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Abstract

From mathematical models of growth to computer simulations of pigmentation, the study of

shell formation has given rise to an abundant number of models, working at various scales.

Yet, attempts to combine those models have remained sparse, due to the challenge of com-

bining categorically different approaches. In this paper, we propose a framework to stream-

line the process of combining the molecular and tissue scales of shell formation. We choose

these levels as a proxy to link the genotype level, which is better described by molecular

models, and the phenotype level, which is better described by tissue-level mechanics. We

also show how to connect observations on shell populations to the approach, resulting in

collections of molecular parameters that may be associated with different populations of real

shell specimens. The approach is as follows: we use a Quality-Diversity algorithm, a type of

black-box optimization algorithm, to explore the range of concentration profiles emerging as

solutions of a molecular model, and that define growth patterns for the mechanical model. At

the same time, the mechanical model is simulated over a wide range of growth patterns,

resulting in a variety of spine shapes. While time-consuming, these steps only need to be

performed once and then function as look-up tables. Actual pictures of shell spines can then

be matched against the list of existing spine shapes, yielding a potential growth pattern

which, in turn, gives us matching molecular parameters. The framework is modular, such

that models can be easily swapped without changing the overall working of the method. As

a demonstration of the approach, we solve specific molecular and mechanical models,

adapted from available theoretical studies on molluscan shells, and apply the multiscale

framework to evaluate the characteristics of spines from three distinct populations of Turbo

sazae.

Author summary

Connecting genotype to phenotype is a fundamental goal in developmental biology.

While many studies examine this link in model organisms for which gene regulatory net-

works are well known, for non-model organisms, different techniques are required, and
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multiscale computational modeling offers a promising direction. In this paper, we develop

a framework linking molecular-scale interactions to tissue-level growth and mechanics to

organ-level characteristics in order to investigate spine formation in T. sazae, a species of

mollusc that displays remarkable phenotypic plasticity in spine form. Our analysis uncov-

ers a subtle but statistically significant difference in spine form between shell specimens

collected from three different localities in Japan. Moreover, by tracing the difference in

form through parametric differences in the multiscale framework, we provide mechanistic

insight as to how environmental differences may translate to a change in form. The meth-

odology we present may readily be extended to more detailed modeling of this system,

and the conceptual framework is amenable for multiscale analysis in other systems.

This is a PLOS Computational Biology Methods paper.

1 Introduction

One of the great challenges in computational biology is linking information across scales [1].

While a number of advances have been made in recent decades, and increasingly sophisticated

and specialised computational software packages have been developed for particular scales,

there remain numerous fundamental hurdles in reaching a general robust framework for mul-

tiscale modeling in biology. For instance, the past 20 years has seen huge advancements in the

field of tissue biomechanics, both in terms of adapting the mathematics of classical continuum

mechanics to a biological setting, and in terms of improving computational and analytical tool

kits [2]. Similar improvements have been made in the field of computational cell biology [3, 4]

The cell and tissue scales are only separated by one level, and are strongly intertwined, and

with causality in both directions, e.g., tissue growth is understood as an averaging of cell divi-

sion, while forces at the tissue level impact cell signaling. Nevertheless, connecting models

across even these two ‘neighboring’ scales very much remains an open challenge [5].

In this paper, we consider pattern formation from the point of view of three distinct scales:

the molecular scale, the tissue scale, and the organ scale. Most patterns that can be discerned at

the organ/organism scale are products of chemical activity within and between cells, and tis-

sue-level growth and mechanics. But linking these scales is a daunting challenge. The molecu-

lar and tissue scales not only present distinct computational domains, but with different

governing physics (mass action law versus continuum mechanics, e.g.) such that the computa-

tional variables in one scale do not clearly map to those in the other. While multi-scale compu-

tational toolboxes have been developed in some areas, e.g. the heart, multi-scale modeling in

biology remains one of the great challenges [1, 2]. Our objective here is to develop a system of

analysis with the potential to make quantitative predictions on form that can be directly com-

pared with physical specimens, and in a manner that enables for qualitative observations on

the mechanisms of pattern formation. To this end, we consider as a particular system the for-

mation of spines in molluscan shells.

In the context of growth and organ/organism-level pattern formation, molluscan shells pro-

vide a unique case study. Mollusca are the second largest phylum in the animal kingdom, dis-

playing a huge diversity in form [6]. The development of the mollusc can largely be

understood by examining its shell, as the shell provides a well-preserved spatiotemporal record
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of the development of the animal. In particular, the simplicity of the shell secretion process,

which occurs iteratively at the shell opening by a tissue called mantle, makes shells an attractive

candidate for multiscale modeling of pattern formation. Numerous studies have developed

mathematical descriptions of shell geometry (as reviewed, for example, in [7, 8]). Such

approaches trace as far back as 1838 [9], and have flourished since the pioneering work of

Raup [10] in launching the field of theoretical morphology. However, the parameters that are

used to simulate form in seashells are typically disconnected from the biological processes that

underlie the shell form. Even in the case of geometric models that are constructed in such a

way so as to link to the biological process of growth [11–13], nevertheless, there remains a sig-

nificant gap between the mathematics used to represent the shell form and any biological pro-

cesses at the cell or sub-cellular scale occurring during shell secretion.

Our interest in this work is the formation of spines. Spines are a particularly prominent fea-

ture on a number of mollusc shells, and form a canonical example of convergent evolution

[14]. The formation of spines was shown to have a clear mechanical underpinning [15]

through tissue-level modeling of mantle and shell growth. An important ingredient in [15] was

heterogeneity: a ‘pre-pattern’, most likely biochemical, is needed in the growth or mechanical

properties as input to the mechanical model. The question then remains: what processes at the

lower scales are driving such a pre-pattern? This question highlights the need to connect tissue

mechanics to biochemistry. A number of biochemical models of shells also exist, aimed at

reproducing pigmentation patterns on shells through reaction-diffusion or neural-based

modeling [16–18]. However, to our knowledge, such biochemical pigmentation pattern forma-

tion has never been connected to tissue-level structural pattern formation. Spines thus form an

ideal case study for multiscale pattern formation, as they provide a distinctive, mostly two-

dimensional pattern that shows intraspecific morphological variation and that seems to have a

clear link between the molecular and tissue scales, though one whose details are a mystery. To

formulate a mathematical description that explicitly connects these disparate conceptual areas

is one of the objectives of this study.

In particular, in this work we are motivated by an extraordinary example of phenotypic

plasticity displayed by the species Turbo sazae (Fukuda 2017) (formally confused with Turbo
cornutus [19]), a marine gastropod found in South Korea and Japan. This species often displays

prominent spines, or horns as they are often referred (the species is colloquially known as the

‘horned turban shell’ and generally called ‘Sazae’ in Japan)—we use the terms interchangeably

in this study. However, a wide variety of the size, pattern, and even presence, of spines has

been observed within the species [20]. Previous studies suggested that the plasticity found in

spine form is strongly linked to the environment. For example, ecological studies showed that

populations from an exposed shore grow large horns, whereas populations from a protected

inner bay display only a short horn or no horn at all [21]. Moreover, horned specimens that

were transferred to a pool without strong waves stopped growing horns [22]. Other studies

have suggested the influence of the genotype rather than that of the environment [23]. How-

ever, a recent population genetics study showed that, even in populations of similar genetic

background, there was a large phenotypic difference in a single bay in Akita prefecture

depending on the location inside the bay [24]. This remarkable diversity of phenotype within a

species provides the backdrop to study multiscale pattern formation.

In order to investigate whether environmental conditions may have any discernible impact

on spine form, we perform a morphometric analysis of spine shape from actual shells of T.
sazae obtained from three different locations in the Kanto area in Japan, each with distinct,

qualitative environmental characteristics. The three locations, noted in Fig 1(a), are Najima in

Hayama (here we call ‘Hayama’), Jyogashima in Miura (‘Jyogashima’), Kanagawa Prefecture,

and Okinoshima in Tateyama (‘Tateyama’), Chiba prefecture. Representative sample shells
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from each of the populations are shown in Fig 1(b)–1(d), as well as simulated spines. For visu-

alisation purposes, we also include a simulated shell with spines superimposed. At a glance,

shells from the different locations appear very similar. Another objective in our analysis is

therefore to determine whether any morphological differences exist between spines from the

different populations, and if so, to both quantify and understand these differences.

Fig 1. (a) A map of Japan with zoom-in on Tokyo bay, showing the locations of the three populations from which we have obtained T. sazae shells.

Sample shells from each of the three populations: Hayama (b), Jyogashima (c), and Tateyama (d), including close-up image of a spine, and

mathematical reconstructions of spines from our modeling framework (see S1 Text Section 7). Maps adapted from mapchart.net.

https://doi.org/10.1371/journal.pcbi.1011835.g001

PLOS COMPUTATIONAL BIOLOGY Multiscale computational framework for spine development in molluscan shells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011835 March 1, 2024 4 / 21

https://doi.org/10.1371/journal.pcbi.1011835.g001
https://doi.org/10.1371/journal.pcbi.1011835


While morphological differences have been observed and quantified in relation to environ-

mental characteristics in molluscs in previous studies, for example reviewed in [25], a key dif-

ference in the present study is that we seek a mechanistic understanding: what change(s) in the

molecular process may account for observed morphological differences? To do this, we con-

struct a mathematical framework for spine formation that enables us to probe the characteris-

tics of spines in T. sazae within a multiscale setting, specifically linking biochemical pattern

formation with tissue-level growth and mechanics. In order to link the mathematical frame-

work to spine form, from each shell we extract quantitative characteristics of the shape, and

then seek the input parameters to the model that best produce the given shape as output. Con-

necting molecular-scale interactions to population-level phenotypic differences fundamentally

spans all the scales, and a full description is a monumental task. This is particularly true when

considering that T. sazae is a non-model organism, for which almost no genetic studies have

been done and no genetic manipulation techniques are available. Probing the link between

genotype and phenotype for such organisms may require new techniques and approaches, and

computational modeling has the potential to both shed light on developmental mechanisms

and also open doors to new biological studies.

Given these fundamental challenges, in this first instance we will opt for modeling simplic-

ity wherever feasible, focusing more on conceptual methodology than detailed biology. As

such, the results we present are intrinsically linked to the underlying assumptions and simplic-

ity of the models, and firm conclusions on T. sazae will not be possible. On the other hand, a

key benefit of our approach is the ‘plug and play’ aspect of the modeling. More complex mod-

els may naturally be incorporated, and the procedure we present for linking the models and

analyzing their success at generating shapes that match real spines would be unchanged. We

return to this point in the Discussion section.

This paper is organized as follows. In Section 2, we outline the modeling framework and

methods for shell collection and spine data extraction, and how we approach the flow of infor-

mation across scales. In Section 3, we illustrate the range of output spine shapes produced by

the model, and report the results of data extraction and model parameter fitting. Here, we iden-

tify subtle differences in spine shape between the populations and examine the corresponding

difference in parameters at the biochemical scale. In this way, we can speculate as to which

molecular interactions might be influenced by the phenotypic switch, such as differing environ-

mental pressures for each population. A summary and discussion of modeling and experimen-

tal extensions needed to generate more biologically grounded conclusions is given in Section 4.

2 Methods

2.1 Spine formation in molluscs

Molluscan shells form via an accretion process that occurs at the shell edge by a thin elastic

organ called the mantle. The mantle lines the inner surface of the shell, such that during the

incremental growth of a new layer of shell material, the mantle extends slightly beyond the

already calcified edge of the shell, adheres to the shell edge, and secretes proteins which subse-

quently harden into a new layer of shell. This is shown schematically in Fig 2(b).

Some of the most interesting features on molluscan shells are the so-called ornamentations,

three-dimensional structural patterns such as ribs, spines, and tubercles that appear as deviations

from the simple logarithmic shell coiling [20]. These organism-level patterns are diverse, occa-

sionally quite complex (e.g., fractal-like spines on certain species of Muricidea), and tend to be

quite regular within a specimen. A suite of models have been formulated to understand different

types or aspects of shell ornamentation in terms of the physical forces involved in the shell

growth process, by considering the mechanical interaction of the shell-secreting soft mantle and

PLOS COMPUTATIONAL BIOLOGY Multiscale computational framework for spine development in molluscan shells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011835 March 1, 2024 5 / 21

https://doi.org/10.1371/journal.pcbi.1011835


the rigid shell aperture to which it attaches during shell formation [15, 26–31]. The key concep-

tual idea is that if the secreting mantle is longer than the shell edge, then attachment to the shell

may induce deformation of the mantle, thereby influencing the shape of the subsequent layer. In

other words, the shell edge determines the shape of the mantle, while the shape of the mantle

determines the evolving shape of the shell edge. Previous mechanics-based models have been

successful in providing a physical basis for a number of previously unexplained features on

shells, including the interlocking of bivalve shells [32] and the strange meandering shape of cer-

tain ammonites [33]. However, while such models can be informative as to the basic mecha-

nisms of pattern formation, e.g., a mismatch between mantle growth and shell secretion, they

are limited by construction at the continuum tissue scale. Thus, the question remains of how the

appropriate ingredients underlying the model input/assumptions are generated.

2.2 Model

We restrict our attention to the formation of a single spine, described at the tissue-level by the

mechanics of growing elastic rods, an extension of a previous model [15], and with

Fig 2. Modeling framework schematic. A biochemical system, modeling an Activator-Substrate reaction (a), potentially creates a spatial pattern,

depending on the choice of six parameters. This biochemical pattern is passed to the tissue scale (b) and defines the rate and width of mantle growth

and secretion. From this mechanical process, a spine shape emerges, which is then compared with an image of an actual spine (c). For a given shell, we

then seek the biochemical parameters such that the model output best matches the real spine shape, (d).

https://doi.org/10.1371/journal.pcbi.1011835.g002
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heterogeneity (pre-pattern) in growth explicitly emerging as the output of an underlying bio-

chemical model borrowed from a previous work on shell pigmentation [17]. Using output

from the biochemical model as input to the tissue mechanics model to simulate a spine is

novel but nevertheless straightforward; the major challenge is in (1) doing so in such a way

that the resultant shapes have features corresponding to those observed in the collected shells,

and (2) searching the model parameter space for values that best match the extracted spine

data.

The premise of our analysis is that spine formation results from a spatially inhomogeneous

shell growth process, with inhomogeneity at the level of mantle deformation and shell secre-

tion deriving from underlying inhomogeneity at the cellular/subcellular scales due to biochem-

ical processes. Our methodology and modelling approach is illustrated schematically in Fig 2,

and consists of four components: biochemical pattern formation, tissue-level spine formation

via growth and elastic deformation, extraction of growth parameters to match spine shapes

from shell specimens, and corresponding biochemical parameter determination. The broad

idea is that we pose a set of biochemical equations, whose behaviour is governed by a small

number of parameters, S≔fc1; c2; c3; c4; d1; d2g. Spatial pattern formation at the molecular

level is then passed to the tissue-level, where the same form of spatial pattern is input as an

inhomogeneous profile for a mechanical model of the growth and spine secretion. The output

at that level is the shape of a spine across a time sequence. This output can then be compared

with images of actual spines, such that for a given spine from a real shell, we seek the parame-

ters S for which the shape output is the best match. Repeating this process for a large number

of spines from different populations, we can then aim to quantify any population-level differ-

ences across the scales.

Each of these methodological components is outlined further below.

2.2.1 Molecular-level: Biochemical pattern formation. Previous works on the mechanics

of spine formation have shown that generating realistic spine shapes requires the presence of

spatial inhomogeneity in the growth/secretion field [15]. To provide a molecular basis for this

inhomogeneity, we hypothesize the existence of two or more chemical species interacting in

such a way as to generate a spatially inhomogeneous biochemical pattern. This chemical inter-

action would ideally be derived from an appropriate gene regulatory network for spine forma-

tion; however, T. sazae (and indeed all spine-forming molluscs), are not model organisms, so

no protein-protein interaction network nor gene network is available. Therefore, for simplicity

in this first instance, we take a more abstract and phenomenological approach, employing a

two component reaction-diffusion equation. In particular, we adopt the Activator-Substrate

model of Fowler et al. [17], in which the concentrations of an activator, a(x, t), and substrate, s
(x, t), satisfy the following equations:

@a
@t
¼

sa2

1þ c1a2
þ c2s � c3aþ d1

@
2a
@x2

@s
@t
¼ 1 �

sa2

1þ c1a2
� c4sþ d2

@
2s
@x2

:

ð1Þ

These equations model an autocatalytic process, shown schematically in Fig 2(a). In these non-

dimensionalised equations (see S1 Text Section 1 for the dimensional equations and scalings),

the behaviour and potential for pattern formation is governed by six parameters,

S≔fc1; c2; c3; c4; d1; d2g. In this model, the activator and substrate diffuse along the single spa-

tial direction, x, with diffusion constants, d1, and d2, respectively. The activator decays with

rate c3, is produced directly from the substrate at rate c2, while the first term on the right-hand

side of the top equation models the autocatalytic process, which requires the presence of
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substrate and whose rate saturates with increasing activator at a value depending on c1. The

substrate decays at rate c4, is produced at constant rate equal to one in non-dimensional form,

and is consumed by the autocatalytic process.

This model was shown in Fowler et al. [17] to generate stable patterns for certain parameter

regimes, starting from a spatially uniform initial state, given a small degree of random noise

that drives the system away from an unstable initial homogeneous state. This particular model

has the advantages of being simple to solve with a low-dimensional parameter space and more-

over with stable spatial profiles characterised by a smooth and relatively simple form. These

appealing characteristics make the model a suitable candidate for our idealised multiscale

modeling framework. Nevertheless, we must acknowledge that we have no physical rationale

to use (1); the choice is made out of simplicity and due to a lack of knowledge of a more realis-

tic model. A related downside of this modeling choice is that it is very difficult to connect the

input parameters to specific molecular concentrations that could, in principle, be measured in

future experiments. However, we note that our objective is largely to demonstrate a methodol-

ogy. The basic ideas we outline are equally amenable to more complex molecular modeling

(e.g., gene regulatory network), though of course a more complex molecular model would

introduce other difficulties, such as a higher dimensional parameter space or more complex

patterns as output that are less straightforward to pass to the higher scale.

2.2.2 Tissue-level: Spine formation. At the tissue-level, we follow the basic methodology

of Chirat et al. [15], under which spines emerge as a predictable outcome of the mechanics of

the mantle growth and shell secretion process. During shell secretion, the mantle margin atta-

ches to the rigid shell aperture and secretes a new layer of shell material. As shown schemati-

cally in Fig 2(b), it is through this physical interaction that the potential for spines (or other

shell ornamentation) appears: if the secreting mantle edge is longer than the current aperture,

a deformation of the soft tissue will be generated, i.e., a mechanical buckling of the mantle will

be induced by attachment to the shorter shell edge. As the mantle subsequently secretes new

shell material, the deformed shape of the mantle edge becomes calcified in the new layer of

shell. As the mantle continues to grow and secrete, the buckled shape evolves, with the final

spine shape controlled by the length mismatch and mechanical properties. The approach at

the tissue level is to model the physical interaction between the soft, growing mantle and the

rigid shell to which it adheres.

Mathematically, we treat the mantle edge as a growing planar elastic rod, described by the

parameterised curve,

rðS0; tÞ ¼ ðxðS0; tÞ; yðS0; tÞÞ; ð2Þ

where S0 is an arc length parameter for the (flat) mantle edge at the initiation of spine forma-

tion and t is time. The shape evolves quasistatically in time, starting from a flat edge aligned

with the x-axis, i.e. r(S0, 0) = (S0, 0), with r determined sequentially at times t> 0 by solving

the equations of mechanical equilibrium, given in vector form by

@n

@S0

þ f ¼ 0

@m

@S0

þ
@r

@S0

� n ¼ 0:

ð3Þ

Here, n and m are the resultant force and moment in the rod, respectively, and f is an exter-

nal force imposed by the current shell edge. The moment is related to the curvature u by a

constitutive law. For a planar elastic rod, the moment and curvature have the form m = mez,

u = uez, where u(S0, t) is the bending strain of the planar curve (x(S0, t), y(S0, t)), and ez is a
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unit vector in the direction orthogonal to the plane of the rod. We use the standard linear

constitutive law, m = Ebu, where Eb is the bending stiffness, equal to the product of the

Young’s modulus E and the second moment of inertia.

Letting the shell edge be parameterised by p(S0, t), the interaction between mantle and shell

is modeled by f = k(p − r), where k describes the strength of the attachment, i.e., resistance to

deformation of the mantle away from the shell edge. The calcification process of secreted shell

material, and thus updating of the shell edge, is then modeled by the evolution equation:

@p

@t
¼ Zðr � pÞ; ð4Þ

where η characterises the rate of calcification. The system is driven by growth of the mantle,

i.e., a rule dictating the increase in the arc length. This is modeled within the framework of

morphoelastic rods [34] by identifying a growth arc length parameter S, related to the initial

arc length parameter, S0, by the growth stretch, γ, via γ = @S/@S0. Mantle growth is then

described by an evolution equation for γ, taking the general form:

g� 1
@g

@t
¼ gðS0; t; . . .Þ; ð5Þ

where the function g describes the incremental increase in arc length, and may depend on

position, time, and other factors. In particular, spatial inhomogeneity in growth is captured by

S0 dependence in g and is a key feature of our analysis.

The presence of inhomogeneity in mantle growth/secretion and/or mechanical proper-

ties may be inferred from the highly localised appearance of spines in T. sazae, which is in

contrast to the uniform wrinkling pattern that would be observed with a spatially homoge-

neous system. In fact, spatial inhomogeneity in spine production is likely present even

within the spatial domain of a single spine: in the model for single spine formation pre-

sented by Chirat et al. [15], it was found that inhomogeneity was generally a necessary ingre-

dient for generating realistic spine shapes. In their model, Chirat et al. [15] incorporated an

inhomogeneity in the bending stiffness of the mantle, Eb, with a decreased bending stiffness

at the spine tip needed for most spine shapes. Intuitively, since the curvature at the spine tip

is highest, and much higher in the case of a sharp spine, such shapes can only naturally

emerge, i.e. appear as minimising mechanical energy, if the bending stiffness is correspond-

ingly lower.

In Chirat et al. [15], an inhomogeneous stiffness (Eb = Eb(S0)) was combined with a uni-

form growth profile (g(S0)� const in (5)), taken as decoupled inputs to the model. Here, we

model the spine-formation process in the same basic way, but with several improvements.

First, in the context of our multiscale framework, we include an inhomogeneous growth pro-

file that is directly connected to the biochemical pattern obtained as the output of the system

1. Specifically, we suppose that the activator chemical a(x, t) governs mantle growth, and

thus the shape of the growth profile g in (5) is taken to be proportional to the concentration

a, scaled in an appropriate way (see S1 Text Section 3). Second, we directly link mantle bend-

ing stiffness to growth, as described in S1 Text Section 2, an assumption that produces realis-

tic spine shapes in a way that emerges more naturally than in the model of [15]. With the

growth profile governed by a(x, t), the system is closed by imposing clamped boundary con-

ditions at the ends of the rod, S0 = 0 and S0 = L0, where L0 is the initial length of the spine-

forming region prior to growth.

More details on the tissue-level model are provided in S1 Text Section 2, including compu-

tational details on our numerical approach to solving the system of equations outlined in this

section.
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2.3 Best-fit spine parameter extraction

Having formulated a procedure to map from a point in the 6-dimensional input parameter

space, S, at the molecular level to the evolving shape of a spine at the tissue level, we require a

procedure for connecting that shape to the profile of spines from actual shells and quantifying

spine form. As noted, the general goal is to find the point in the space, S, that produces a best-

fit shape for a given shell.

However, it is important to note that the computational solving at the tissue scale is non-

trivial, in particular because at each time step the equations of rod geometry and mechanical

equilibrium form a nonlinear and inhomogeneous boundary value problem. Common tech-

niques such as branch tracing do not apply, given the presence of the shell edge term, p, which

acts as a non-uniform forcing term that must be updated quasi-statically between each solving

step. For a given growth profile, g, and other input parameters, solving for the time evolution

of r and p, i.e,. the evolving shape of the mantle and shell edge, takes on the order of minutes

to tens of minutes. Therefore, when searching the 6-dimensional space S for the parameters

that produce an evolving spine shape most similar to a given real spine, there is a computa-

tional bottleneck in solving the equations at the tissue scale.

2.3.1 Workflow. Fig 2 suggests a workflow that describes how the parameters, S, produce

a profile, a, that maps to a growth profile, g, that is then compared with a spine image, after

which S is updated until an optimal shape agreement is obtained.

Our approach in searching the space S is to employ a Quality-Diversity algorithm [35, 36],

a type of black-box optimization algorithm designed to produce a variety of candidate solu-

tions, to generate the space of growth profiles generated by the molecular model (see Section

2.4 for details). Quality-Diversity algorithms have been established as an efficient way to

explore a high-dimensional space and build a fitness landscape across phenotypic characteris-

tics. Note that for low dimensional problems other methods such as Latin Hypercube Sam-

pling or Sobol sequence can efficiently deal with this exploration phase, which are also

provided by our framework.

Due to the tissue-level bottleneck, we restrict the class of functions that can be input at the

tissue-level. In particular, we suppose that the growth profile, g, in Eq (5) has the shape of a

Gaussian:

g� 1
@g

@t
¼ gðsÞ ¼ g1 exp

� s � l
2

� �2

2g2
2

 !

: ð6Þ

where s is the arc length parameter in the current configuration, and l the total current arc

length. Since we restrict our analysis in this study to individual spines, a Gaussian provides an

appropriate form to capture the heterogeneity needed for realistic spine formation. We note

that a similar form was used in Chirat et al. [15] mechanical for the bending stiffness, Eb, but

with an inverted Gaussian; since, in our model, the bending stiffness is inversely proportional

to the cube of the growth, the same effect is achieved here. Moreover, as we show in Section 3,

the two degrees of freedom g1 and g2, describing the growth rate and width of the growing

region, respectively, provide sufficient variability to produce distinct but realistic spine mor-

phologies. In this way, only two input parameters are needed at the tissue level. Other tissue-

level parameters, such as the domain width, calcification rate, and adhesion stiffness, are set in

non-dimensional form by a combination of estimating physical values and producing realistic

buckling modes; for more details see S1 Text Section 2. Since our approach links the steady

state spatial profile of the activator, a(x, t), with the growth profile g(s), we require that the bio-

chemical model outputs profiles reasonably close to a single Gaussian. An advantage of the
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system (1) is that such profiles do emerge, and the requirement for a single Gaussian was used

to constrain the biochemical parameter space (for more details, see S1 Text Section 3).

Rather than simulating the tissue model at each call within the optimization algorithm, we

integrate before exploration the tissue-level model for different pairwise combinations of g1

and g2, thus producing a finite zoology of shape evolution curves that can be compared with

real shells and providing a range of reasonable values for those parameters. This approach

allows us to define both the quality and diversity for the exploration process: the quality of a

given growth profile is defined as how close it matches a Gaussian shape and its diversity is

defined as whether the corresponding {g1, g2} pair of that Gaussian is different enough from

solutions found so far. Note that g1 and g2 are continuous values and thus will likely not match

exactly the values used in the initial integration. The final set of parameters kept by the algo-

rithm (due to their quality, diversity, or both) is denoted by Ŝ � S.

Once the exploration process is completed, we can extract from each spine image the values

of g1 and g2 that best match the shape (details in Section 2.3.3). This provides a pair of target

values of {g1, g2} extracted for each spine; the parameter space Ŝ is then searched with the

objective of producing an output that is close to a Gaussian with width and height correspond-

ing to the target {g1, g2} values, allowing for an optimisation protocol that does not need to

explicitly call the tissue model. This updated and simplified workflow is illustrated schemati-

cally in Fig 3.

Fig 3. Model workflow. (a) At the tissue level, a Gaussian growth profile is input to the mechanical model, defined by two parameters {g1, g2}, for which

different values produce different spine shapes that are then compared to a given spine image from a real shell in order to determine a best fit target pair

{g1, g2}. (b) At the molecular level, a Quality-Diversity algorithm looks for the full range of {g1, g2} pairs that can be produced by the Activator-Substrate

reaction-diffusion system and stores the parameter sets that produced them in a grid. Sets in the grid may be reused by the algorithm, with some added

noise (mutation), in an attempt to explore nearby area of the {g1, g2} space. The filled grid is then used as a look-up table that provides parameter sets

matching a given {g1, g2} pair from the tissue level.

https://doi.org/10.1371/journal.pcbi.1011835.g003
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2.3.2 Shell collection and imaging. We bought T. sazae from fishermen in Japan who

dive in the vicinity of Jyogashima, Kanagawa prefecture, Najima in Hayama, Kanagawa prefec-

ture and Okinoshima in Tateyama, Chiba prefecture, respectively. Hayama and Tateyama are

relatively sheltered shores in the Sagami Bay and the Tokyo Bay, respectively, and suffering

from a major coastal desertification in recent years [37]. On the other hand, Jyogashima is

more exposed and has been recovering from a major coastal desertification since 2014 [38]

and food sources for T. sazae are more abundant compared to Hayama and Tateyama.

Specimens were brought to the laboratory within the day when they are caught, and dis-

sected to collect the shells. Photographs of the shells were taken using a digital camera (Canon

EOS Kiss x7) with a micro lens (Canon EF100mm f/2.8L Micro IS USM) and magnified photo-

graphs of the spines were taken using dissection microscope (Nikon SMZ10) equipped with a

digital camera (Canon EOS Kiss x7). We collected and photographed for analysis 12 specimens

from Hayama, 16 from Jyogashima, and nine specimens from Tatayama.

2.3.3 Parameter extraction. In order to determine the best-fit values of {g1, g2} for each

spine, each magnified spine photograph was imported into Mathematica [39], where the shell

profiles that were output from the tissue model were superimposed within a GUI environment

(the Manipulate command in Mathematica). The model profiles were initially scaled,

rotated and translated appropriately to match the size and orientation of the spine in the pho-

tograph, and then the values of {g1, g2} were varied, while stepping through the time sequence

of curves and comparing the profiles with the spine image. We note that the objective was not

merely to match the final shape, but to best match the entire time sequence of spine growth.

For most spines, growth lines from earlier portions of the spine were readily apparent; these

provided profile curves that could be compared with model curves in the early and middle

stages of spine production. In this way, we sought the values of {g1, g2} for which the set of pro-

file curves best matched the characteristics of the spine. Small spines, i.e. spines that had not

attained much height at the point of capture, were rejected, as there was insufficient detail in

their profile to accurately produce a match (almost any set of values could match reasonably

well a spine that appears only as a small bump). To avoid confirmation bias, all shells were fit

in sequence and prior to plotting any data. For more details on the fitting process, see S1 Text

Section 5. In S1 Text Section 5, we also include a table of images of each spine that was fitted,

with best-fit model curves overlaid as well as the corresponding values of {g1, g2}.

2.4 Algorithmic exploration of the parameter space

We use MAP-Elites [40], implemented in the Python library qdpy [41], to explore the param-

eter space. The algorithm generates sets of parameters for the model (see Table 1), which are

then used to simulate the reaction-diffusion model (1). We fixed the diffusion coefficients as

we do not expect to see variability on those parameters between individuals. Those parameters

were instead set to generate appropriate growth profiles, g, when performing a cursory direct

Table 1. Model parameters, parameter ranges, and sampling methods.

Parameter Minimum value Maximum value sampling method

c1 10−6 1 log

c2 10−3 2 log

c3 10−1 1.5 linear

c4 10−5 10−2 log

d1 10−2.75 10−2.75 fixed

d2 10−0.15 10−0.15 fixed

https://doi.org/10.1371/journal.pcbi.1011835.t001
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exploration of the parameter space. Parameter ranges and sampling methods are given in

Table 1.

We then fit the spatial concentration profile of the activator species, a(x, t), to a Gaussian

function, giving us three values: the distance between the molecular profile and the fitted func-

tion and the parameters g1 and g2 from Eq 6. The set of parameters is then stored in a grid at a

position defined by g1 and g2. If another set of parameters generated a similar Gaussian shape

(i.e., near-identical values g1 and g2, based on the grid discretization), the algorithm only keeps

the set generating the best fit. This way, we ensure that the generated parameter space Ŝ only

contains sets that produce concentration profiles that are close to a Gaussian profile. Once the

algorithm has found enough sets, further sets may be generated through a small change in the

parameters of a random existing set (mutation) or through complete random sampling (like

the initial points). Both mutation and random generation sample the parameters either loga-

rithmically or linearly, depending on their range and impact on the model. The exploration

continues until the algorithm has evaluated a given number (budget) of parameter sets. Fur-

thermore, to ensure the stability of parameter space Ŝ , the algorithm is rerun multiple times,

generating independent grids. Parameters used for the algorithm and simulation are given in

Table 2. Each grid is then used to map pairs {g1, g2} to a given set of parameters for the bio-

chemical model. Specifically, we look for the nearest non-empty cell in the grid and return the

corresponding parameter set. Those sets are then analyzed to identify trends with respect to

the different populations of shells.

3 Results

3.1 Impact of growth profile and spine shape

Before applying our analytical procedure to the shells obtained and investigating population-

level differences, we first demonstrate the qualitative effects of the growth profile on the spine

shape. Fig 4(a) shows a ‘morphospace’ of spine profiles for different values of g1, g2, where we

recall that the incremental growth profile at the tissue level takes a Gaussian form

g� 1
@g

@t
¼ gðsÞ ¼ g1 exp

� s � l
2

� �2

2g2
2

 !
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where s denotes the current arc length parameter, which relates to the initial and grown arc

length parameters, S0 and S, respectively, by the total stretch, λ, via λ = (@s/@S)(@S/@S0); and l
is the total current length of the rod (see S1 Text Section 2). Included in Fig 4(a), at each point

in the {g1, g2} plane are the evolving spine profiles (green curves), as well as the corresponding

growth profiles g(S0), plotted on the same scale for comparison (and centered on the axis). The

function g(S0) describes the increase in arc length of the mantle edge as a function of initial

position. A larger value of g1 thus corresponds to a larger increase in arc length per time (for a

given material section), while a larger value of g2 corresponds to a wider growing region.

Table 2. Algorithm and simulation parameters.

Parameter Value

Runs 5

Budget 50000

Elite grid discretization 100x100

Batch size 20

Simulated time 1000 time unit

https://doi.org/10.1371/journal.pcbi.1011835.t002
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Fig 4. (a) Morphospace of spine shapes as the growth parameters g1 and g2 are varied. (b) Aggregated sets of biochemical model parameters, plotted with respect

to their respective {g1, g2} values. Coloring corresponds to the value of individual parameters, showing a clear global organization for c1, c2, and c3.

https://doi.org/10.1371/journal.pcbi.1011835.g004
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Several features are evident in Fig 4(a). Increasing g1 has the effect of producing a more curved

spine, while a lower value produces a straighter and taller spine before self-contact occurs.

This reflects the notion that with an increased excess of length (larger g1), the mantle deforma-

tion per time step is more pronounced and therefore with higher curvature, while with smaller

g1, the mantle shape evolves more slowly, staying closer to the evolving shell edge. An

increased g2 produces a wider spine, since the growing region is wider, and in particular we

find a much narrower spine tip for the smaller value of g2, which is due to the combination of

a narrower growing region, but also the corresponding decreased stiffness.

3.2 Impact of biochemical model on growth profile

Having established ranges of {g1, g2} that generate realistic spine shapes, we consider next

whether there are parameter regions in the biochemical model that output a concentration

profile that can match the desired Gaussian shapes.

Fig 4(b) shows an aggregation of all sets found through the exploration of the biochemical

model’s parameter space. Contrastingly, white space correspond to {g1, g2} values that could

not be generated by any of the parameters. We observe that the level of parameters, c1, c2, and

c3, has a strong connection to the {g1, g2} values, forming distinct regions. That is particularly

true with respect to the values of g2. Low c1 (low saturation of the autocatalytic production)

combined with low c2 (low direct production from substrate) and high c3 (high degradation

rate) yields low values of g2. When c1 is high instead (strong saturation of the autocatalytic pro-

duction), we get high g2 values. Finally, intermediate values of g2 are achieved for high c2 values

with low values of c1 and c3, thus hinting at a strong activation, both from autocatalysis and

production from the substrate.

The parameter, c4, however, seems less well-defined and can seemingly take a wide range of

values regardless of g1 or g2. This connection can be explained by considering that, in the bio-

chemical model (1), c1, c2, and c3 are connected through their common impact on the concen-

tration of the activator species, a. However, c4 only impacts the substrate species, s, possibly

allowing more freedom compared to the other parameters.

Finally, we note that the sets tend to gather in a central area with well-defined borders, with

only a few points extending beyond. The sparsity of these areas can be attributed to two possi-

bilities: (1) the molecular model is unstable for such parameter sets or (2) such {g1, g2} values

cannot be generated by the model at all. The ruggedness of the main cluster’s bottom edge and

the presence of a few points for low values of g1 and g2 tend to point towards possibility (1) in

that area. Adding a bias to the exploration algorithm, as well as finer parameter tuning for

those area, could help flesh out the parameter space. On the other hand, the sharpness of the

upper right edge seems to indicate the latter possibility; that indeed, high values of both g1 and

g2 cannot be generated by the model. That hypothesis is consistent with a standard linear sta-

bility analysis of the system (see S1 Text Section 4).

3.3 Identifying and quantifying morphological differences

The main results of our analysis are summarised in Fig 5. Fig 5(a) shows the result of the

extracted {g1, g2} values from spine images, with the radii of the circles scaled by the number of

spines with those particular best-fit values of {g1, g2}. Fig 5(b) plots the corresponding values of

ci, i = 1. . .4 that map to the given {g1, g2} in relation to each other. In each case, the values are

sorted by population: orange points correspond to Hayama, blue points correspond to Jyoga-

shima, and green points correspond to Tateyama. Here we note that these plots aggregate the

values from all 5 runs of the optimization algorithm. While few {g1, g2} pairs were observed for

each population, the four ci parameters offer enough flexibility to generate different values for
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Fig 5. (a) The best-fit values of {g1, g2}, extracted from comparing tissue-model output to images of real shells,

separated by population. (b) Relationship between biochemical model parameters for each population, as obtained

from the algorithmic parameter exploration. The + symbol represents the average parameter values for the population,

highlighting the difference between the Jyogashima population and the other two.

https://doi.org/10.1371/journal.pcbi.1011835.g005
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each independent run. However, as noted in the previous section, a general trend could still be

observed in the relation of the parameters with each other.

In Fig 5(a) we find a population-level bias in g1 values: spines on shells collected in Hayama

and Tateyama are better modeled by smaller values of g1, while spines from shells collected in

Jyogashima are better modeled by larger values of g1, though these shells also show a wider dis-

tribution. Using two-sided Wilcoxon rank-sum tests, the distribution of g1 values are, on aver-

age, an estimated value of 0.25 higher compared to Hayama, with a p-value of 1.202 × 10−5

(and 0.4 higher compared to Tateyama, with a p-value of 5.7 × 10−6). The g1 values for Hayama

and Tateyama do not show a significant statistical difference, and similar analysis of the distri-

butions of g2 values show only very small statistical difference between the populations (see S1

Text Section 6 for details).

This implies that the only statistically significant difference is found between the distribu-

tions of g1 values, with the distribution of Jyogashima values being larger than the other two

populations. Recall from Fig 4 that g1, which controls the rate of growth/secretion, primarily

impacts the height and curvature of the spine profile, with larger values of g1 producing a more

curved spine that reaches the point of self-contact at a lower height. Note that this does not

imply that spines with larger g1 are shorter, as our computational model stops at the point of

self-contact, while spine formation may continue well past self-contact—that is, in some cases,

the two sides of the spine come into contact, beyond which a sort of ‘zippering up’ occurs

while the spine continues to grow in height (see also S1 Text Section 5). This analysis thus sug-

gests that a difference in spine form does exist between the shells we have collected from Jyoga-

shima and the shells collected from the other two populations. While shells from the

populations generally appear quite similar, upon closer inspection, it can be observed that the

spines of shells we have collected from Jyogashima tend to be more curved, while the shells

from Hayama and Tateyama tend to have straighter spines. The distinction, though subtle, can

be observed in the spines of the sample shells shown in Fig 1 (see also S1 Text Section 5, which

shows images of all spines for which we have extracted data, as well as the best-fit curves

overlaid).

The population-level differences in g1 between the Hayama/Tateyama populations and the

Jyogashima population is reflected in the biochemical parameters {c1, c2, c3, c4}. This is most

evident in examining the average parameter values for the populations, indicated by the + sign

in the plots of Fig 5(b). We see that in all parameter pairings, the averages for Hayama and

Tateyama are closer together and separated from the average of Jyogashima. The difference is

greatest in the parameters c2 and c3: the Jyogashima population shows a higher value of c2 and

lower value of c3. This is consistent with the biochemical interpretation of these parameters.

The parameter c2 describes direct production rate of the activator from substrate, while c3

describes activator degradation. Hence high c2 and low c3 combine to make an increased con-

centration of activator, i.e. high g1, and the high growth rate produces a more curved spine

shape. No such trend could be observed in the values of c4, with all populations having a simi-

lar average. Stability analysis showed that, as long as c4 is low enough, its impact is minimal on

the production of a Gaussian curve. When c4 is low enough, the concentration of substrate

remains high enough to help produce the activator, which is required to form a pattern.

4 Discussion

Connecting genotype to phenotype is a monumental task that crosses vast spatial and temporal

scales, from gene expression to cellular activity, to tissue-level mechanics, to organ/organism-

level form and function, to population level fitness pressures. This task is made even harder

when dealing with non-model organisms, for which almost no known genetic networks and
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protein-protein interaction networks have been established. Constructing analytical tools that

may shed light on developmental pathways in such organisms will be of great benefit, and mul-

tiscale computational modeling has an integral role.

In this paper we have devised a set of models and a framework of analysis to investigate

spine shapes in the mollusc species T. sazae. By linking a tissue-level mechanical model with a

two-species biochemical model, we were able to uncover a statistically significant difference in

tissue-level parameters between shells from one location (Jyogashima) and the other two from

which we collected shells (Hayama and Tateyama). The difference could be traced to paramet-

ric differences in the underpinning biochemical model, providing some insight as to how the

difference in form may have manifested.

The natural next step is to link the differences in the biochemical model to environmental

differences between the locations. However, this is not possible at present, in particular due to

the phenomenological basis of our biochemical model, which lacks a detailed biological foun-

dation. Nevertheless, our results tell a consistent story, from which we can at least speculate on

the environmental link. Computationally, the primary finding from our analysis was that shells

in Jyogashima had a larger value of the growth rate, g1, than Hayama and Tateyama, which

corresponded most strongly at the molecular level to larger values of the substrate production

rate, c2, and lower values of activator degradation rate, c3. These parametric differences effec-

tively mean that specimens in Jyogashima were growing the spine more quickly, due to some

combination of increased production rates or decreased degradation rates of the molecules

responsible for shell production. This may be due to availability of food, since we observe

recovery from coastal desertification [38] and more seaweed in the Jyogashima area than other

localities, where coastal desertification has become a serious problem [37]. Though also of

interest is that specimens in Hayama and Tateyama are exposed to calmer waters compared to

Jyogashima. It remains an interesting direction for future research to investigate exactly which

environmental differences play the strongest role in spine form, and how these differences are

mechanistically translated into developmental processes.

As noted in the introduction, not all specimens grow spines at all, and as has been previ-

ously proposed [22], a change in environment could have turned off the spine-growing

machinery. While our analysis has focused specifically on shells that produce spines, it is

worth noting that many parameters will not produce a biochemical pattern at all, which we

may reasonably correlate with no spine production. The biochemical parameters that we have

fit to the spine shapes are generally very close to the boundary beyond which no pattern is pro-

duced, so again we see a consistent story: a small change in biochemical patterns, due to some

underlying change in environment, can easily transition the system into a state for which pat-

tern formation halts.

While our analysis and results tell a consistent story, we must also emphasize the significant

simplifying assumptions made in our models. As well as employing a biochemical model that

was chosen for phenomenological reasons with no specific biological justification, we have

also posited the simplest possible link between biochemistry and tissue growth. Moreover,

while shell secretion occurs simultaneously along the entire shell aperture, and with spines

appearing periodically in time, we have focused our analysis on a single isolated spine. For

these reasons, we must be careful not to draw any concrete biological conclusions on chemical

or mechanical mechanisms underlying observed differences in spine form. Nevertheless, our

study provides a proof of concept, upon which our group plans to extend/build in the future,

in several ways. For one, we may extend the tools we have developed to explore spine forma-

tion in a ‘whole shell’ context, incorporating spatio-temporal modeling that explicitly accounts

for both the timing and structure of multiple spines as they appear through development.

Another important direction is to connect more directly to cell biology. One possible avenue is
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to conduct generate and analyze transcriptome data of mantle cells, using either bulk or sin-

gle-cell RNA-sequencing [42, 43], thereby generating initial data from which candidate gene

regulatory networks driving spine formation can be inferred, ultimately informing more real-

istic molecular modeling.

Finally, we note that while the framework we have presented is motivated by and specifi-

cally constructed around a specific phenotype in a specific organism, the main ingredients in

our investigation—a variation in form, emerging due to a combination of heterogeneous

mechanical forces during growth and an underlying biochemical signal—are ubiquitous. In

principal, the techniques developed here may provide, at least conceptually, a blueprint for

analyzing morphogenetic variation between populations in other systems, e.g. leaf structure

[44], horns and teeth [45, 46], or anatomical features such as nose and ears [47, 48], to name a

few. Here, it is important to emphasize the ‘plug and play’ aspect of our model, i.e. different

models at the tissue or biochemical level could be inserted, and the algorithmic steps of con-

necting the scales would work the same.

Supporting information

S1 Text. This supplementary file contains a detailed description of the biochemical model;

further details on the mechanical model, including computational details; a detailed descrip-

tion of linking the biochemical and mechanical models; a computation of the stability bound-

ary for the biochemical model; extracted parameter values for spines, including spine images

with best fit mechanical curves overlaid; a description of statistic testing of the spine parame-

ters; and detail on the mathematical construction of full shell simulation.

(PDF)

Author Contributions

Conceptualization: Derek E. Moulton, Nathanaël Aubert-Kato, Atsuko Sato.
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46. Zimm Roland, Berio Fidji, Debiais-Thibaud Mélanie, and Goudemand Nicolas. A shark-inspired general

model of tooth morphogenesis unveils developmental asymmetries in phenotype transitions. Proceed-

ings of the National Academy of Sciences, 120(15):e2216959120, 2023. https://doi.org/10.1073/pnas.

2216959120 PMID: 37027430

47. Zaidi Arslan A, Mattern Brooke C, Claes Peter, McEcoy Brian, Hughes Cris, and Shriver Mark D. Inves-

tigating the case of human nose shape and climate adaptation. PLoS genetics, 13(3):e1006616, 2017.

https://doi.org/10.1371/journal.pgen.1006616 PMID: 28301464

48. Krishan Kewal, Kanchan Tanuj, and Thakur Swati. A study of morphological variations of the human

ear for its applications in personal identification. Egyptian Journal of Forensic Sciences, 9(1):1–11,

2019. https://doi.org/10.1186/s41935-019-0111-0

PLOS COMPUTATIONAL BIOLOGY Multiscale computational framework for spine development in molluscan shells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011835 March 1, 2024 21 / 21

https://doi.org/10.1002/jez.b.22716
http://www.ncbi.nlm.nih.gov/pubmed/27921363
https://doi.org/10.21914/anziamj.v59i0.12260
https://doi.org/10.21914/anziamj.v59i0.12260
https://doi.org/10.1016/j.jtbi.2014.09.021
http://www.ncbi.nlm.nih.gov/pubmed/25258003
https://doi.org/10.1371/journal.pcbi.1007213
http://www.ncbi.nlm.nih.gov/pubmed/31356591
https://doi.org/10.1073/pnas.1916520116
http://www.ncbi.nlm.nih.gov/pubmed/31843921
https://doi.org/10.1073/pnas.2109210118
https://doi.org/10.1073/pnas.2109210118
http://www.ncbi.nlm.nih.gov/pubmed/34810260
https://doi.org/10.1016/j.jmps.2012.09.017
https://doi.org/10.1016/j.jmps.2012.09.017
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1109/TEVC.2017.2704781
https://gitlab.com/leo.cazenille/qdpy
https://doi.org/10.3389/fcell.2022.883755
http://www.ncbi.nlm.nih.gov/pubmed/35813198
https://doi.org/10.1016/j.molp.2022.05.015
https://doi.org/10.1016/j.molp.2022.05.015
http://www.ncbi.nlm.nih.gov/pubmed/35662674
https://doi.org/10.1111/brv.12597
http://www.ncbi.nlm.nih.gov/pubmed/32338826
https://doi.org/10.1073/pnas.2216959120
https://doi.org/10.1073/pnas.2216959120
http://www.ncbi.nlm.nih.gov/pubmed/37027430
https://doi.org/10.1371/journal.pgen.1006616
http://www.ncbi.nlm.nih.gov/pubmed/28301464
https://doi.org/10.1186/s41935-019-0111-0
https://doi.org/10.1371/journal.pcbi.1011835

