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Abstract

The note considers a risk model with dependence and capital injections, where the dependence structure is
modeled by a Farlie-Gumbel-Morgenstern copula. In the risk model, the initial surplus starts from a level
u ≥ h, where h > 0 is a fix constant. The author derives an expression for the Laplace transform of the
Gerber-Shiu function. In particular, an explicit formula for the Gerber-Shiu function is obtained when the
initial surplus is h.
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1 Introduction

Nie et al. [1,2] introduced a risk model with capital injections. In the model the insurer’s initial surplus starts
from a level u ≥ h,(h > 0 is a fixed constant). In any case, if the surplus drops from above h to between 0 and h
, the capital injection will restore the surplus level to h. If the surplus drops from a level aboveh to below 0, the
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ruin will occur. Dickson, D. C., Qazvini, M. [3], studied a risk model with capital injections and obtained an
expression for its Laplace transform and Gerber-Shiu function itself when the initial surplus is h, providing an
effective method for studing ruin related quantities in finite time. Zhao et al. [4] studied the optimal periodic
dividend and capital injection problem for the spectral positive Lévy processes, and maximized the total value
of the expected discounted dividend and penalty discounted capital injections until the time of ruin. They
found that the optimal return function can be expressed as a scaling function. Xu et al. [5] considered a
capital injection strategy based on the periodic implementation of claims in the classical Poisson risk model, and
derived an explicit expression for the discount density of surplus levels after a certain number of claims before
the ruin occurred. They also found an explicit Laplace transform expression for the time of ruin. Yu et al. [6]
considered a classical risk model with a periodic capital injection strategy and a barrier dividend strategy, and
derived boundary conditions for the Gerber-Shiu function, the expected discounted capital injection function
and the expected discounted dividend function by assuming that the observation interval and claim amount are
exponentially distributed, respectively.

In ruin theory, the classical compound Poisson risk model with independence between the claim size and
interclaim time. In the study of the classical compound Poisson risk model, it is assumed that the claim
sizes and the interclaim times are mutually independent. Although this hypothesis is applicable to certain
practical situations and simplifies the study of the calculation of the amount of ruin of interest, it has been
proved to be inappropriate and restrictive in other practical contexts. For example, in modeling damages due to
natural catastrophic events the intensity of the catastrophe and the time elapsed,becuase the last catastrophe
are expected to be dependent. See e.g. Boudreault [7] and Nikoloulopoulos, A. K., Karlis, D. [8] for an
application of this type of dependence structure in an earthquake contex. Recently, many authors have paid lots
of attention to the risk model with dependence between interclaim times and claim sizes. Cossette et al. [10],
considered the classical compound Poisson risk model with dependence structure based on a Farlie-Gumbel-
Morgennstern(FGM) copula, and evaluated the defective renewal equation for the Gerber-Shiu function. Zhang,
Z., Yang, H. [10] studied the Gerber-Shiu function for a perturbed by diffusiom compound Poisson risk model
with dependence structure between the claim size and interclaim time by FGM copula, and show that the
Gerber-Shiu function satisfy some defective renewal equations. Shi et al. [11] consider the compound Poisson
risk model with a threshold dividend strategy and dependence structure modeled by a FGM copula, and derive
explicit formulas for Gerber-shiu functions and expected discounted divided payments.

In the note, we study risk model with capital injections and dependence between the claim sizes and interclaim
times, based on a FGM copula. We derive an expression for the Laplace transform of the Gerber-Shiu function,
and the corresponding result in [3] is generalized by this note.

2 Model Description

Consider insurer’s surplus process at time t defined as {U(t), t ≥ 0}, with

U(t) = u+ pt−
N(t)∑
i=1

Zi (2.1)

where u is the initial surplus, p > 0 is the premium rate which is asuumed to be a positive constant.
∑N(t)
i=1 Zi is

a compound Poisson process and is the total claim amount process. {N(t)}t≥0 is a Poisson process with Poisson
parameter λ and {Zi}∞i=1 are assumed to form a sequence of independent identically distributed(i.i.d.) random
variables(r.v.), where Zi represents the amount of the ith claim. Let g(x) be the probability density function
of Zi, and the cumulative distribution function(c.d.f.) of Zi is G(x), with G(0) = 0, and G = 1 − Ḡ. The
interclaim times {Vi, i ≥ 1} with Vi the time between the (i − 1)th and the ith claim, are i.i.d with common
p.d.f. p(t) = λe−λt. Obviously (Zi, Vi), i ≥ 1, are i.i.d. random vectors. Motivated by Cossette et al. [9] and
Denuit et al. [12], we use the FGM copula to define the joint distribution of (Z, V ) and the claim size and the
interclaim time is dependet. The FGM copula is given by

CFGMθ (u1, u2) = u1u2 + θu1u2(1− u1)(1− u2)
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θ ∈ [−1, 1], u1, u2 ∈ [0, 1], we assume that, the joint p.d.f. of {(Zi, Vi), i ≥ 1} is defined by

g(x, t) = g(x)λe−λt + θl(x)(2λe−2λt − λe−λt)

x, t ≥ 0, where l(x) = (1− 2G(x))g(x), x ≥ 0 with l̂(s) is the Laplace transform of l(x).

Let τ = inf {t : U(t) < 0|U(0) = u} be the time of ruin with τ = ∞ if U(t) > 0 for all t > 0(i.e. tuin does not
occur)and ϕ(u) = Pr(T <∞|U(0) = u) be the ultimate ruin probability. To guarantee that ruin will not occur,
the premium loading factor is given by p > λE(Z1).

The note is interested in the risk model with dependence and capital injection. Further, the initial surplus starts
from u ≥ h > 0, when the surplus process falls between 0 and h, a capital injection causes the surplus to start
from k. When the surplus falls below 0, ruin occurs. Therefor, we use the same notation as for the classical risk
model, with a subscript h.

3 Analysis of the Gerber-Shiu Function

In this section, we will investigate the Gerber-Shiu function of the risk process. In Dickson et al. [3], the authors
introduce Gerber-Shiu function about τh, Nτh , and the penalty function ω(x, y),when x ≥ h and y > 0, as
follows

m(u) = E
[
rNτh exp(−δτh)ω(U(τ−h ), |U(τh)|)I(τh <∞)|U(0) = u

]
(3.1)

where δ ≥ 0, 0 < r ≤ 1 as well as u > h, U(τ−h ) is the surplus prior to ruin. In Landriault et al. [13], authors
explain δ as the parameter of a Laplace transform and r as the parameter of a probability generating function.
Expecially, m(u) = 0, when 0 ≤ u < h.

We need to introduce the well-known Dickon-Hipp operator [14] Ts of a real-valued integrable function g defined
as

Tsg(x) =

∫ ∞
x

e−s(y−x)g(y)dy

Theorem 1.The Gerber-Shiu penalty function m(u) satisfies

m(h) =

rλ
p

[(ρ2 − 2λ+δ
p

)Tρ2β1(h)− (ρ1 − 2λ+δ
p

)Tρ1β1(h)] + rλθ
p

[(ρ2 − δ
p
)Tρ2β2(h)− (ρ1 − δ

p
)Tρ1β2(h)]

(ρ2 − ρ1)− rλ
p

[(ρ2 − 2λ+δ
p

)η2(h)− (ρ1 − 2λ+δ
p

)η1(h)]− rλθ
p

[(ρ2 − δ
p
)ξ2(h)− (ρ1 − δ

p
)ξ1(h)]

(3.2)

where,

γ1(u) =

∫ u−h

0

m(u− x)g(x)dx+

∫ u

u−h
m(h)g(x)dx+ β1(u)

β1(u) =

∫ ∞
u

ω(u, x− u)g(x)dx

γ2(u) =

∫ u−h

0

m(u− x)l(x)dx+

∫ u

u−h
m(h)l(x)dx+ β2(u)

β2(u) =

∫ ∞
u

ω(u, x− u)l(x)dx

η1(h) =

∫ ∞
h

exp(−ρ1(u− h))(Ḡ(u− h)− Ḡ(u))du

η2(h) =

∫ ∞
h

exp(−ρ2(u− h))(Ḡ(u− h)− Ḡ(u))du

ξ1(h) =

∫ ∞
h

exp(−ρ1(u− h))(L̄(u− h)− L̄(u))du

ξ2(h) =

∫ ∞
h

exp(−ρ2(u− h))(L̄(u− h)− L̄(u))du

3
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Proof. By conditioning on the time and amount of the first claim we can obtain for u ≥ h,

m(h) =E[rNtexp(−δt)m(u+ pt− x)|X1 = x, V1 = t] + E[rNtexp(−δt)m(h)|X1 = x, V1 = t]

+ E[[rNtexp(−δTh)ω(U(T−h ), |U(Th)|)I(Th <∞)|U(0) = u]|X1 = x, V1 = t]

=

∫ ∞
0

[∫ u+pt−h

0

exp(−δt)rm(u+ pt− x)g(x, t)dx+

∫ u+pt

u+pt−h
exp(−δt)rm(h)g(x, t)dx

+

∫ ∞
u+pt

rexp(−δt)ω(U(T−h ), |U(Th)|)g(x, t)dx

]
dt

=
rλ

p

∫ ∞
u

exp(−(λ+ δ)
τ − u
p

)

[∫ τ−h

0

m(τ − x)g(x)dx+

∫ τ

τ−h
m(h)g(x)dx+

∫ ∞
τ

f(x)ω(τ, x− τ)dx

]
dτ

+
rλθ

p

∫ ∞
u

(2exp(−(2λ+ δ)
τ − u
p

)− exp(−(λ+ δ)
τ − u
p

))

[∫ τ−h

0

m(τ − x)l(x)dx+

∫ τ

τ−h
m(h)l(x)dx

+

∫ ∞
τ

l(x)ω(τ, x− τ)dx

]
dτ

=
rλ

p

∫ ∞
u

exp(−(λ+ δ)
τ − u
p

)γ1(τ)dτ +
rλθ

p

∫ ∞
u

(2exp−(2λ+ δ)
τ − u
p

)− exp(−(λ+ δ)
τ − u
p

))γ2(τ)dτ

(3.3)

Using the operator Ts we can obtain

m(u) =
rλ

p
Tλ+δ

p
γ1(u) +

rλθ

p

(
2T 2λ+δ

p
γ2(u)− Tλ+δ

p
γ2(u)

)
(3.4)

Noting m(u) = 0, when 0 ≤ u < h, then

Tsm(h) =

∫ ∞
h

exp(−s(x− h))m(x)dx = eshm̂(s)

therefore, Tsγ1(h) = eshγ̂1(s), Tsγ2(h) = eshγ̂2(s). By the Dickson-Hipp operator, we have

Tsm(h) =
rλ

p
TsTλ+δ

p
γ1(h) +

rλθ

p
(2TsT 2λ+δ

p
γ2(h)− TsTλ+δ

p
γ2(p))

=
rλ

p
×
Tλ+δ

p
− Ts

(s− λ+δ
p

)
γ1(h) +

rλθ

p

(
2×

T 2λ+δ
p
− Ts

(s− 2λ+δ
p

)
γ2(h)−

Tλ+δ
p
− Ts

(s− λ+δ
p

)
γ2(h)

)
(3.5)

Multiplying (3.5) by (s− λ+δ
p

)(s− 2λ+δ
p

), we have

(s− λ+ δ

p
)(s− 2λ+ δ

p
)Tsmr,δ(h) =

rλ

p
(s− 2λ+ δ

p
)(Tλ+δ

p
− Ts)γ1(h)

+ 2
rλθ

p
(s− λ+ δ

p
)(T 2λ+δ

p
− Ts)γ2(h)

− rλθ

p
(s− 2λ+ δ

p
)(Tλ+δ

p
− Ts)γ2(h) (3.6)

Multiplying (3.4) by (s− λ+δ
p

) and rewrite (3.5), we can obtain

(s− λ+ δ

p
)(s− 2λ+ δ

p
)Tsm(h) =(s− 2λ+ δ

p
)m(k) +

λ

p
× 2

rλθ

p
T 2λ+δ

p
γ2(h)

− rλ

p
(s− 2λ+ δ

p
)Tsγ1(h)− rλθ

p
(s− δ

p
)Tsγ2(h) (3.7)
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Tsγ1(h) =

∫ ∞
h

exp(−s(u− h))γ1(u)du

= exp(sh)

∫ ∞
h

exp(−su)

∫ u−h

0

g(x)m(u− x)dxdu+m(h)

∫ ∞
h

exp(−s(u− h))

∫ u

u−h
g(x)dxdu

+

∫ ∞
h

exp(−s(u− h))β1(u)du

= exp(sh)ĝ(s)m̂(s) +m(h)

∫ ∞
h

exp(−s(u− h))(Ḡ(u− h)− Ḡ(u))du+ Tsβ1(h) (3.8)

Since Tsm(h) = eshm̂(s), we have

Tsγ1(h) = Tsm(h)ĝ(s) +m(h)

∫ ∞
h

exp(−s(u− h))(Ḡ(u− h)− Ḡ(u))du+ Tsβ1(h)

Similaly

Tsγ2(h) = Tsm(h)l̂(s) +m(h)

∫ ∞
h

exp(−s(u− h))(L̄(u− h)− L̄(u))du+ Tsβ2(h)

Substiituting in (3.7), we can derive

(s− λ+ δ

p
)(s− 2λ+ δ

p
)Tsm(h) =(s− 2λ+ δ

p
)m(h)− rλ

p
(s− 2λ+ δ

p
) [Tsm(h)ĝ(s)

+m(h)

∫ ∞
h

exp(−s(u− h))(Ḡ(u− h)− Ḡ(u))du+ Tsβ1(h)

]
− rλθ

p
(s− δ

p
)
[
Tsm(h)l̂(s)

+m(h)

∫ ∞
h

exp(−s(u− h))(L̄(u− h)− L̄(u))du+ Tsβ2(h)

]
+
λ

p
× 2rλθ

p
× e

2λ+δ
p γ̂2(s) (3.9)

Tsm(h) =
1

(s− λ+δ
p

)(s− 2λ+δ
p

) + rλ
p

(s− 2λ+δ
p

)ĝ(s) + rλθ
p

(s− δ
p
)l̂(s)

×
{

(s− 2λ+ δ

p
)m(h)− rλ

p
(s− 2λ+ δ

p
)

[
m(h)

∫ ∞
h

exp(−s(u− h))(Ḡ(u− h)− Ḡ(u))du+ Tsβ1(h)

]
−rλθ

p
(s− δ

p
)

[
m(h)

∫ ∞
h

exp(−s(u− h))(L̄(u− h)− L̄(u))du+ Tsβ2(h)

]
+
λ

p
× 2rλθ

p
× T 2λ+δ

p
γ2(h)

}
(3.10)

Since Tsm(h) = eshm̂(s), we can rewrite (3.10)

m̂(s) =
1

(s− λ+δ
p

)(s− 2λ+δ
p

) + rλ
p

(s− 2λ+δ
p

)ĝ(s) + rλθ
p

(s− δ
p
)l̂(s)

×
{

(s− 2λ+ δ

p
)exp(−sh)m(h)− rλ

p
(s− 2λ+ δ

p
)

[
m(h)

∫ ∞
h

exp(−su)(Ḡ(u− h)− Ḡ(u))du+ exp(−sh)Tsβ1(h)

]
−rλθ

p
(s− δ

p
)

[
m(h)

∫ ∞
h

exp(−su)(L̄(u− h)− L̄(u))du+ exp(−sh)Tsβ2(h)

]
+
λ

p
× 2rλθ

p
× exp(−sh)T 2λ+δ

p
γ2(h)

}
(3.11)

5
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where, the denominator of Eq. (3.11) (s − λ+δ
p

)(s − 2λ+δ
p

) + rλ
p

(s − 2λ+δ
p

)f̂(s) + rλθ
p

(s − δ
p
)ĥ(s) = 0 is the

Lundberg’s generalized equation with two different positive real roots ρi, i = 1, 2. See the analysis of the
Lunderberg’s generalized equation [10] and [11]. These roots must also be roots of the numerator of Eq. (3.11),
given that it is analytic. Therefore we obtain m(k) by the following linear systerm.

m(h) =

{
rλ
p

(ρ1 − 2λ+δ
p

)Tρ1β1(h) + rλθ
p

(ρ1 − δ
p
)Tρ1β2(h)− λ

p
× 2rλθ

p
× T 2λ+δ

p
γ2(h)

}
{

(ρ1 − 2λ+δ
p

)− rλ
p

(ρ1 − 2λ+δ
p

)η1(h)− rλθ
p

(ρ1 − δ
p
)ξ1(h)

} (3.12)

m(h) =

{
rλ
p

(ρ2 − 2λ+δ
p

)Tρ2β1(h) + rλθ
p

(ρ1 − δ
p
)Tρ2β2(h)− λ

p
× 2rλθ

p
× T 2λ+δ

p
γ2(h)

}
{

(ρ2 − 2λ+δ
p

)− rλ
p

(ρ2 − 2λ+δ
p

)η2(h)− rλθ
p

(ρ2 − δ
p
)ξ2(h)

} (3.13)

Hence,

m(h) =

rλ
p

[(ρ2 − 2λ+δ
p

)Tρ2β1(h)− (ρ1 − 2λ+δ
c

)Tρ1β1(h)] + rλθ
p

[(ρ2 − δ
p
)Tρ2β2(h)− (ρ1 − δ

p
)Tρ1β2(h)]

(ρ2 − ρ1)− rλ
p

[(ρ2 − 2λ+δ
p

)η2(h)− (ρ1 − 2λ+δ
c

)η1(h)]− rλθ
p

[(ρ2 − δ
p
)ξ2(h)− (ρ1 − δ

c
)ξ1(h)]

(3.14)

The proof is completed.

When θ = 0, the claim amount r.v. Xj and the interclaim time r.v. Wj is independent,

g(x, t) = g(x)λe−λt

then,

m(h) =

rλ
p

∫∞
h

∫∞
u
e−ρ(u−h)g(x)ω(u, x− u)dxdu

1− rλ
p

∫∞
h
e−ρ(u−h)(Ḡ(u− h)− Ḡ(u))du

(3.15)

Which coincides with the result obtained by Dickson et al. [3].

4 Conclusions

a In the section (2), a risk model with capital injections and a dependence structure modeled by a Farlie-
Gumbel-Morgenstern copula is described.

b In the section (3), an explicit formula for the Gerber-Shiu function is obtained when the initial surplus is k.
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