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Abstract

Noroviruses (NoVs) are a leading cause of viral gastroenteritis. Despite global clinical rele-

vance, our understanding of how host factors, such as antiviral cytokines interferons (IFNs),

modulate NoV population dynamics is limited. Murine NoV (MNoV) is a tractable in vivo

model for the study of host regulation of NoV. A persistent strain of MNoV, CR6, establishes

a reservoir in intestinal tuft cells for chronic viral shedding in stool. However, the influence of

host innate immunity and permissive cell numbers on viral population dynamics is an open

question. We generated a pool of 20 different barcoded viruses (CR6BC) by inserting 6-

nucleotide barcodes at the 3’ position of the NS4 gene and used this pool as our viral inocu-

lum for in vivo infections of different mouse lines. We found that over the course of persistent

CR6 infection, shed virus was predominantly colon-derived, and viral barcode richness

decreased over time irrespective of host immune status, suggesting that persistent infection

involves a series of reinfection events. In mice lacking the IFN-λ receptor, intestinal barcode

richness was enhanced, correlating with increased viral intestinal replication. IL-4 treatment,

which increases tuft cell numbers, also increased barcode richness, indicating the abun-

dance of permissive tuft cells to be a bottleneck during CR6 infection. In mice lacking type I

IFN signaling (Ifnar1-/-) or all IFN signaling (Stat1-/-), barcode diversity at extraintestinal sites

was dramatically increased, implicating different IFNs as critical bottlenecks at specific tis-

sue sites. Of interest, extraintestinal barcodes were overlapping but distinct from intestinal

barcodes, indicating that disseminated virus represents a distinct viral population than that

replicating in the intestine. Barcoded viruses are a valuable tool to explore the influence of

host factors on viral diversity in the context of establishment and maintenance of infection as

well as dissemination and have provided important insights into how NoV infection proceeds

in immunocompetent and immunocompromised hosts.
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Author summary

Defining the host factors responsible for controlling viral population dynamics during

infection is critical for establishing a thorough understanding of viral transmission, dis-

semination, pathogenesis, and immune evasion. Here, we employed a barcoded virus

strategy to interrogate how host factors modulate viral diversity of CR6, a persistent strain

of murine norovirus. By evaluating barcode levels in tissues and stool of wild-type mice,

mice lacking critical innate immune response genes, and mice treated with cytokine to

enhance susceptible tuft cell levels, we found that both the availability of tuft cells and viral

replication limitations imposed by interferon signaling serve as critical bottlenecks for

CR6 diversity. Our studies also indicated that stool virus is likely predominantly derived

from the colon, and that extraintestinal dissemination of CR6 in immunodeficient mouse

strains likely occurs independently of intestinal infection. Our study thus revealed key

constraints regulating norovirus population dynamics and provided additional insights

into the mechanisms of viral shedding and dissemination.

Introduction

Transmission bottlenecks can occur when pathogens are transmitted from one infected host

to another or even during the spread of infection within an infected host. These bottlenecks

are major stochastic forces that can dramatically affect the virulence of rapidly-evolving patho-

gens like RNA viruses [1,2]. Over the course of infection, viruses encounter both physical bar-

riers and immune pressures within the host that can affect both viral population diversity and

the degree of genomic sequence divergence in spatial and temporal manners [3]. Improved

understanding of the consequences of individual bottlenecks to viral populations, as well as

their combined effects, is critical to both understanding the dynamics of viral pathogenesis

and for potentially predicting and limiting emergence of variants of concern.

Human noroviruses (HNoVs) are the leading cause of outbreaks of viral acute gastroenteri-

tis worldwide with an estimated 700 million infections and 200,000 deaths annually [4]. No

vaccines or therapies are currently available [5]. HNoVs are single-stranded positive-sense

RNA viruses present in three of ten genogroups of the Caliciviridae family. In immunocompe-

tent hosts, HNoV causes an acute and generally self-limiting infection, but illness may be more

severe and/or chronic in immunocompromised individuals [6,7]. Because viral evolution has

been observed in these chronically-infected patients, it has been suggested they may act as viral

reservoirs for subsequent emergence of novel HNoVs [8–10]. Defining the selective pressures

that regulate establishment and maintenance of NoV populations during chronic infection is

thus an important area of inquiry.

Because HNoVs do not robustly infect mice, the discovery of murine norovirus (MNoV)

has provided a tractable in vivo model for NoV studies [11]. MNoV recapitulates numerous

characteristics of HNoV including intestinal replication, fecal-oral transmission, prolonged

shedding after infection, genomic organization, and capsid structure [12]. Persistent MNoV

strain CR6 serves as a powerful model for asymptomatic chronic viral shedding, and many

studies have revealed host factors critical for viral regulation. CR6 exclusively infects tuft cells,

chemosensory cells of the intestinal epithelium [13,14], due to their expression of viral receptor

CD300LF [15–17]. Tuft cells act as an immune-privileged niche to permit viral persistence

[18], and induction of tuft cell hyperplasia by cytokines such as IL-4 and IL-25 consequently

promotes CR6 infection [13]. Interferons (IFNs) are also critical for controlling CR6 [19,20].

Type I IFNs (such as IFN-α/β) limit systemic dissemination from the intestine [19,21,22]. In
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contrast, type III IFNs (IFN-λ) control intestinal replication; studies in constitutively and con-

ditionally Ifnlr1-deficient mice have shown that endogenous IFN-λ acts on tuft cells to limit

enteric viral levels and viral shedding [18,21,23,24].

Despite the identification of these regulators of overall viral infection, our understanding of

how these selective host pressures affect NoV population dynamics throughout infection is

limited. In this study, we infected various strains of mice with genetically marked CR6 carrying

short unique nucleic acid sequence “barcodes” [25–29], which permitted quantitative analysis

and tracking of viral clones to study viral population dynamics under different conditions.

Materials and Methods

Ethics statement

All mice were singly-housed and the experiments were conducted according to the regulations

specified by the Washington University Institutional Animal Care and Use Committee under

approved protocol 22–0140.

Construction of barcode library and viral stock generation

To construct the barcoded CR6 library, primers were designed for 6-nucleotide long barcodes

to be inserted after nucleotide 2601 of the CR6 genome at the 3’ end of NS4 (S1 Table). The

cleavage site between NS4 (p18) and NS5 (VPg) occurs at 870E/G871 [30], with the barcode

insertion of 2 amino acids occurring between amino acids 865 and 866. PCR was performed

using Q5 high-fidelity DNA polymerase (NEB; M0491L). The amplicon was treated with KLD

enzyme mix (NEB; M0554S) and transformed into competent DH5 alpha E. coli cells (Zymo;

T3007). Individual colonies were screened for the presence of the barcode by colony PCR and

then verified by Sanger sequencing.

Plasmids encoding the barcoded viral genomes were transfected into 293T cells using Tran-

sIT-LT1 (Mirus Bio, Madison, WI), and incubated for 48 h at 37˚C. P0 virus was recovered

after the freeze-thaw of transfected cells. Clarified 293T supernatants were passaged on BV2

cells at a multiplicity of infection (MOI) of 0.05 in DMEM with 10% FBS to collect P1 virus

which was then passaged on BV2 cells in VP-SFM (virus production serum-free media; Gibco;

11681020) containing 1% glutamine and P2 virus was recovered after freeze-thaw of the

infected cells followed by centrifugation at�18,000 × g for 2 min to clear debris. The virus was

aliquoted and stored at -80˚C until use. Titers of each barcoded P2 virus were determined by

plaque assay and equal plaque-forming units (PFUs) from each barcoded virus were mixed to

obtain the pool of barcoded virus, CR6BC. For WT CR6, viral stocks were derived from the

molecular clone of CR6 as described previously [31].

Viral growth curves and plaque assays

MNoV growth curves were performed as described previously [17]. Briefly, 5 x 104 BV2 cells

per well were infected in suspension with CR6 and CR6BC at an MOI of 0.05 in 96-well plates.

Plates were frozen at 0, 12, 24, and 48 hours post-infection (hpi) and total cell lysate was used

in subsequent plaque assays. For plaque assays, BV2 cells were seeded in DMEM with 10% FBS

at 2 x 106 cells/well of a six-well plate and incubated for 16–20 hours at 37˚C. Media was

removed, and 10-fold serial dilutions of cell lysate were added to each well for 1 hour at room

temperature with gentle rocking. Viral inoculum was removed and 2 mL of overlay media

(MEM, 10% FBS, 2mM L-Glutamine, 10 mM HEPES, and 1% methylcellulose) was added.

Plates were incubated for 48 hours and then fixed with crystal violet solution (0.2% crystal
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violet and 20% ethanol) after removing the overlay media [31]. Plaques were counted and titer

was calculated.

Mouse lines

C57BL/6J wild-type mice were originally purchased from Jackson Laboratories (JAX stock

#000664, Bar Harbor, ME) and bred and housed in Washington University animal facilities

under specific pathogen, including MNoV, free conditions. Knock-out mice on the C57BL/6J

background were maintained in the same conditions and included the following strains:

Stat1-/- (JAX stock #012606), Ifnar1-/- [32], Ifngr1-/- (JAX stock #003288, [33]) and Ifnlr1-/-

[34]. Ifnar1-/-Ifngr1-/- mice were generated by crossing Ifnar1-/- and Ifngr1-/- mice.

IL-4 treatment

Recombinant IL-4C complexes (rIL-4Cs) were generated as described previously [35]. Briefly,

for each mouse 5 μg of murine IL-4 (Peprotech) was mixed with 25 μg anti-IL-4 (Clone 11B11,

BioXCell) and incubated for 1–5 min prior to diluting to 200 μl total volume in PBS. rIL-4Cs

were administered intraperitoneally in a volume of 200μl twice per mouse at 48 and 24 hours

before infection.

Mouse infection and sample collection

6–9-week-old mice were gavaged with 106 PFUs of CR6BC in a volume of 100μl. Stool (col-

lected directly from each mouse) and tissues were collected at indicated time points post-infec-

tion. All stool and tissues were harvested into 2-mL tubes (Sarstedt, Germany) with 1-mm-

diameter zirconia/silica beads (Biospec, Bartlesville, OK). Stool and tissues were either pro-

cessed on the same day or stored at −80˚C.

RNA extraction and qPCR

RNA extraction from stool and tissues were performed as described previously [34]. Briefly,

stool RNA was isolated using QuickRNA Miniprep (Zymoresearch, Irvine, CA) kit and tissue

RNA was isolated using TRI Reagent with a Direct-zol-96 RNA kit (Zymo Research, Irvine,

CA) according to the manufacturer’s instructions. cDNA was synthesized using ImPromII

reverse transcriptase system (Promega, Madison, WI) from 5 μL of stool or tissue RNA. Abso-

lute quantification of viral genomes was performed using MNoV TaqMan assays as described

previously [36]. PrimeTime qPCR assays were used to quantify expression of Cd300lf (Mm.

PT.58.13995989) and Dclk1 (Mm.PT.58.7877738). For normalizing absolute values of viral

genome copies or host transcripts from tissues, qPCR for housekeeping gene Rps29 was used

as described previously [37].

Sequencing and analysis of barcode library

Primers targeting the CR6 genomic regions (Forward primer–TACTGGGACCACGGTTA-

CAC; Reverse primer–TCATATTCCTCGTCCGTGAGC) flanking the barcode insertion site

were designed with both Illumina adaptor sequences as well as custom indices within forward

and reverse primers for demultiplexing. cDNA, synthesized from stool and tissues, was used as

the PCR substrate. PCR was performed in reactions containing 18.9 μL RNase/DNase-free

water, 2.5 μL 10X High Fidelity PCR Buffer (Invitrogen), 0.5 μL 10 mM dNTPs, 1 μL 50 mM

MgSO4, 1.0 μL each of the forward and reverse primers (10 μM final concentration), 0.08 μL

Platinum High Fidelity Taq (Invitrogen) and 1.0 μL cDNA. Reactions were held at 94˚C for 2

min to denature the DNA, with amplification proceeding for 32 cycles at 94˚C for 15s, 50˚C
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for 30s, and 68˚C for 30s followed by a final extension of 2 min at 68˚C. Amplicons were

pooled and the presence of amplicon confirmed by gel electrophoresis. Small aliquots of PCR

products were run on agarose gels and PCR products were pooled in equal amounts as approx-

imated by amplicon band intensity. The pooled products were purified using 0.6X volume

AMPure XP magnetic beads to remove primer dimers and unused dNTPs as per manufactur-

er’s instruction. Sequencing was performed on a NextSeq Illumina sequencer (2x150 runs).

FASTQ files were demultiplexed and barcodes, plus the surrounding 30 nucleotides of viral

genomic sequence to ensure that the barcodes were associated with virus sequence, were

extracted from the reads. Barcode counts were enumerated with the “grep” command, with

each barcode sequence serving as a search string. Initial data analysis was performed using R

[38]. Barcode frequencies are presented as fractions of reads for a specific barcode over total

reads containing a viral barcode, with raw read values for each barcode provided in S2–S4

Tables. The limit of detection for the barcodes was 10 reads, which was derived from within-

sequencing-run analysis of naïve mice. Shannon diversity index was calculated using the R

package “vegan” [39]. Barcode sequencing data is available at NCBI BioProject (accession

number PRJNA1061503).

Graphing and statistics

Stacked bar plots were created using R package “ggplot2” [40]. The data were analyzed with

Prism 10 software (GraphPad Software, San Diego, CA). In all graphs, ns indicates not signifi-

cant (p> 0.05), *** p< 0.001, ** p< 0.01, * p< 0.05, as determined by Mann-Whitney test,

one-way analysis of variance (ANOVA) or Kruskal-Wallis test, or two-way ANOVA with

Tukey’s multiple-comparison test, as specified in the relevant figure legends.

Results

Barcoded CR6 (CR6BC) is functionally equivalent to CR6 and maintains

barcodes in vitro and in vivo
Molecularly barcoded virus has been used to study bottlenecks in different virus systems

including coxsackievirus, influenza virus, poliovirus, West Nile virus, and Zika virus [26–

28,41,42]. To generate barcoded CR6 stocks, 6-nucleotide barcodes were individually inserted

at the 3’ end of NS4 (at nucleotide 2601) of the CR6 genome (Fig 1A and S1 Table). Small

insertions at this site in the MNoV genome are tolerated, permitting recovery of tagged infec-

tious virus [43]. Twenty distinct tagged viruses were combined at equal plaque-forming unit

(PFU) ratios to generate a pooled CR6BC (BC for “barcoded”) viral stock. In vitro replication of

CR6BC in the murine BV2 microglial cell line was equivalent to parental CR6 (Fig 1B). Barcode

sequencing over 72 hour (h) of in vitro growth showed that barcodes were not lost over time

(Fig 1C), and that the relative proportions of the 20 unique barcodes within the pool remained

similar over time (Fig 1D). Varying genome copy:PFU ratios were observed amongst the indi-

vidual barcoded viruses, which may have contributed to initial uneven representation of bar-

codes within the inoculum (S1A Fig). Wild-type (WT) mice were orally inoculated with 106

PFUs of CR6BC or parental CR6 and viral levels were enumerated at 5 days post-infection

(dpi) by MNoV-specific qPCR (Fig 1E and 1F). These results confirmed no deleterious effect

of barcode insertion on either infectivity or replicative capacity in vitro or in vivo. To confirm

that barcode sequences recovered from mice were from replicating virus and not the adminis-

tered inoculum, we inoculated mice lacking the MNoV receptor CD300LF which are resistant

to infection [15–17]. As expected, there was no viral shedding in the stool of CD300lf-/- mice at
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Fig 1. Barcoded CR6 (CR6BC) shows similar infectivity to CR6 and maintains barcodes in vitro and in vivo. (A) Schematic of CR6BC pool

production. Created with BioRender.com. (B) Growth curves of parental CR6 and CR6BC in vitro in BV2 cells; data is pooled from three

independent experiments. Analyzed by two-way ANOVA. (C,D) Proportion of Illumina sequencing reads from growth curve samples from three

independent experiments at indicated timepoints containing any barcode (C) or each individual barcode (D). (E-F) Wild-type (WT) mice (N = 5

per group) were orally inoculated with parental CR6 or CR6BC, and stool MNoV shedding (E) and tissue viral levels (F) at 5 dpi were assessed by

qPCR. Analyzed by Mann-Whitney test. ns = not significant.

https://doi.org/10.1371/journal.ppat.1011961.g001
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3 or 5 days (S1B Fig) or virus detected in intestinal tissues at 5 days post-inoculation with

CR6BC (S1C Fig) and hence no barcode richness was observed (S1D and S1E Fig).

IFN-λ signaling is a bottleneck for intestinal CR6 replication and viral

diversity

Endogenous IFN-λ has been well-established to signal through IFNLR1 on tuft cells to limit

CR6 replication in vivo [18,21,24,34]. To analyze whether IFN-λ also regulates viral population

dynamics, we infected WT and Ifnlr1-/- mice with CR6BC and collected tissues and stool at 5

dpi (acute timepoint) and 21 dpi (persistent timepoint). Consistent with prior studies [21,23],

increased viral shedding was observed in Ifnlr1-/- mice at 5 dpi but no difference in shedding

was seen at 21 dpi, while increased intestinal tissue viral loads were present in Ifnlr1-/- mice at

both 5 and 21 dpi (Fig 2A).

We next assessed barcode richness in the samples. Of interest, despite the administered

inoculum of 20 barcodes, we observed an average of 5.1 barcodes shed in the stool of WT mice

even at 5 dpi, with an average of 5.5 and 5.7 barcodes in colon and ileum respectively (Fig 2B).

Distinct barcodes were observed in each mouse, indicating that this low number was not sec-

ondary to poor viability of numerous specific clones (S2 Table and S1F Fig). This relative pau-

city of barcodes suggests that a limited number of unique viruses can establish or maintain

infection in WT mice at acute timepoints. By 21 dpi, there was a further depletion of barcode

numbers with an average of 2.1 stool, 3.5 colon, and 2.5 ileum barcodes (Fig 2B), despite simi-

lar levels of viral shedding in stool (Fig 2A). We found substantially enhanced barcode rich-

ness in Ifnlr1-/- mice at 5 dpi in both stool and intestinal tissues, but no significant difference

between genotypes at 21 dpi (Fig 2B). These data indicate that endogenous IFN-λ signaling

limits the number of unique viruses able to establish infection in WT mice, serving as an

important bottleneck for viral population diversity during acute infection. Enhanced viral

shedding and tissue levels in Ifnlr1-/- mice (Fig 2A) are thus reflective of increased unique pro-

ductive viral infection events as opposed to just enhanced viral replication following an equiva-

lent number of individual infection events.

In the context of persistent infection, viral population richness is lost in both WT and

Ifnlr1-/- mice, despite maintenance of barcodes in vivo and similar levels of viral shedding in

WT mice at 5 and 21 dpi (Figs 2C and S1G). It has previously been determined that CR6

exclusively infects short-lived tuft cells [44]. Thus, this loss in population diversity may reflect

the requirement for longitudinal reinfection events to maintain persistent infection, or alter-

nately, effects of adaptive immune responses in limiting viral diversity.

The colon is the dominant source of viral stool shedding

CR6 infects both the small and large intestines and is shed at high levels in the stool. How-

ever, whether shed virus is predominantly derived from the small or large intestine, or both,

is unclear. To answer this question, we analyzed the specific barcodes in ileum, colon and

stool within individual animals to evaluate if they were shared. We found that during acute

infection, most barcodes were shared between colon, ileum, and stool in both WT (~33%)

and Ifnlr1-/- mice (~74%) (Fig 3A and 3B), suggesting initial infection events in the intes-

tine contribute to both fecal shedding and infection along the gastrointestinal tract.

Whether ileal infection contributes to colonic infection or vice-versa, wherein re-infection

of ileal tissue could occur secondary to coprophagy of colon-derived shed virus, is unclear.

A subset of barcodes was exclusively detected in colon and ileal tissues but not in stool, or

alternately were exclusively found in ileal or colonic tissue alone. These data raise the possi-

bility of infection events at either site that do not contribute to viral shedding in stool, or of
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Fig 2. IFN-λ signaling is a bottleneck for intestinal CR6 replication and viral diversity. WT or Ifnlr1-/- mice were inoculated with CR6BC and stool and

tissues were collected at 5 dpi [WT (stool N = 14; tissue N = 6); Ifnlr1-/- (stool N = 15; tissue N = 7)], or 21 dpi [WT (N = 8); Ifnlr1-/- (N = 8)]. (A) MNoV

genome copies in fecal pellets, colon, or ileum as quantified by qPCR. (B) Barcode richness in stool, colon, and ileum. Results were analyzed by Mann-Whitney

test from three independent experiments. (C) Stool pellets were longitudinally collected at indicated timepoints and MNoV genome copies and barcode

richness were assessed, as well as the proportion of reads maintaining barcodes. Results were analyzed by two-way ANOVA with Tukey’s multiple comparisons

test from three independent experiments. Blue asterisks denote values for WT; red asterisks for Ifnlr1-/-. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001;

ns, not significant.

https://doi.org/10.1371/journal.ppat.1011961.g002
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variable shedding following these infection events that may not be captured by analysis of

single fecal specimens.

At day 21, a timepoint when overall barcode richness was lost (Fig 2B and 2C), we observed

a similar proportion of barcodes shared between colon, ileum, and stool in WT and Ifnlr1-/-

mice (~44%) (Fig 3A and 3B), with barcodes distributed to a greater degree amongst individual

or shared tissues. Across the 5 and 21 dpi timepoints, many barcodes observed in the stool were

also present in both colon and ileum, precluding identification of the tissue source of shed bar-

codes. However, we observed that the likelihood of observing barcodes co-occurring in ileum

and stool was significantly lower than observing co-occurrence in colon and stool (Fisher’s

exact test, p = 0.0070). Thus, while ileum may contribute some shed virus, our data support the

colon as the likely dominant source of CR6 viral shedding, and also indicate that throughout

infection, the majority of virus is shared between both small and large intestinal tissues.

Tuft cell abundance is a bottleneck for intestinal CR6 replication and viral

diversity

Tuft cells are the exclusive cells infected by CR6 in the intestinal epithelium in the acute setting

and also provide an immune-privileged niche for persistent viral infection [13,14]. However, it

is unknown whether this tropism for a relatively rare cell type regulates viral population diversity.

Fig 3. The colon is the dominant source of viral stool shedding. Barcode distribution in CR6BC-infected WT and Ifnlr1-/- mice at 5 and 21 dpi was analyzed

for being unique or shared at different sites. (A) Heatmaps indicate the number of barcodes detected at the indicated unique or shared sites per mouse. (B) Pie-

charts indicate the proportions of the total number of barcodes detected at the indicated unique or shared site, summed from all mice in the indicated groups.

https://doi.org/10.1371/journal.ppat.1011961.g003

PLOS PATHOGENS Interferons and susceptible cell availability limit norovirus diversity

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011961 May 3, 2024 9 / 19

https://doi.org/10.1371/journal.ppat.1011961.g003
https://doi.org/10.1371/journal.ppat.1011961


Type 2 cytokines such as IL-4 are well-established to induce tuft cell hyperplasia and enhance

CR6 infection [13,44–47]. To assess the link between tuft cell infection and viral diversity, we

treated WT and Ifnlr1-/- mice with two doses of recombinant IL-4 as described previously [13].

Mice were then infected with CR6BC, and stool and tissues were analyzed at 5 dpi. We confirmed

expected increases in expression of tuft cell markers Dclk1 and Cd300lf, also the receptor for

MNoV, with IL-4 treatment in both WT and Ifnlr1-/- mice in colon and ileum samples (Fig 4A

and 4B). Consistent with prior studies, IL-4-treated mice exhibited significantly increased viral

loads in stool from both WT and Ifnlr1-/- mice and WT colons, though viral levels in the ileum

were not significantly enhanced (Fig 4C). With these increased viral levels, we observed enhanced

barcode richness in the stool and colons of IL-4 treated mice of both genotypes, as well as in the

ilea of Ifnlr1-/- mice (Fig 4D). These findings indicate that tuft cell abundance is an important bot-

tleneck for CR6 population diversity in both tissues and fecally shed virus.

Type I IFN, in combination with other IFNs, limits dissemination and

extraintestinal viral diversity

Type I IFNs, which signal through receptor IFNAR1, are critical to limiting extraintestinal dis-

semination of CR6 [19,22]. Type II IFN, which acts through receptor IFNGR1, has been shown

to play a supportive role to type I IFN signaling in regulating extraintestinal viral replication of

other MNoV strains [48,49]. Transcription factor STAT1 relays signals for type I, II, and III IFNs,

and is critical to limiting both intestinal (via type III IFN signaling), and extraintestinal (via type I

and II IFN signaling) replication of CR6 [20–22,50,51]. To assess the role of IFN signaling in con-

trolling viral population dynamics during extraintestinal viral dissemination, we orally infected

WT, Ifnar1-/-, Ifnar1-/-Ifngr1-/-, and Stat1-/- mice with CR6BC and analyzed viral levels and barcode

diversity at 5 dpi in stool, colon and spleen. As expected, we observed increased intestinal viral

loads, reflected in stool and colon levels, of Stat1-/- mice with no significant changes in Ifnar1-/- or

Ifnar1-/-Ifngr1-/- mice (Fig 5A). In contrast, both Ifnar1-/-Ifngr1-/- and Stat1-/- mice exhibited sig-

nificantly increased viral levels in the spleen compared to WT and Ifnar1-/- (Fig 5A). While viral

levels were not significantly enhanced in Ifnar1-/- mice, the likelihood of virus being detectable in

the spleen was significantly increased (Fisher’s exact test, p = 0.0081) (Fig 5A). Splenic viral levels

in Stat1-/- mice were significantly higher than in Ifnar1-/-Ifngr1-/- mice (Fig 5A), cumulatively

indicating that viral dissemination is limited by combinatorial activities of type I, II, and III IFN

signaling, in holding with prior reports [21,22,49].

In stool and colon, consistent with the alterations in viral levels, Stat1-/- mice exhibited

higher barcode richness while Ifnar1-/- and Ifnar1-/-Ifngr1-/- mice showed similar richness to

WT mice, with the exception of a subtle increase in richness in Ifnar1-/- stool (Fig 5B). Results

in Stat1-/- mice phenocopied our observations in Ifnlr1-/- mice (Fig 2), supporting that dis-

rupted type III IFN signaling likely underlies the enhanced intestinal viral diversity in Stat1-/-

mice. In the spleen, enhanced barcode richness was observed in Ifnar1-/-, Ifnar1-/-Ifngr1-/-, and

Stat1-/- mice, consistent with the relative increases in viral dissemination to this extraintestinal

site (Fig 5B). While loss of type II IFN signaling did not further enhance the barcode richness

observed in Ifnar1-/- mice, splenic barcode richness was significantly higher in Stat1-/- mice

(Fig 5B), indicating combinatorial roles for type I and III IFNs, with possible contribution

from type II IFN, in limiting extraintestinal viral replication and thereby diversity.

Viral dissemination can occur independently of intestinal replication in

mice lacking type I IFN signaling

Next, to determine whether the systemic spread of CR6 required initial intestinal infection for

subsequent dissemination or could occur independent of the intestine, we analyzed the
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Fig 4. Tuft cell abundance is a bottleneck for intestinal CR6 replication and viral diversity. Across two

independent experiments, WT (N = 7) and Ifnlr1-/- (N = 9) mice were given two doses of r-IL-4 complexes at 48 and 24

h prior to infection, with untreated WT (N = 6) and Ifnlr1-/- (N = 7) serving as controls. Stool and tissues were

collected at 5 dpi. (A,B) Expression of tuft cell markers Dclk1 (A) and Cd300lf (B) was quantified by qPCR at 5 dpi in

colon and ileum samples. (C) Stool and tissue CR6 levels were quantified. (D) Barcode richness was evaluated from

these same samples. Analyzed by Mann-Whitney test: *p< 0.05; **p< 0.01; ***p< 0.001; ns, not significant.

https://doi.org/10.1371/journal.ppat.1011961.g004
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Fig 5. Type I IFN, in combination with other IFNs, limits dissemination and extraintestinal viral diversity. WT (N = 11), Ifnar1-/- (N = 9),

Ifnar1-/-Ifngr1-/- (N = 10), and Stat1-/- (N = 9) mice were infected with CR6BC and samples were collected at 5 dpi. (A) Viral levels in stool, colon, and spleen

were assessed by qPCR. (B) Barcode richness was evaluated from these same samples. Analyzed by one-way ANOVA with Tukey’s multiple comparisons

test: *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns, not significant.

https://doi.org/10.1371/journal.ppat.1011961.g005
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distribution of barcodes across tissues in WT, Ifnar1-/-, Ifnar1-/-Ifngr1-/-, and Stat1-/- mice. In

WT, Ifnar1-/- and Ifnar1-/-Ifngr1-/- mice, barcodes were predominantly shared between colon

and stool (Fig 6A and 6B), consistent with our earlier findings (Fig 3). Intriguingly, analysis of

splenic barcode distribution in Ifnar1-/- and Ifnar1-/-Ifngr1-/- mice revealed that a unique bar-

code was equally likely to be detected in the spleen alone (~17% for both genotypes) as it was

to be found in the colon, spleen and stool (~13% for Ifnar1-/- and ~17% for Ifnar1-/-Ifngr1-/-

mice) (Fig 6A and 6B). These data indicate that, in the absence of type I IFN signaling, viral

dissemination can likely occur both from intestinally replicated virus as well as independently

of intestinal replication. In Stat1-/- mice, wherein barcode richness was much higher at all sites

tested, most barcodes were shared between all sites with some barcodes exclusively present in

colon and stool (Fig 6A and 6B). Thus, these data support a model in which type I IFN signal-

ing limits dissemination of virus that is not replicating in the intestine, but in the absence of

Fig 6. Viral dissemination can occur independently of intestinal replication in mice lacking type I IFN signaling. Barcode distribution in CR6BC-infected

WT, Ifnar1-/-, Ifnar1-/-Ifngr1-/-, and Stat1-/- mice at 5 dpi was analyzed for being unique or shared at different sites. (A) Heatmaps indicate the number of

barcodes detected at the indicated unique or shared sites per mouse. (B) Pie-charts indicate the proportions of the total number of barcodes detected at the

indicated unique or shared site, summed from all mice in the indicated groups.

https://doi.org/10.1371/journal.ppat.1011961.g006
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signaling by all IFNs, unrestricted viral replication leads to dramatic increases in viral diversity

that are shared broadly.

Discussion

Host immune and tropism barriers influence viral pathogenesis by modulating viral popula-

tion dynamics, serving as bottlenecks during viral replication and spread within the host. To

date, the role of these barriers in regulating the viral diversity of NoV infection has not been

explored. In this study, the application of genetic barcoding of CR6 permitted us to carefully

define both how these bottlenecks limit viral diversity at different sites and revealed new

insights about the source(s) of shed and disseminated virus. The insertion of the small barcode

showed no effect on viral fitness in vitro or in vivo, and barcodes were maintained in the virus

over the course of in vitro passaging and in vivo longitudinal infection.

In WT mice, CR6 establishes asymptomatic infection exclusively in short-lived tuft cells,

from which high levels of infectious virus are persistently shed [13,31,44]. Only a small number

of unique barcodes were observed per mouse even at early timepoints, indicating that initial

infection events are limited in WT mice. We also observed longitudinal loss of intestinal and

shed viral population diversity over the course of a 21-day infection, potentially reflecting

either turnover of infected tuft cells or effects of adaptive immune responses in limiting viral

diversity by targeting a subset of infected cells. Infection in WT mice is limited to the intestine,

and analysis of barcodes in ileal and colonic tissues, the major sites of viral infection, revealed

distinct barcodes present at these sites, suggesting independent infection events of ileal and

colonic tuft cells. Further, analysis of the proportions of shared barcodes between these tissues

with stool revealed that the colon is the dominant contributor to shed virus compared to the

ileum. This observation may reflect distinct characteristics of infected tuft cells between these

intestinal tissues (e.g. differential capacity to be infected or to produce or package virus) or a

relative benefit to colon-derived virus in transit through the intestine for fecal shedding.

Because IFN-λ is a well-established intestinal regulator of CR6, particularly at acute time-

points [18,21,22,24], we evaluated its role in regulating viral diversity. We found that the

increased intestinal viral replication seen in Ifnlr1-/- mice was associated with a substantial

increase in barcode richness, supporting that IFN-λ serves to limit initial tuft cell infection

events and therefore overall viral diversity. We also determined that STAT1 is a critical trans-

ducer of IFN-λ signaling to regulate intestinal viral diversity. In Ifnlr1-/- mice, longitudinal

viral diversity was also lost, and indeed by 21 dpi barcode richness was equivalent between WT

and Ifnlr1-/- mice, indicating that IFN-λ has an active role in limiting diversity only at acute

timepoints.

Having found that IFN-λ is such a critical bottleneck at early timepoints for viral diversity,

we were also curious whether CR6’s tropism for rare tuft cells (~0.5% of intestinal epithelial

cells [52]) served as an additional limitation for initial infection events. We administered IL-4

to mice prior to infection, a treatment well-established to enhance intestinal tuft cell numbers

[13,44–47], and found that this enhanced infection and barcode richness in WT and Ifnlr1-/-

mice. Remarkably, almost all barcodes were recovered in Ifnlr1-/- mice treated with IL-4, sup-

porting combinatorial and critical roles for limited tuft cell numbers and innate immune sig-

naling in restricting intestinal viral diversity.

Finally, we leveraged our barcoded viral library to explore viral dissemination to systemic

tissues in Ifnar1-/-, Ifnar1-/-Ifngr1-/-, and Stat1-/- mice. We confirmed prior findings that type I

and II IFNs are dispensable for regulating viral levels in the intestine at acute timepoints [21],

with concomitant findings for viral diversity. Because type I IFN signaling is an established

regulator of extraintestinal MNoV dissemination [19,22], we evaluated viral levels in the
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spleen, which showed that type I and III IFNs play combinatorial roles in restricting viral levels

as well as viral diversity at this site. In Ifnar1-/- and Ifnar1-/-Ifngr1-/- mice, wherein intermediate

levels of barcodes were observed in the spleen, we were able to determine that unique barcodes

were present in the intestine and the spleen, supporting that MNoV is disseminated via intesti-

nal replication-dependent and independent routes. IFN signaling is known to restrict MNoV

immune cell infection [50, 53]. Thus, it is possible that in IFN signaling-deficient mice, a com-

bination of immune cells and tuft cells are initially infected, with early systemic trafficking of

infected immune cells followed by dissemination of tuft cell-derived virus, permitting distinct

barcode populations with either exclusive splenic detection or overlapping colonic and splenic

detection. In Stat1-/- mice, wherein enhanced intestinal and systemic viral replication are both

present, most barcodes are present at all sites likely due to increased dissemination of intes-

tine-derived virus.

While here, a focused pool of 20 barcoded viruses was sufficient to permit numerous infer-

ences regarding viral source(s) for shed and systemic virus, future studies would likely benefit

from a richer pool of barcodes, as well as analyses of additional early timepoints, to permit

finer resolution of acute infection events. We also cannot exclude the possibility of barcodes

below the limit of detection in our assay contributing to viral replication. Despite these limita-

tions, our study revealed that innate immune signaling and tuft cell availability account for

nearly all the viral diversity bottlenecks observed in WT mice, consistent with their roles in

regulating viral replication and dissemination. Further, we found that the colon is the main

source of fecal virus despite detectable small intestinal infection, and that virus may bypass the

intestine for systemic spread in the absence of type I IFN signaling. This study thus provides

important new insights into the mechanisms of NoV pathogenesis.
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