).

Relevant information has been provided by the Nigeria Centre for Disease Control and Prevention [18], the World Health Organisation [1] and the World Health Organisation [19] on the transmission dynamics of these diseases. Thus, we make the following assumptions. We assumed that permanent immunity is not conferred on humans upon recovery from monkeypox, and the monkeypox vaccine is not 100% effective, hence there is a waning effect which can cause vaccinated humans to become susceptible again. Furthermore, we assumed that monkeypox-exposed animals/humans and monkeypox-infectious animals/humans do not recover at the same rate. We have also assumed that no sexual activity exists between animals and humans; and monkeypox-recovery rates for the compartments $I_{h m}$ and $A_{h m}$ differ. Additionally, we have assumed the chance of vertical transmission for HIV infection.

Humans are born into the susceptible compartment (S) at rate Λ. The fraction of these humans which acquire the virus via vertical transmission is ε. Thus, this ε-fraction is recruitedinto the compartment I_{h}, and ($1-\varepsilon$) fraction into the compartment S. Humans are given the monkeypox vaccine at the rate α_{m}, and the vaccine's waning rate is ω_{m}. The rate in which humans are exposed to the monkeypox infection is λ_{m} - the force of infection. Monkeypox-exposed humans recover at rate ϱ_{m}.Humans move from the class E_{m} to the class I_{m} at rate v_{m}. Monkeypox-infectious humans recover at rate ρ_{m}. Individuals who recovered from the monkeypox infection return to the susceptible compartment at rate ζ. Humans acquire the HIV infection at rate λ_{h}. People in the compartments E_{m} and I_{m} acquire the HIVinfection at rate λ_{h}, and move into the compartment $I_{h m}$.Humans in class R_{m} also acquire the HIV infection and move to compartment I_{h}. HIV-infectious humans develop the AIDS syndrome at rate ρ_{1}. The monkeypox exposure rates for the compartments I_{h} and A_{h} is $\sigma_{1} \lambda_{m}$ and $\sigma_{2} \lambda_{m}$ respectively. σ_{1} and σ_{2} justifiesthe monkeypox vulnerability increment due to an underlying HIV/AIDS infection. Individuals in the compartment $I_{h m}$ develop the AIDS syndrome at rate ρ_{2}. People in the compartments $I_{h m}$ and $A_{h m}$ recover from the monkeypox infection at the rates τ_{1} and τ_{2} respectively. Humans die due to the HIV/AIDS infection at the rate d_{h}, while d_{m} is the monkeypox-induced death rate. μ - natural mortality rate.

$$
\left\{\begin{array}{l}
\frac{d S_{n}}{d t}=\Lambda_{n}-\left(\mu_{n}+\lambda_{n}\right) S_{n} \tag{1}\\
\frac{d E_{n}}{d t}=\lambda_{n} S_{n}-\left(\mu_{n}+\varrho_{n}+v_{n}\right) E_{n} \\
\frac{d I_{n}}{d t}=v_{n} E_{n}-\left(\mu_{n}+d_{n}+\rho_{n}\right) I_{n} \\
\frac{d R_{n}}{d t}=\varrho_{n} E_{n}+\rho_{n} I_{n}-\mu_{n} R_{n} \\
\frac{d S}{d t}=(1-\varepsilon) \Lambda+\omega_{m} V_{m}+\zeta R_{m}-\left(\mu+\lambda_{m}+\lambda_{h}+\alpha_{m}\right) S \\
\frac{d V_{m}}{d t}=\alpha_{m} S-\left(\mu+\omega_{m}\right) V_{m} \\
\frac{d E_{m}}{d t}=\lambda_{m} S-\left(\mu+v_{m}+\varrho_{m}+\lambda_{h}\right) E_{m} \\
\frac{d I_{m}}{d t}=v_{m} E_{m}-\left(\mu+d_{m}+\rho_{m}+\lambda_{h}\right) I_{m} \\
\frac{d R_{m}}{d t}=\varrho_{m} E_{m}+\rho_{m} I_{m}-\left(\mu+\zeta+\lambda_{h}\right) R_{m} \\
\frac{d I_{h}}{d t}=\varepsilon \Lambda+\lambda_{h}\left(S+R_{m}\right)+\tau_{1} I_{h m}-\left(\mu+\rho_{1}+\sigma_{1} \lambda_{m}\right) I_{h} \\
\frac{d A_{h}}{d t}=\rho_{1} I_{h}+\tau_{2} A_{h m}-\left(\mu+d_{h}+\sigma_{2} \lambda_{m}\right) A_{h} \\
\frac{d I_{h m}}{d t}=\sigma_{1} \lambda_{m} I_{h}+\lambda_{h}\left(E_{m}+I_{m}\right)-\left(\mu+d_{m}+\rho_{2}+\tau_{1}\right) I_{h m} \\
\frac{d A_{h m}}{d t}=\rho_{2} I_{h m}+\sigma_{2} \lambda_{m} A_{h}-\left(\mu+d_{m}+d_{h}+\tau_{2}\right) A_{h m}
\end{array}\right.
$$

Initial conditions:

$$
S_{n}(0) \geq 0, E_{n}(0) \geq 0, I_{n}(0) \geq 0, R_{n}(0) \geq 0, S(0) \geq 0, V_{m}(0) \geq 0, E_{m}(0) \geq 0, I_{m}(0) \geq 0, R_{m}(0)
$$

$$
\geq 0, I_{h}(0) \geq 0, A_{h}(0) \geq 0, I_{h m}(0) \geq 0, A_{h m}(0) \geq 0
$$

where:

$$
\begin{aligned}
& \lambda_{n}=\beta_{n} c_{n} \frac{I_{n}(t)}{S_{n}(t)+E_{n}(t)+I_{n}(t)+R_{n}(t)^{\prime}} \\
& \lambda_{m}=\left(1-\delta_{m}\right)\left(\beta_{n} c_{n} \frac{I_{n}}{N_{n}}+\beta_{m} c_{m} \frac{\left(A_{h m}(t)+\theta_{1} I_{m}(t)+\theta_{2} I_{n m}(t)\right)}{S(t)+V_{m}(t)+E_{m}(t)+I_{m}(t)+R_{m}(t)}\right), \theta_{1}<\theta_{2}, \\
& \lambda_{h}=\left(1-\delta_{h}\right)\left(\beta_{h} c_{h} \frac{\left(A_{h m}(t)+\phi_{1} I_{h}(t)+\phi_{2} I_{h m}(t)+\phi_{3} A_{h}(t)\right)}{S(t)+I_{h}(t)+A_{h}(t)+I_{h m}(t)+A_{h m}(t)}\right), \phi_{1}<\phi_{2}<\phi_{3}, \\
& N_{n}(t)=S_{n}(t)+E_{n}(t)+I_{n}(t)+R_{n}(t) .
\end{aligned}
$$

Fig. 1. Schematic diagram

Table 1.Variables and Parameters Descriptions

Parameter	Description
Λ_{n}	Recruitment rate into the class S_{n}.
Λ	Recruitment rate into the susceptible class S.
μ_{n}	Natural death rate among animals.
μ	Natural death rate among humans.
ϱ_{n}	Recovery rate for the class E_{n}.
ϱ_{m}	Recovery rate for the class E_{m}.
ρ_{n}	Recovery rate for the class I_{n}.
ρ_{m}	Recovery rate for the class I_{m}.
τ_{1}	Monkeypox-recovery rate for the class $I_{h m}$.
τ_{2}	Monkeypox-recovery rate for the class $A_{h m}$.
d_{n}	Monkeypox-induced death rate among animals.
d_{m}	Monkeypox-induced death rate among humans.
d_{h}	HIV/AIDS-induced death rate.
ε	The fraction born infected with HIV virus.
ω_{m}	Monkeypox vaccine's waning rate.
ζ	Rate at which humans who recover from monkeypox infection become susceptible again.
α_{m}	Monkeypox vaccination rate.
v_{n}	Progression rate from class E_{n} to class I_{n}.
v_{m}	Progression rate from class E_{m} to class I_{m}.
ρ_{1}	Progression rate from class I_{h} to class A_{h}.
ρ_{2}	Progression rate from class $I_{h m}$ to class $A_{h m}$.
σ_{1}	Parameter accounting for increased monkeypox susceptibility because of an underlying HIV
σ_{2}	infection.
c_{n}	Parameter accounting for increased monkeypox susceptibility because of underlying AIDS
c_{m}	infection.
c_{h}	Animals' effective rate of contact for getting monkeypox
δ_{m}	Humans' effective rate of contact for getting monkeypox
δ_{h}	Humans' effective rate of contact for getting HIV infection
β_{n}	Monkeypox prevention measure. $0 \leq \delta_{m} \leq 1$.
β_{m}	HIV/AIDS prevention measure. $0 \leq \delta_{h} \leq 1$.
β_{h}	Animal's probability of catching monkeypox.
θ_{1}	Probability of getting infected with HIV per sexual contact with a partner that is infected.
θ_{2}	The infection coefficient of the class I_{m}.
ϕ_{1}	The infection coefficient of the class $I_{h m}$.
ϕ_{2}	The HIV infection coefficient of the class I_{h}.
ϕ_{3}	The infection coefficient of the class $I_{h m}$.
	Mrient of the class A_{h}.

3. BASIC ANALYSIS OF THE MODEL

In order to ascertain the biological relevance of the model, in this section, we present the nonnegativity of solutions and the invariant region.

3.1 Non-negativity of Solutions

Theorem 1:

Suppose

$$
\begin{aligned}
& \Gamma=\left\{\left(S_{n}, E_{n}, I_{n}, R_{n}, S, V_{m}, E_{m}, I_{m}, R_{m}, I_{n}, A_{h}, I_{h m}, A_{h m}\right) \in \mathbb{R}_{1}^{13}: S_{n}(0)>0, E_{n}(0)>0, I_{n}(0)>\right. \\
& 0, R_{n}(0)>0, S(0)>0, V_{m}(0)>0, E_{m}(0)>0, I_{m}(0)>0, R_{m}(0)>0, I_{h}(0)>0, A_{h}(0)> \\
& \left.0, I_{h m}(0)>0, A_{h m}(0)>0\right\}, \text { then } \\
& \left\{S_{n}, E_{n}, I_{n}, R_{n}, S, V_{m}, E_{m}, I_{m}, R_{m}, I_{h}, A_{h}, I_{h m}, A_{h m}\right\} \text { is non-negative } \forall t \geq 0 .
\end{aligned}
$$

Proof:

$$
\frac{d S_{n}}{d t}=\Lambda_{n}-\left(\mu_{n}+\lambda_{n}\right) S_{n} .
$$

$$
\begin{aligned}
& \frac{d S_{n}}{d t} \geq-\left(\mu_{n}+\lambda_{n}\right) S_{n}, \\
& \int \frac{1}{S_{n}} d S_{n} \geq-\int\left(\mu_{n}+\lambda_{n}\right) d t, \\
& S_{n} \geq e^{-\int\left(\mu_{n}+\lambda_{n}\right) d t .} \\
& \therefore \quad S_{n}>0 \quad \forall t \geq 0 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
E_{n}(t)>0, I_{n}(t) & >0, R_{n}(t)>0, S(t)>0, V_{m}(t)>0, E_{m}(0 t)>0, I_{m}(t)>0, R_{m}(t)>0, I_{h}(t) \\
& >0, A_{h}(t)>0, I_{h m}(t)>0, A_{h m}(t)>0 \forall t \geq 0 \text { ■ }
\end{aligned}
$$

3.2Invariant Region and Boundedness

Theorem 2:

The sets

$$
\begin{aligned}
& \Gamma_{1}=\left\{\left(S_{n}, E_{n}, I_{n}, R_{n}\right) \in \mathbb{R}_{\ddagger}^{4}: 0 \leq S_{n}+E_{n}+I_{n}+R_{n}=N_{n} \leq \frac{\Lambda_{n}}{\mu_{n}}\right\} \text { and } \\
& \Gamma_{2}=\left\{\left(S, V_{m}, E_{m}, I_{m}, R_{m}, I_{n}, A_{h}, I_{h m}, A_{h m}\right) \in \mathbb{R}_{+}^{9}: 0 \leq S+V_{m}+E_{m}+I_{m}+R_{m}+I_{h}+A_{h}+I_{h m}+\right. \\
& \left.A_{h m}=N \leq \frac{1}{\mu}\right\} \text { are positively invariant. }
\end{aligned}
$$

Proof:

$$
\begin{align*}
& N_{n}(t)=S_{n}(t)+E_{n}(t)+I_{n}(t)+R_{n}(t) . \\
& \frac{d N_{n}}{d t}=\Lambda_{n}-\mu_{n} N_{n}-d_{n} I_{n} \leq \Lambda_{n}-\mu_{n} N_{n} . \\
& \therefore \quad N_{n}(t) \leq \frac{\Lambda_{n}}{\mu_{n}}+k e^{-\mu_{n} t .} \tag{2}\\
& N(t)=S(t)+V_{m}(t)+E_{m}(t)+I_{m}(t)+R_{m}(t)+I_{h}(t)+A_{h}(t)+I_{h m}(t)+A_{h m}(t) . \\
& \frac{d N}{d t}=\Lambda-\mu N-d_{m}\left(I_{m}+I_{h m}\right)-d_{h}\left(A_{h}+A_{h m}\right) \leq \Lambda-\mu N . \\
& \therefore \quad N(t) \leq \frac{\Lambda}{\mu}+k e^{-\mu t .} \tag{3}
\end{align*}
$$

The inequalities (2) is the threshold population level for the animal population, while the inequality (3) is the threshold population level for the human population respectively. Thus, Γ_{1} and Γ_{2} are positively invariant

3.3 Equilibrium Points

We obtain the disease-free equilibrium (DFE) by setting all the infected compartments and the derivatives in system (1) to zero and solving the resulting system.
I. The $\operatorname{DFE}\left(\mathbb{E}_{0_{m}}\right)$ of the sub-model for Monkeypox

$$
\begin{align*}
& \Lambda_{n}-\left(\mu_{n}+\lambda_{n}\right) S_{n}=0 \\
& \lambda_{n} S_{n}-\left(\mu_{n}+\varrho_{n}+v_{n}\right) E_{n}=0, \\
& v_{n} E_{n}-\left(\mu_{n}+d_{n}+\rho_{n}\right) I_{n}=0, \\
& \varrho_{n} E_{n}+\rho_{n} I_{n}-\mu_{n} R_{n}=0, \\
& \Lambda+\omega_{m} V_{m}+\zeta R_{m}-\left(\mu+\lambda_{m}+\alpha_{m}\right) S=0, \tag{4}\\
& \alpha_{m} S-\left(\mu+\omega_{m}\right) V_{m}=0 \\
& \lambda_{m} S-\left(\mu+v_{m}+\varrho_{m}\right) E_{m}=0, \\
& v_{m} E_{m}-\left(\mu+d_{m}+\rho_{m}\right) I_{m}=0, \\
& \varrho_{m} E_{m}+\rho_{m} I_{m}-(\mu+\zeta) R_{m}=0, \\
& \lambda_{n}=\beta_{n} c_{n} \frac{I_{n}}{S_{n}(t)+E_{n}(t)+I_{n}(t)+R_{n}(t)}, \\
& \lambda_{m}=\left(1-\delta_{m}\right)\left(\beta_{n} c_{n} \frac{I_{n}}{N_{n}}+\beta_{m} c_{m} \frac{\theta_{1} I_{m}}{S(t)+V_{m}(t)+E_{m}(t)+I_{m}(t)+R_{m}(t)}\right) . \\
& \therefore \quad \mathbb{E}_{0_{m}}=\left(\frac{\Lambda_{n}}{\mu_{n}}, 0,0,0, \frac{\Lambda\left(\mu+\omega_{m}\right)}{\mu\left(\mu+\alpha_{m}+\omega_{m}\right)}, \frac{\Lambda \alpha_{m}}{\mu\left(\mu+\alpha_{m}+\omega_{m}\right)}, 0,0,0\right) . \tag{5}
\end{align*}
$$

II.HIV/AIDS sub-model's DFE

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
(1-\varepsilon) \Lambda-\left(\mu+\lambda_{h}\right) S=0, \\
\varepsilon \Lambda+\lambda_{h} S-\left(\mu+\rho_{1}\right) I_{h}=0,
\end{array}\right\} \\
\rho_{1} I_{h}-\left(\mu+d_{h}\right) A_{h}=0 .
\end{array}\right\} \begin{aligned}
& \lambda_{h}=\left(1-\delta_{h}\right)\left(\beta_{h} c_{h} \frac{\left(\phi_{1} I_{h}+\phi_{3} A_{h}\right)}{S(t)+I_{h}(t)+A_{h}(t)}\right) \\
& \therefore \quad \mathbb{E}_{0_{h}}=\left(\frac{(1-\varepsilon) \Lambda}{\mu}, 0,0\right)
\end{aligned}
$$

3.4. Basic Reproduction Number

The method of the next generation matrix which was used by Ossaiugbo and Okposo [6] shall be employed in calculating the monkeypox-sub-model's basic reproduction $R_{0_{m}}$, the HIV/AIDS submodel's basic reproduction number $R_{0_{h}}$, and the co-infection model's basic reproduction number R_{0}.

(i) Calculating $R_{0_{m}}$.

The classes that are infected are denoted by $X(t)$ and represented as

$$
X^{\prime}=\mathcal{F}(t, X)-\mathcal{V}(t, X)
$$

where \mathcal{F} are the new infection terms and \mathcal{V} are the remaining terms.

$$
\begin{aligned}
& X=\binom{E_{m}}{I_{m}}, \quad \mathcal{F}=\binom{\lambda_{m} S}{0}, \quad \mathcal{V}=\binom{\left(\mu+v_{m}+\varrho_{m}\right) E_{m}}{-v_{m} E_{m}+\left(\mu+d_{m}+\rho_{m}\right) I_{m}} \\
& F=\left[\begin{array}{cc}
0 & -\frac{\left(-1+\delta_{m}\right) \beta_{m} c_{m} \theta_{1}\left(\mu+\omega_{m}\right)}{\mu+\alpha_{m}+\omega_{m}} \\
0 & 0
\end{array}\right], V=\left[\begin{array}{cc}
\mu+v_{m}+\varrho_{m} & 0 \\
-v_{m} & \mu+d_{m}+\rho_{m}
\end{array}\right]
\end{aligned}
$$

F and V which are the next generation matrices. They are the Jacobian matrices of \mathcal{F} and \mathcal{V} evaluated at the DFE.

$$
\left.\begin{array}{l}
F V^{-1}=\left[\begin{array}{cc}
\frac{\left(1-\delta_{m}\right) \beta_{m} c_{m} \theta_{1}\left(\mu+\omega_{m}\right) v_{m}}{\left(\mu+\alpha_{m}+\omega_{m}\right)\left(\mu+v_{m}+\varrho_{m}\right)\left(\mu+d_{m}+\rho_{m}\right)} & \frac{\left(1-\delta_{m}\right) \beta_{m} c_{m} \theta_{1}\left(\mu+\omega_{m}\right)}{\left(\mu+\alpha_{m}+\omega_{m}\right)\left(\mu+d_{m}+\rho_{m}\right)}
\end{array}\right] . \\
0 \tag{8}
\end{array}\right] .
$$

(ii) Calculating $R_{0_{h}}$.

$$
\begin{align*}
& X=\binom{I_{h}}{A_{h}}, \quad \mathcal{F}=\binom{\varepsilon \Lambda+\lambda_{h} S}{0}, \mathcal{V}=\binom{\left(\mu+\rho_{1}\right) I_{h}}{-\rho_{1} I_{h}+\left(\mu+d_{h}\right) A_{h}} . \\
& F=\left[\begin{array}{cc}
-\left(-1+\delta_{h}\right) \beta_{h} c_{h} \phi_{1} & -\left(-1+\delta_{h}\right) \beta_{h} c_{h} \phi_{3} \\
0 & 0
\end{array}\right], V=\left[\begin{array}{cc}
\mu+\rho_{1} & 0 \\
-\rho_{1} & d_{h}+\mu
\end{array}\right] . \\
& F V^{-1}=\left[\begin{array}{cc}
-\frac{\left(-1+\delta_{h}\right) \beta_{h} c_{h} \phi_{1}}{\mu+\rho_{1}}-\frac{\left(-1+\delta_{h}\right) \beta_{h} c_{h} \phi_{3} \rho_{1}}{\left(\mu+\rho_{1}\right)\left(d_{h}+\mu\right)} & -\frac{\left(-1+\delta_{h}\right) \beta_{h} c_{h} \phi_{3}}{d_{h}+\mu} \\
0
\end{array}\right] . \\
& \therefore \quad R_{0_{h}}=\beta_{h} c_{h}\left(1-\delta_{h}\right)\left(\phi_{1}\left(d_{h}+\mu\right)+\phi_{3} \rho_{1}\right) \frac{1}{\left(\mu+\rho_{1}\right)\left(d_{h}+\mu\right)} . \tag{9}
\end{align*}
$$

(iii) Calculating $R_{0}{ }_{h m}$

Similarly, we can show that

$$
\begin{aligned}
& \therefore \quad R_{0_{h m}} \\
& =\max \left(\frac{\left(1-\delta_{m}\right) \beta_{m} c_{m} \theta_{1}\left(\mu+\omega_{m}\right) v_{m}}{\left(\mu+\alpha_{m}+\omega_{m}\right)\left(\mu+v_{m}+\varrho_{m}\right)\left(\mu+d_{m}+\rho_{m}\right)}, \frac{\left(1-\delta_{h}\right) \beta_{h} c_{h}\left(\left(d_{h}+\mu\right) \phi_{1}+\phi_{3} \rho_{1}\right)}{\left(\mu+\rho_{1}\right)\left(d_{h}+\mu\right)}\right) . \\
& i . e . \quad R_{0_{h m}}=\max \left(R_{0_{m}}, R_{0_{h}}\right) .
\end{aligned}
$$

4. SENSITIVITY ANALYSIS

In this section, we examine the sensitivity of the parameters of $R_{0_{m}}$ and $R_{0_{h}}$ given in equations (8) and (9) respectively. We employ the method used by Tsetimi, Ossaiugbo and Atonuje [5]. This method helps us to easily quantify the importance of each parameter of the basic reproduction number. It quickly allows us to calculate the relative change in the basic reproduction number with change in the value of a parameter. The forward sensitivity index of a parameter, say μ, of R_{0} is given by:

$$
\Im_{\mu}^{R_{0}}=\frac{\partial R_{0}}{\partial \mu} \times \frac{\mu}{R_{0}}
$$

I. Sensitivity indices of parameters of $R_{0_{m}}$

$$
\begin{aligned}
& \Im_{\beta_{m}}^{R_{0}}=1>0, \quad \Im_{c_{m}}^{R_{0}}=1>0, \quad \Im_{\theta_{1}}^{R_{0}}=1>0, \\
& \Im_{v_{m}}^{R_{0}}=\frac{\mu+\varrho_{m}}{\mu+v_{m}+\varrho_{m}}>0, \quad \Im_{\omega_{m}}^{R_{0}}=\frac{\alpha_{m} \omega_{m}}{\left(\mu+\alpha_{m}+\omega_{m}\right)\left(\mu+\omega_{m}\right)}>0, \\
& \begin{aligned}
& \Im_{\mu}^{R_{0}}=-2\left(\left(\mu^{3}+\right.\right.\left(\varrho_{m} / 2+d_{m} / 2+v_{m} / 2+\rho_{m} / 2+\alpha_{m} / 2+2 \omega_{m}\right) \mu^{2}+\omega_{m}\left(\varrho_{m}+d_{m}+v_{m}+\rho_{m}\right. \\
&\left.+\alpha_{m}+\omega_{m}\right) \mu+\left(\varrho_{m} / 2+d_{m} / 2+v_{m} / 2+\rho_{m} / 2\right) \omega_{m}{ }^{2}+1 / 2 \alpha_{m}\left(\varrho_{m}+d_{m}+v_{m}\right. \\
&\left.\left.\left.\quad+\rho_{m}\right) \omega_{m}-1 / 2 \alpha_{m}\left(d_{m}+\rho_{m}\right)\left(\varrho_{m}+v_{m}\right)\right) \mu\right) /\left(\left(\mu+\alpha_{m}+\omega_{m}\right)\left(\mu+v_{m}+\varrho_{m}\right)(\mu\right. \\
&\left.\left.+d_{m}+\rho_{m}\right)\left(\mu+\omega_{m}\right)\right)<0,
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \Im_{\alpha_{m}}^{R_{0}}=-\frac{\alpha_{m}}{\mu+\alpha_{m}+\omega_{m}}<0, \quad \Im_{\varrho_{m}}^{R_{0}}=-\frac{\varrho_{m}}{\mu+v_{m}+\varrho_{m}}<0, \quad \Im_{\delta_{m}}^{R_{0}}=-\frac{\delta_{m}}{1-\delta_{m}}<0 \\
& \Im_{d_{m}}^{R_{0}}=-\frac{d_{m}}{\mu+d_{m}+\rho_{m}}<0, \quad \Im_{\rho_{m}}^{R_{0}}=-\frac{\rho_{m}}{\mu+d_{m}+\rho_{m}}<0
\end{aligned}
$$

The parameters of $R_{0_{m}}$ with positive sensitivity indices are the
β_{m}-probability of humans catching monkeypox through an effective contact,
c_{m} - effective contact rate for catching monkeypox by humans,
θ_{1} - compartment I_{m} 's monkeypox-infection coefficient,
ω_{m}-monkeypox vaccine's waning rate, and
v_{m} - rate at which humans move from class E_{m} to class I_{m}.
Increasing the values of these parameters with positive sensitivity indices increases the value of R_{0} and thereby resulting in a high risk of the outbreak. Now, the parameters of $R_{0_{m}}$ with negative sensitivity indices are the:
μ - natural mortality rate among humans.
d_{m}-death rate due to monkeypox humans,
ϱ_{m} - compartment E_{m} 's recovery rate,
ρ_{m}-compartment I_{m} 's recovery rate,
α_{m} - rate of monkeypox vaccination, and
δ_{m} - monkeypox prevention rate, $0 \leq \delta_{m} \leq 1$.
Although, it is not recommended to increase the values of d_{m} and μ, we note here that increasing the values of the parameters of $R_{0_{m}}$ with negative sensitivity indices is an approach in the elimination of monkeypox infection.
II. Sensitivity indices of parameters of $R_{0_{h}}$

$$
\begin{aligned}
& \Im_{\beta_{h}}^{R_{0}}=1>0, \quad \mathfrak{S}_{c_{h}}^{R_{0}}=1>0, \quad \Im_{\phi_{1}}^{R_{0}}=\frac{\phi_{1}\left(\mu+d_{h}\right)}{\phi_{1}\left(\mu+d_{h}\right)+\phi_{3} \rho_{1}}>0, \\
& \Im_{\phi_{3}}^{R_{0}}=\frac{\phi_{3} \rho_{1}}{\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}}>0, \quad \Im_{\delta_{h}}^{R_{0}}=-\frac{\delta_{h}}{1-\delta_{h}}<0, \\
& \Im_{d_{h}}^{R_{0}}=-\frac{\phi_{3} \rho_{1} d_{h}}{\left(\phi_{1}\left(\mu+d_{h}\right)+\phi_{3} \rho_{1}\right)\left(\mu+d_{h}\right)}<0, \\
& \Im_{\mu}^{R_{0}}=-\frac{\mu\left(\mu^{2} \phi_{1}+\left(2 d_{h} \phi_{1}+2 \phi_{3} \rho_{1}\right) \mu+d_{h}^{2} \phi_{1}+\phi_{3} \rho_{1}\left(d_{h}+\rho_{1}\right)\right)}{\left(\mu+\rho_{1}\right)\left(\mu+d_{h}\right)\left(d_{h} \phi_{1}+\mu \phi_{1}+\phi_{3} \rho_{1}\right)}<0, \\
& \Im_{\rho_{1}}^{R_{0}}=-\frac{\left(\left(\mu+d_{h}\right) \phi_{1}-\phi_{3} \mu\right) \rho_{1}}{\left(\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}\right)\left(\mu+\rho_{1}\right)}<0 .
\end{aligned}
$$

The parameters of $R_{0_{h}}$ with positive sensitivity indices are the
β_{h} - probability of humans catching HIV through an effective contact,
c_{h} - effective contact rate for catching HIV infection by humans,
ϕ_{1} - compartment I_{h} 's HIV-infection coefficient, and
ϕ_{3} - compartment A_{h} 's HIV-infection coefficient.

Increasing the values of these parameters with positive sensitivity indices increases the value of $R_{0_{h}}$ and thereby resulting in an increased chance of the disease spread. Now, the parameters of $R_{0_{h}}$ with negative sensitivity indices are the:
d_{h}-death rate due to HIV/AIDS,
ρ_{1} - rate of progression from compartment I_{h} to compartment A_{h}.
δ_{h} - HIV/AIDS prevention rate, $0 \leq \delta_{h} \leq 1$,
μ - natural mortality rate among humans,
Again, it is not recommended to increase the values of d_{h} and μ, we note here that increasing the values of the parameters of $R_{0_{h}}$ with negative sensitivity indices is an approach in the effective management and possible elimination of HIV-AIDS infection.

5. BIFURCATION ANALYSIS

In analyzing the dynamical system, a powerful and systematic framework is required in studying the bifurcation pattern, and this framework should offer insights into the system's qualitative behavior near bifurcation points, and assisting the analysis of stability. Therefore, we employ the centre manifold the theorem as presented by Castillo-Chavez and Song [20] to determine the bifurcation pattern of the sub-models. The Center Manifold Theorem gives a systematic way to reduce the dimensionality of the problem, thereby concentrating on the most important variables close to a bifurcation point.

Theorem 3 (Castillo-Chavez and Song, 2004)
Consider the following general system of ODEs with a parameter ϕ :

$$
\begin{equation*}
\frac{d x}{d t}=f(x, \phi), \quad f: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}^{n}, f \in \mathbf{C}^{2}\left(\mathbf{R}^{n} \times \mathbf{R}\right), \tag{10}
\end{equation*}
$$

where 0 is an equilibrium point of the system, that is, $f(0, \phi) \equiv 0$ for all ϕ. Assume the following:
A1. $\mathcal{A}=D_{x} f(0,0)=\left(\frac{\partial f_{i}}{\partial x_{j}}(0,0)\right)$ is the linearization matrix of system (4.1) around the equilibrium 0 with ϕ evaluated at 0 . Zero is a simple eigenvalue of \mathcal{A}, and other eigenvalues have negative real parts.

A2. The matrix \mathcal{A} has a nonnegative right eigenvector w and a left eigenvector v each corresponding to the zero eigenvalue.

Let f_{k} be the k th component of f and

$$
\left.\begin{array}{c}
a=\sum_{k, i, j=1}^{n} v_{k} w_{i} w_{j} \frac{\partial^{2} f_{k}}{\partial x_{i} \partial x_{j}}(0,0) \\
b=\sum_{k, i=1}^{n} v_{k} w_{i} \frac{\partial^{2} f_{k}}{\partial x_{i} \partial \phi}(0,0) \tag{11}
\end{array}\right\}
$$

The local dynamics of the system around 0 are completely determined by the signs of a and b :
i. $a>0, b>0$. When $\phi<0$ with $|\phi| \ll 1,0$ is locally asymptotically stable, and there exists a positive unstable equilibrium; when $0<\phi \ll 1,0$ is unstable, and there exists a negative and locally asymptotically stable equilibrium.
ii. $\quad a<0, b<0$. When $\phi<0$ with $|\phi| \ll 1,0$ is unstable; when $0<\phi \ll 1,0$ is locally asymptotically stable, and there exists a positive unstable equilibrium;
iii. $a>0, b<0$. When $\phi<0$ with $|\phi| \ll 1,0$ is unstable, and there exists a locally asymptotically stable negative equilibrium; when $0<\phi \ll 1,0$ is stable, and a positive unstable equilibrium appears;
iv. $a<0, b>0$. When ϕ changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally asymptotically stable.

Particularly, if $a>0$ and $b>0$, then a backward bifurcation occurs at $\phi=0$.
Proof:
I. Bifurcation of the monkeypox sub-model:

$$
\begin{align*}
& S_{n}^{\prime}=\Lambda_{n}-\left(\mu_{n}+\lambda_{n}\right) S_{n}, \\
& E_{n}^{\prime}=\lambda_{n} S_{n}-\left(\mu_{n}+\varrho_{n}+v_{n}\right) E_{n}, \\
& I_{n}^{\prime}=v_{n} E_{n}-\left(\mu_{n}+d_{n}+\rho_{n}\right) I_{n}, \\
& R_{n}^{\prime}=\varrho_{n} E_{n}+\rho_{n} I_{n}-\mu_{n} R_{n} \\
& S^{\prime}=\Lambda+\omega_{m} V_{m}+\zeta R_{m}-\left(\mu+\lambda_{m}+\alpha_{m}\right) S, \tag{12}\\
& V_{m}^{\prime}=\alpha_{m} S-\left(\mu+\omega_{m}\right) V_{m} \\
& E_{m}^{\prime}=\lambda_{m} S-\left(\mu+v_{m}+\varrho_{m}\right) E_{m}, \\
& I_{m}^{\prime}=v_{m} E_{m}-\left(\mu+d_{m}+\rho_{m}\right) I_{m}, \\
& R_{m}^{\prime}=\varrho_{m} E_{m}+\rho_{m} I_{m}-(\mu+\zeta) R_{m} . \\
& \lambda_{n}=\beta_{n} c_{n} \frac{I_{n}}{S_{n}+E_{n}+I_{n}+R_{n}}, \\
& \\
& \lambda_{m}=\left(1-\delta_{m}\right)\left(\beta_{n} c_{n} \frac{I_{n}}{N_{n}}+\beta_{m} c_{m} \frac{\theta_{1} I_{m}}{S+V_{m}+E_{m}+I_{m}+R_{m}}\right),
\end{align*}
$$

we set $x_{1}=S_{n}, x_{2}=E_{n}, x_{3}=I_{n}, x_{4}=R_{n}, x_{5}=S, x_{6}=V_{m}, x_{7}=E_{m}, x_{8}=I_{m}, x_{9}=R_{m}$. Thus, system (12) becomes:

$$
\left.\begin{array}{l}
x_{1}{ }^{\prime}=\Lambda_{n}-\left(\mu_{n}+\lambda_{n}\right) x_{1}, \\
x_{2}{ }^{\prime}=\lambda_{n} x_{1}-\left(\mu_{n}+\varrho_{n}+v_{n}\right) x_{2}, \\
x_{3}{ }^{\prime}=v_{n} x_{2}-\left(\mu_{n}+d_{n}+\rho_{n}\right) x_{3}, \\
x_{4}=\varrho_{n} x_{2}+\rho_{n} x_{3}-\mu_{n} x_{4}, \\
x_{5}=\Lambda+\omega_{m} x_{6}+\zeta x_{9}-\left(\mu+\lambda_{m}+\alpha_{m}\right) x_{5}, \tag{13}\\
x_{6}{ }^{\prime}=\alpha_{m} x_{5}-\left(\mu+\omega_{m}\right) x_{6}, \\
x_{7}{ }^{\prime}=\lambda_{m} x_{5}-\left(\mu+v_{m}+\varrho_{m}\right) x_{7}, \\
x_{8}{ }^{\prime}=v_{m} x_{7}-\left(\mu+d_{m}+\rho_{m}\right) x_{8}, \\
x_{9}^{\prime}=\varrho_{m} x_{7}+\rho_{m} x_{8}-(\mu+\zeta) x_{9} .
\end{array}\right\}
$$

From

$$
R_{0_{m}}=\left(\beta_{m} c_{m} \theta_{1}\left(1-\delta_{m}\right) v_{m}\right)\left(\frac{\mu+\omega_{m}}{\mu+\alpha_{m}+\omega_{m}}\right)\left(\frac{1}{\left(\mu+v_{m}+\varrho_{m}\right)\left(\mu+d_{m}+\rho_{m}\right)}\right)=1,
$$

we obtain

$$
\beta_{m}^{*}=\frac{\left(\mu+\alpha_{m}+\omega_{m}\right)\left(\mu+v_{m}+\varrho_{m}\right)\left(\mu+d_{m}+\rho_{m}\right)}{v_{m} c_{m} \theta_{1}\left(1-\delta_{m}\right)\left(\mu+\omega_{m}\right)} .
$$

The DFE is

$$
\begin{gathered}
\left(x_{1}{ }^{*}=\frac{\Lambda_{n}}{\mu_{n}}, x_{2}{ }^{*}=0, x_{3}{ }^{*}=0, x_{4}{ }^{*}=0, x_{5}{ }^{*}=\frac{\Lambda\left(\mu+\omega_{m}\right)}{\mu\left(\mu+\alpha_{m}+\omega_{m}\right)}, x_{6}{ }^{*}=\frac{\Lambda \alpha_{m}}{\mu\left(\mu+\alpha_{m}+\omega_{m}\right)},\right. \\
\left.x_{7}{ }^{*}=0, x_{8}{ }^{*}=0, x_{9}{ }^{*}=0\right) .
\end{gathered}
$$

The matrix of linearization around the DFE evaluated at $\beta_{m}{ }^{*}$ is
$\mathcal{A}=\left(\begin{array}{ccccccccc}-\mu_{n} & 0 & -\beta_{n} c_{n} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\mu_{n}-\varrho_{n}-v_{n} & \beta_{n} c_{n} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & v_{n} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \varrho_{n} & \rho_{n} & -\mu_{n} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & l_{1} & 0 & -\mu-\alpha_{m} & \omega_{m} & 0 & l_{3} & \zeta \\ 0 & 0 & 0 & 0 & \alpha_{m} & -\mu-\omega_{m} & 0 & 0 & 0 \\ 0 & 0 & l_{2} & 0 & 0 & 0 & -\mu-v_{m}-\varrho_{m} & l_{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & v_{m} & -\mu-d_{m}-\rho_{m} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \varrho_{m} & \rho_{m} & -\mu-\zeta\end{array}\right)$.
where

$$
\begin{aligned}
& l_{1}=\frac{\left(-1+\delta_{m}\right) \beta_{n} c_{n} \mu_{n} \Lambda\left(\mu+\omega_{m}\right)}{\Lambda_{n} \mu\left(\mu+\alpha_{m}+\omega_{m}\right)}, l_{2}=\frac{\left(1-\delta_{m}\right) \beta_{n} c_{n} \mu_{n} \Lambda\left(\mu+\omega_{m}\right)}{\Lambda_{n} \mu\left(\mu+\alpha_{m}+\omega_{m}\right)} \\
& l_{3}=\frac{\left(-1+\delta_{m}\right) \beta_{m}{ }^{*} c_{m} \theta_{1}\left(\mu+\omega_{m}\right)}{\mu+\alpha_{m}+\omega_{m}}, l_{4}=-\frac{\left(-1+\delta_{m}\right) \beta_{m}{ }^{*} c_{m} \theta_{1}\left(\mu+\omega_{m}\right)}{\mu+\alpha_{m}+\omega_{m}}
\end{aligned}
$$

Now, $|\mathcal{A}-\lambda I|=0$ expands to

$$
\begin{gathered}
\left(2 \mu+\varrho_{m}+d_{m}+v_{m}+\lambda+\rho_{m}\right)\left(\lambda+\mu_{n}\right)^{2}\left(\mu+\alpha_{m}+\omega_{m}+\lambda\right)(\mu+\zeta+\lambda)\left(-\beta_{n} c_{n} v_{n}+\lambda \mu_{n}+\lambda^{2}\right. \\
\left.+\lambda v_{n}+\lambda \varrho_{n}\right) \lambda(\mu+\lambda)=0
\end{gathered}
$$

The solutions are:

$$
\begin{aligned}
& \lambda_{1}=0, \lambda_{2}=-\mu_{n}, \lambda_{3}=-\mu_{n}, \lambda_{4}=-\mu, \lambda_{5}=-\mu-\zeta, \lambda_{6}=-\mu-\alpha_{m}-\omega_{m} \\
& \lambda_{7}=-\frac{\mu_{n}}{2}-\frac{v_{n}}{2}-\frac{\varrho_{n}}{2}-\frac{1}{2 \sqrt{v_{n}^{2}+\left(4 \beta_{n} c_{n}+2 \mu_{n}+2 \varrho_{n}\right) v_{n}+\left(\mu_{n}+\varrho_{n}\right)^{2}}} \\
& \lambda_{8}=-\frac{\mu_{n}}{2}-\frac{v_{n}}{2}-\frac{\varrho_{n}}{2}+\frac{1}{2 \sqrt{v_{n}^{2}+\left(4 \beta_{n} c_{n}+2 \mu_{n}+2 \varrho_{n}\right) v_{n}+\left(\mu_{n}+\varrho_{n}\right)^{2}}} \\
& \lambda_{9}=-2 \mu-\varrho_{m}-d_{m}-v_{m}-\rho_{m} .
\end{aligned}
$$

0 is a simple eigenvalue of $\mathcal{A}=D_{x} f(0,0)$. To get a right eigenvector w, we solve the system $\mathcal{A} w=0$.
Assume $w=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{8}, w_{9}\right)^{T}$. Then

$$
\begin{gather*}
v_{n} w_{2}=0 \begin{array}{r}
-\beta_{n} c_{n} w_{3}-\mu_{n} w_{1}=0 \\
\left(-\mu_{n}-\varrho_{n}-v_{n}\right) w_{2}+\beta_{n} c_{n} w_{3}=0 \\
-\mu_{n} w_{4}+\varrho_{n} w_{2}+\rho_{n} w_{3}=0 \\
\frac{\left(-1+\delta_{m}\right) \beta_{n} c_{n} \mu_{n} \Lambda\left(\mu+\omega_{m}\right) w_{3}}{\Lambda_{n} \mu\left(\mu+\alpha_{m}+\omega_{m}\right)}-\left(\mu+\alpha_{m}\right) w_{5}+\omega_{m} w_{6}+\frac{\left(-1+\delta_{m}\right) \beta_{m}{ }^{*} c_{m} \theta_{1}\left(\mu+\omega_{m}\right) w_{8}}{\mu+\alpha_{m}+\omega_{m}}+\zeta w_{9}=0 \\
\alpha_{m} w_{5}+\left(-\mu-\omega_{m}\right) w_{6}=0
\end{array} \\
-\frac{\left(-1+\delta_{m}\right) \beta_{n} c_{n} \mu_{n} \Lambda\left(\mu+\omega_{m}\right) w_{3}}{\Lambda_{n} \mu\left(\mu+\alpha_{m}+\omega_{m}\right)}-\left(\mu+v_{m}+\varrho_{m}\right) w_{7}-\frac{\left(-1+\delta_{m}\right) \beta_{m}{ }^{*} c_{m} \theta_{1}\left(\mu+\omega_{m}\right) w_{8}}{\mu+\alpha_{m}+\omega_{m}}=0 \\
v_{m} w_{7}+\left(-\mu-d_{m}-\rho_{m}\right) w_{8}=0 \\
\varrho_{m} w_{7}+\rho_{m} w_{8}+(-\mu-\zeta) w_{9}=0 \tag{14}
\end{gather*}
$$

Solving the system with $w_{6}=\alpha_{m}$ and $w_{8}=v_{m}$ we obtain

$$
w=\left(0,0,0,0, \mu+\omega_{m}, \alpha_{m}, \mu+d_{m}+\rho_{m}, v_{m}, \frac{2 \mu^{2}+\left(d_{m}+v_{m}+\rho_{m}+\alpha_{m}+\omega_{m}+\varrho_{m}\right) \mu+\left(v_{m}+\varrho_{m}\right)\left(d_{m}+\rho_{m}\right)}{\zeta}\right)^{T} .
$$

w is nonnegative. To obtain the left eigenvector we solve the system $v_{\mathcal{A}}=0$. Assume $v=$ $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right)$. Then

$$
\left.\begin{array}{c}
-v_{1} \mu_{n}=0 \tag{15}\\
-v_{1} \beta_{n} c_{n}+v_{2} \beta_{n} c_{n}+v_{4} \rho_{n}+\frac{v_{2}\left(-\mu_{n}-\varrho_{n}-v_{n}\right)+v_{3} v_{n}+v_{4} \varrho_{n}=0}{\nu_{n} \mu\left(\mu+\delta_{m}\right) \beta_{n} c_{n} \mu_{n} \Lambda\left(\mu+\omega_{m}\right)} \omega_{m}+\frac{v_{7}\left(-1+\delta_{m}\right) \beta_{n} c_{n} \mu_{n} \Lambda\left(\mu+\omega_{m}\right)}{\Lambda_{n} \mu\left(\mu+\alpha_{m}+\omega_{m}\right)}=0 \\
-\mu_{n} v_{4}=0 \\
\left(-v_{5}+v_{6}\right) \alpha_{m}-v_{5} \mu=0 \\
\left(v_{5}-v_{6}\right) \omega_{m}-v_{6} \mu=0 \\
\frac{v_{5}\left(-1+\delta_{m}\right) \beta_{m}{ }^{*} c_{m} \theta_{1}\left(\mu+\omega_{m}\right)}{\mu+\alpha_{m}+\omega_{m}}+\frac{v_{7}\left(1-\mu-\delta_{m}\right) \beta_{m}{ }^{*} c_{m} \theta_{1}\left(\mu+\omega_{m}\right)}{\mu+\alpha_{m}+\omega_{m}}-v_{8}\left(\mu+d_{m}+\rho_{m}\right)+v_{9} \rho_{m}=0 \\
\hline
\end{array}\right\}
$$

Solving the system, we obtain the components of v as:

$$
\begin{aligned}
& v_{1}=0, \\
& v_{2}=-\left((\mu + \omega _ { m }) \mu _ { n } \Lambda \left(\mu^{3} v_{5}+\left(\left(\zeta+d_{m}+v_{m}+\rho_{m}+\varrho_{m}\right) v_{5}+v_{8} v_{m}\right) \mu^{2}+\left(\left(\left(d_{m}+v_{m}+\rho_{m}\right.\right.\right.\right.\right. \\
& \left.\left.\left.+\varrho_{m}\right)(\zeta)+\left(v_{m}+\varrho_{m}\right)\left(d_{m}+\rho_{m}\right)\right) v_{5}+v_{8} v_{m}\left(\zeta+d_{m}+\rho_{m}\right)\right) \mu+(\zeta)\left(\left(v_{m} d_{m}\right.\right. \\
& \left.\left.+\varrho_{m}\left(d_{m}+\rho_{m}\right)\right) v_{5}+v_{8} v_{m}\left(d_{m}+\rho_{m}\right)\right)-\left(v_{5}(\zeta+\mu) \varrho_{m}\left(\mu+d_{m}+\rho_{m}\right)\right. \\
& \left.\left.\left.+v_{5}(\zeta+\mu) v_{m}\left(\mu+d_{m}+\rho_{m}\right)+v_{5}(\zeta+\mu) \mu\left(\mu+d_{m}+\rho_{m}\right)\right)\right)\left(1-\delta_{m}\right)\right) /((\zeta \\
& +\mu)\left(\mu\left(\mu+d_{m}+\rho_{m}\right)+v_{m}\left(\mu+d_{m}+\rho_{m}\right)+\varrho_{m}\left(\mu+d_{m}+\rho_{m}\right)\right) \Lambda_{n} \mu\left(\mu+\alpha_{m}\right. \\
& \left.+\omega_{m}\right) \text {), } \\
& v_{3}=-\left(\mu _ { n } (\mu + \omega _ { m }) \left(\mu^{3} v_{5}+\left(\left(\zeta+d_{m}+v_{m}+\rho_{m}+\varrho_{m}\right) v_{5}+v_{8} v_{m}\right) \mu^{2}+\left(\left(\left(d_{m}+v_{m}+\rho_{m}\right.\right.\right.\right.\right. \\
& \left.\left.\left.+\varrho_{m}\right)(\zeta)+\left(v_{m}+\varrho_{m}\right)\left(d_{m}+\rho_{m}\right)\right) v_{5}+v_{8} v_{m}\left(\zeta+d_{m}+\rho_{m}\right)\right) \mu+(\zeta)\left(\left(v_{m} d_{m}\right.\right. \\
& \left.\left.+\varrho_{m}\left(d_{m}+\rho_{m}\right)\right) v_{5}+v_{8} v_{m}\left(d_{m}+\rho_{m}\right)\right)-\left(v_{5}(\zeta+\mu) \varrho_{m}\left(\mu+d_{m}+\rho_{m}\right)\right. \\
& \left.\left.+v_{5}(\zeta+\mu) v_{m}\left(\mu+d_{m}+\rho_{m}\right)+v_{5}(\zeta+\mu) \mu\left(\mu+d_{m}+\rho_{m}\right)\right)\right) \Lambda\left(\mu_{n}+\varrho_{n}+v_{n}\right)(1 \\
& \left.\left.-\delta_{m}\right)\right) /\left((\zeta + \mu) \left(\mu\left(\mu+d_{m}+\rho_{m}\right)+v_{m}\left(\mu+d_{m}+\rho_{m}\right)+\varrho_{m}\left(\mu+d_{m}\right.\right.\right. \\
& \left.\left.\left.+\rho_{m}\right)\right) \Lambda_{n} \mu\left(\mu+\alpha_{m}+\omega_{m}\right) v_{n}\right) \text {, } \\
& v_{4}=0, v_{5}=v_{5}>0, \quad v_{6}=\frac{v_{5}\left(\mu+\alpha_{m}\right)}{\alpha_{m}}, \\
& v_{7}=\left(\mu^{3} v_{5}+\left(\left(\zeta+d_{m}+v_{m}+\rho_{m}+\varrho_{m}\right) v_{5}+v_{8} v_{m}\right) \mu^{2}+\left(\left(\left(d_{m}+v_{m}+\rho_{m}+\varrho_{m}\right)(\zeta)+\left(v_{m}\right.\right.\right.\right. \\
& \left.\left.\left.+\varrho_{m}\right)\left(d_{m}+\rho_{m}\right)\right) v_{5}+v_{8} v_{m}\left(\zeta+d_{m}+\rho_{m}\right)\right) \mu+(\zeta)\left(\left(v_{m} d_{m}+\varrho_{m}\left(d_{m}+\rho_{m}\right)\right) v_{5}\right. \\
& \left.\left.+v_{8} v_{m}\left(d_{m}+\rho_{m}\right)\right)\right) /\left((\zeta+\mu)\left(\mu+v_{m}+\varrho_{m}\right)\left(\mu+d_{m}+\rho_{m}\right)\right) \text {, } \\
& v_{8}=v_{8}>0, \quad v_{9}=\frac{\zeta v_{5}}{\zeta+\mu} .
\end{aligned}
$$

Substituting w and v into equation (11), we obtain

$$
\begin{aligned}
a=-4\left(\mu \left(\mu^{2} v_{8}\right.\right. & \left.+v_{8}\left(\zeta+d_{m}+\rho_{m}\right) \mu+(\zeta)\left(\left(-v_{5}+v_{8}\right) \rho_{m}+d_{m} v_{8}\right)\right)\left(\mu^{2}+\left(\alpha_{m} / 2+\omega_{m} / 2+\varrho_{m} / 2\right.\right. \\
& \left.\left.+\zeta / 2+d_{m} / 2+v_{m} / 2+\rho_{m} / 2\right) \mu+1 / 2\left(d_{m}+\rho_{m}\right)\left(\varrho_{m}+\zeta+v_{m}\right)\right)\left(1-\delta_{m}\right)(\mu \\
& \left.\left.+\omega_{m}\right) \beta_{m} v_{m}^{2} c_{m} \theta_{1}\right) /\left(\left(\mu+\alpha_{m}+\omega_{m}\right) \Lambda(\mu+\zeta)\left(\mu+v_{m}+\varrho_{m}\right)\left(\mu+d_{m}+\rho_{m}\right)(\zeta)\right) \\
b=\left(\theta_{1}\left(1-\delta_{m}\right)\right. & \left.v_{m}^{2}\left(\mu+\omega_{m}\right)\left(\mu^{2} v_{8}+v_{8}\left(\zeta+d_{m}+\rho_{m}\right) \mu+(\zeta)\left(\left(d_{m}+\rho_{m}\right) v_{8}-v_{5} \rho_{m}\right)\right) c_{m}\right) /((\mu \\
& \left.\left.+\alpha_{m}+\omega_{m}\right)(\mu+\zeta)\left(\mu+v_{m}+\varrho_{m}\right)\left(\mu+d_{m}+\rho_{m}\right)\right) .
\end{aligned}
$$

Observe that $a>0$, and $b<0$ if we choose $v_{8}<v_{5}$, say

$$
v_{8}=\frac{1}{\mu^{2}+\left(\zeta+d_{m}+\rho_{m}\right) \mu+\left(d_{m}+\rho_{m}\right)(\zeta)}, \quad v_{5}=\frac{1}{\rho_{m}}
$$

so that

$$
\begin{align*}
& \mu^{2} v_{8}+v_{8}\left(\zeta+d_{m}+\rho_{m}\right) \mu+\zeta\left(\left(d_{m}+\rho_{m}\right) v_{8}-v_{5} \rho_{m}\right) \text { is negative and we get } a>0, b<0 \text { if } \\
& \zeta>1 \tag{16}
\end{align*}
$$

Also, Observe that $a<0, b>0$ if we put $v_{8} \geq v_{5}$, say $v_{8}=1, v_{5}=1$, so that $\mu^{2} v_{8}+v_{8}\left(\zeta+d_{m}+\right.$ $\left.\rho_{m}\right) \mu+\zeta\left(\left(d_{m}+\rho_{m}\right) v_{8}-v_{5} \rho_{m}\right)$ is positive and we obtain $a<0, b>0$ if

$$
\begin{equation*}
\zeta<\frac{\mu^{2}+\left(\zeta+d_{m}+\rho_{m}\right) \mu}{d_{m}} \tag{17}
\end{equation*}
$$

Thus, case iii and case iv of the theorem 3 captures the dynamics of the monkeypox sub-model around the DFE, according to inequalities (16) and (17) respectively. Considering the inequality (17), a bifurcation plot is presented in Fig.2.It requires that an infective management of the monkeypox infection should $R_{0_{m}}$ in the interval $R_{0_{m *}}<R_{0_{m}}<1$.

Fig. 2. Bifurcation plot for the monkeypox sub-model
II. Bifurcation of the HIV-AIDS sub-model:

$$
\left.\begin{array}{c}
(1-\varepsilon) \Lambda-\left(\mu+\lambda_{h}\right) S=0, \\
\varepsilon \Lambda+\lambda_{h} S-\left(\mu+\rho_{1}\right) I_{h}=0, \tag{18}\\
\rho_{1} I_{h}-\left(\mu+d_{h}\right) A_{h}=0 .
\end{array}\right\}
$$

Where

$$
\lambda_{h}=\left(1-\boldsymbol{\delta}_{\boldsymbol{h}}\right)\left(\beta_{h} c_{h} \frac{\left(\phi_{1} I_{h}+\phi_{3} A_{h}\right)}{S(t)+I_{h}(t)+A_{h}(t)}\right)
$$

we set $x_{1}=S, x_{2}=I_{h}, x_{3}=A_{h}$. Thus, system (18) becomes:

$$
\left.\begin{array}{c}
x_{1}^{\prime}=(1-\varepsilon) \Lambda-\left(\mu+\lambda_{h}\right) S, \\
x_{2}^{\prime}=\boldsymbol{\varepsilon} \Lambda+\lambda_{h} S-\left(\mu+\rho_{1}\right) I_{h}, \tag{19}\\
x_{3}^{\prime}=\rho_{1} I_{h}-\left(\mu+d_{h}\right) A_{h} .
\end{array}\right\}
$$

From

$$
\begin{equation*}
R_{0_{h}}=\beta_{h} c_{h}\left(1-\delta_{h}\right)\left(\phi_{1}\left(d_{h}+\mu\right)+\phi_{3} \rho_{1}\right) \frac{1}{\left(\mu+\rho_{1}\right)\left(d_{h}+\mu\right)}=1 \tag{20}
\end{equation*}
$$

we obtain

$$
\beta_{h}^{*}=\frac{\left(\mu+\rho_{1}\right)\left(\mu+d_{h}\right)}{\left(1-\delta_{h}\right)\left(\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}\right) c_{h}} .
$$

The DFE is

$$
\left(x_{1}{ }^{*}=\frac{(1-\varepsilon) \Lambda}{\mu}, x_{2}{ }^{*}=0, x_{3}{ }^{*}=0\right) .
$$

The matrix of linearization around the DFE evaluated at $\beta_{m}{ }^{*}$ is

$$
\mathcal{A}=\left(\begin{array}{ccc}
-\mu & -\left(1-\delta_{h}\right) \beta_{h}{ }^{*} c_{h} \phi_{1} & -\left(1-\delta_{h}\right) \beta_{h}{ }^{*} c_{h} \phi_{3} \\
0 & \left(1-\delta_{h}\right) \beta_{h}{ }^{*} c_{h} \phi_{1}-\mu-\rho_{1} & \left(1-\delta_{h}\right) \beta_{h}{ }^{*} c_{h} \phi_{3} \\
0 & \rho_{1} & -\mu-d_{h}
\end{array}\right) .
$$

Now $|\mathcal{A}-\lambda I|=0$ expands to

$$
\left(\left(\mu+d_{h}\right)\left(\mu+d_{h}+\lambda\right) \phi_{1}+2 \phi_{3} \rho_{1}\left(\mu+d_{h} / 2+\lambda / 2+\rho_{1} / 2\right)\right)(\mu+\lambda) \lambda=0
$$

The solutions are: $\lambda_{1}=0, \lambda_{2}=-\mu$,

$$
\lambda_{3}=-\frac{d_{h}^{2} \phi_{1}+2 d_{h} \mu \phi_{1}+d_{h} \phi_{3} \rho_{1}+\mu^{2} \phi_{1}+2 \mu \phi_{3} \rho_{1}+\phi_{3} \rho_{1}^{2}}{d_{h} \phi_{1}+\mu \phi_{1}+\phi_{3} \rho_{1}} .
$$

0 is a simple eigenvalue of $\mathcal{A}=D_{x} f(0,0)$. To get a right eigenvector $w=\left(w_{1}, w_{2}, w_{3}\right)^{T}$, we consider the system

$$
\left.-\mu w_{1}-\frac{\left(\mu+\rho_{1}\right)\left(\mu+d_{h}\right) \phi_{1} w_{2}}{\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}}-\frac{\left(\mu+\rho_{1}\right)\left(\mu+d_{h}\right) \phi_{3} w_{3}}{\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}}=0\right\}
$$

Solving the system with $w_{3}=\rho_{1}$, we obtain

$$
w=\left(-\left(\mu+\rho_{1}\right)\left(\mu+d_{h}\right) / \mu,\left(\mu+d_{h}\right), \rho_{1}\right)^{T} .
$$

The negative component of w is acceptable because it corresponds to the first entry of the DFE which is strictly positive. Now, to obtain the left eigenvector $v=\left(v_{1}, v_{2}, v_{3}\right)$, we solve the system

$$
\left.\begin{array}{r}
-\left(\left(v_{1}-v_{3}\right) \rho_{1}+v_{1} \mu\right)\left(\mu+d_{h}\right) \phi_{1}-\left(\left(v_{2}-v_{3}\right) \rho_{1}+\mu v_{2}\right) \rho_{1} \phi_{3} \tag{22}\\
-\frac{\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}}{}=0 \\
-\frac{\left(\mu+d_{h}\right)\left(\left(\left(v_{1}-v_{2}\right) \mu+\rho_{1}\left(v_{1}-v_{2}+v_{3}\right)\right) \phi_{3}+v_{3} \phi_{1}\left(\mu+d_{h}\right)\right)}{\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}}=0
\end{array}\right\}
$$

Solving the system with $v_{3}=\left(\mu+\rho_{1}\right) \phi_{3}$, we obtain

$$
v=\left(0,\left(\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}\right),\left(\mu+\rho_{1}\right) \phi_{3}\right) .
$$

Substituting w and v into equation (11), we obtain

$$
\begin{aligned}
& \begin{array}{l}
a=-2\left(((1 / 2 \rho _ { 1 } ^ { 2 } + (\mu + d _ { h }) \rho _ { 1 } + (\mu + d _ { h }) ^ { 2 }) \phi _ { 1 } + \phi _ { 3 } \rho _ { 1 } (\mu + d _ { h } + \rho _ { 1 } / 2)) c _ { h } (1 - \delta _ { h }) \beta _ { h } \left(\left(\mu+d_{h}\right) \phi_{1}\right.\right. \\
\left.\left.\quad+\phi_{3} \rho_{1}\right) \mu\right) /((1-\epsilon) \Lambda)<0, \\
b=c_{h}\left(1-\delta_{h}\right)\left(\left(\mu+d_{h}\right) \phi_{1}+\phi_{3} \rho_{1}\right)^{2}>0 .
\end{array}
\end{aligned}
$$

Thuscase iv of the theorem 3 captures the local dynamics of the HIV/AIDS sub-model around the DFE. Hence, the sub-model exhibits a forward bifurcation, which guarantees that the condition $R_{0_{h}}<$ 1 is enough to effectively manage the disease.

Fig. 3. Bifurcation plot for the HIV/AIDS sub-model

6. DISCUSSION OF RESULTS AND CONCLUSION

A 13-compartment deterministic model has been constructed and used for the analyses of the coinfection of monkeypox and HIV/AIDS infections. Epidemiological analyses were performed on model, and results obtained. In this study, calculations and numerical simulations were done with the Maple 18 programming language. It was shown that under some critical conditions, monkeypox and HIV/AIDS diseases can be properly managed and possibly eliminated. Lyapunov functions were employed in the stability analysis and the disease-free equilibrium (DFE) and disease-endemic equilibrium (DEE) of the sub-models are globally asymptomatically
stable when the basic reproduction number $\left(R_{0}\right)$ satisfies the condition $R_{0}<1$. The centre manifold theorem as given by Castillo-Chavez and Song (2004) was employed in the bifurcation analysis.

The sensitivity analysis approach used by Tsetimi, Ossaiugbo and Atonuje [5] was employed in obtaining the sensitivity indices of the parameters of the basic reproduction number. The probability $\left(\beta_{m}\right)$ of catching the monkeypox infection, the rate of effective contact $\left(c_{m}\right)$, the compartment I_{m} 's coefficient of infection (θ_{1}) and the monkeypox vaccine's waning rate $\left(\omega_{m}\right)$ are the parameters of monkeypox R_{0} that havepositive sensitivity indices, while the probability $\left(\beta_{h}\right)$ of catching HIV
virus, the rate effective contact $\left(c_{h}\right)$, the compartment I_{h} 's coefficient of infection and the compartment A_{h} 's coefficient of infection are the parameters of HIV/AIDS R_{0} with positive sensitivity indices.

The bifurcation analysis revealed a forward bifurcation for the sub-model for monkeypox and the HIV/AIDS sub-model. It was further revealed that when $\zeta<\frac{\mu^{2}+\left(\zeta+d_{m}+\rho_{m}\right) \mu}{d_{m}}$, then a critical value $R_{0_{m *}}$ exists such that an effective management and possible elimination of the monkeypox disease would require that the basic reproduction number $\left(R_{0_{m}}\right)$ satisfies $R_{0_{m}} \in\left(R_{0_{m *}}, 1\right)$.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. World Health Organisation. Monkeypox Outbreak. The Latest on the Monkeypox Outbreak and Advice for Health Workers; 2022. Retrieved 29th January, 2023.

Available:https://www.who.int/docs/default -source/coronaviruse/risk-comms-updates/update_monkeypox.pdf?sfvrsn=99baeb03_1.
2. Kannan S, Shaik SAP, Sheeza A. Monkeypox: Epidemiology, mode of transmission, clinical features, genetic clades and molecular properties. European Review for Medical and Pharmacological Sciences. 2022;26:59835990.
3. Petersen BW, Kabamba J, McCollum AM, Lushima RS, Wemakoy EO, Muyembe TJJ, Nguete B, Hughes CM, Monroe BP, Reynolds MG. Vaccinating against monkeypox in the Democratic Republic of the Congo. Antiviral Res. 2019;162:171177.
4. Getachew TT. Mathematical model for coinfection of pneumonia and typhoid fever disease with optimal control. Pan African University; 2017.
5. Tsetimi, Ossaiugbo, Atonuje. Bifurcation analysis of a mathematical model for the covid-19 infection among pregnant and non-pregnant women. European Journal of Pure and Applied Mathematics. 2022;15(2):537-556.
Available:https://doi.org/10.29020/nybg.ej pam.v15i2.4312.
6. Ossaiugbo IM, Okposo IN. Mathematical modeling and analysis of pneumonia infection dynamics. Science World Journal. 2021;16(2).
7. Ayele TK, Goufo EFG, Mugisha S. Mathematical modeling of HIV/AIDS with optimal control: A case study in Ethiopia. Results in Physics. Elsevier.2021;26(104263):1-17.
Available:https://doi.org/10.1016/j.rinp. 202 1.104263.
8. Somma SA, Akinwande NI, Chado UD. A mathematical model of monkey pox virus transmission dynamics. Ife Journal of Science. 2019;21(1).
Available:https://dx.doi.org/10.4314/ijs.v2 1i1.17.
9. Usman S, Adamu II. Modeling the transmission dynamics of the monkeypox virus infection with treatment and vaccination interventions. Journal of Applied Mathematics and Physics. 2017;5:2335-2353.
Available:https://doi.org/10.4236/jamp. 201 7.512191 .
10. Bhunu C, Mushayabasa S, Mac Hyman J. Modelling HIV/AIDS and monkeypox coinfection. Applied Mathematics and Computation. 2012;218:9504-9518.
Available:http://dx.doi.org/10.1016/j.amc. 2 012.03.042.
11. Kumar RP, Basu S, Ghosh D, Santra PK, Mahapatra GS. Dynamical analysis of novel COVID-19 epidemic model with non-monotonic incidence function. Mathematics and Computers in Simulation. 2021;741-766.
DOI:10.1016/j.matcom.2022.07.012, 203
12. Santra PK, Mahapatra GS, Phaijo GR. Bifurcation analysis and chaos control of discrete pre-predator model incorporating novel pre-refuge concept. Comp and Math Methods. 2021:3(6):e1185.
Available:https://doi.org/10.1002/cmm4.11 85.
13. Kumar RP, Basu S, Santra PK, Ghosh D, Mahapatra GS. Optimal control design incorporating vaccination and treatment on six compartment pandemic dynamical system. Results in Control and Optimization. 2022;7:100115.
Available:https://doi.org/10.1016/j.rico. 202 2.100115.
14. Basu S, Kumar RP, Santra PK, Mahapatra GS, Elsadany AA. Preventive control strategy on second wave of Covid19 pandemic model incorporating lock-
down effect. Alexandria Engineering Journal. 2022;61(9):7265-7276.
Available:https://doi.org/10.1016/j.aej. 202 1.12.066.
15. Kumar RP, Mahapatra GS, Parshad RD, Santra PK. Dynamical behavior and sensitivity analysis of a dengue reinfection model for vertical transmission incorporating multiple control strategies, Commun. Math. Biol. Neurosci: 2023. Article ID 134.
16. Kumar RP, Santra PK, Mahapatra GS. Global stability and analysing the sensitivity of parameters of a multiplesusceptible population model of SARS-CoV-2 emphasising vaccination drive. Mathematics and Computers in Simulation. 2023;203:741-766.
Available:https://doi.org/10.1016/j.matcom .2022.07.012.
17. Kumar RP, Basu S, Santra PK, Elsadany AA, Elsonbaty A, Mahapatra GS, AI-
khedhairi A. Global stability and sensitivity analysis of parameters of Omicron variant epidemic in diverse susceptible classes incorporating vaccination stages. Soft Comput. 2024; 28:4689-4713.
Available:https://doi.org/10.1007/s00500-023-09170-0.
18. Nigeria Centre for Disease Control. Monkeypox; 2022.Retrieved $17^{\text {th }}$ December, 2023.
Available:https://ncdc.gov.ng/diseases/inf o/M.
19. World Health Organisation. Mpox (monkeypox); 2023.
Available:https://www.who.int/healthtopics/monkeypox\#tab=tab_1. Retrieved $17^{\text {th }}$ December, 2023.
20. Castillo-Chavez C, Song B. Dynamical models of tuberculosis and their applications. Mathematical Biosciences and Engineering. 2004;1:361-404.
© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]
[^0]: *Corresponding author: E-mail: iossaiugbo@delsu.edu.ng;
 J. Sci. Res. Rep., vol. 30, no. 5, pp. 351-368, 2024

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/113994

