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ABSTRACT 
 

This study presents a novel and efficient method for synthesizing Tetrahydrobenzo[b]pyran and 3,4-
Dihydropyrano[c]chromene derivatives using honey as a highly efficient homogeneous catalyst. 
Through a one-pot three-component condensation of aromatic aldehydes with malononitrile and 
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dimedone or 4-hydroxycoumarin, excellent yields were achieved under environmentally friendly 
conditions. The utilization of honey, a non-toxic and biodegradable catalyst, underscores the 
method's significance in green chemistry. The abstract highlights the method's advantages, 
including high yields, short reaction times, simple work-up, and its potential for applications in the 
green pharmaceutical and chemical industries. Additionally, the intricate role of honey as a catalyst 
in chemical reactions is explored, shedding light on its mechanism and potential applications in 
organic synthesis and other chemical processes. This research introduces a promising and 
environmentally friendly approach for the green synthesis of biologically active heterocyclic 
compounds using a natural, biodegradable catalyst, contributing significantly to the advancement of 
green chemistry practices. 
 

 
Keywords: Green chemistry; honey; biodegradable catalyst;  homogeneous synthesis; three-

component synthesis; Tetrahydrobenzo[b]pyran; Dihydropyrano[c]chromene. 
 

1. INTRODUCTION 
 
“The development of environmentally benign, 
efficient, and economical methods for 
synthesizing biologically interesting compounds 
remains a significant challenge in synthetic 
chemistry” [1]. “Green chemistry stands out as 
pioneering research, widely recognized for its 
intrinsic atom economy, energy savings, waste 
reduction, ease of workup, and avoidance of 
hazardous chemicals” [2]. “Catalysts have played 
a vital role in 20th-century chemistry. As we 
transition into the 21st century, the push toward 
clean technology driven by public, legislative, 
and corporate pressure will present new and 
exciting opportunities for catalysis and catalytic 
processes” [3]. “Chemical clean technology or 
green chemistry focuses on utilizing methods 
that reduce or eliminate the use of hazardous 
substances” [4-6]. 
 
It is essential to compare this method with other 
synthetic approaches in terms of efficiency and 
process conditions. By evaluating the yields and 
reaction conditions of this method alongside 
traditional synthetic routes, such as those 
utilizing different catalysts or reaction conditions, 
we can highlight the advantages and limitations 
of each approach. This comparative analysis can 
provide valuable insights into the superiority of 
the honey-catalyzed method and its potential 
contributions to green chemistry. 
 
The intricate role of honey as a catalyst in 
chemical reactions remains a subject of ongoing 
investigation, with several hypotheses and 
explanations proposed to shed light on its 
mechanism.   Honey is a supersaturated aqueous 
solution with various sugars, mainly composed of 
D-fructose and D-glucose (Fig. 1). “Moreover, 
honey contains certain minor constituents such 
as mineral content, including sodium (Na), 

potassium (K), magnesium (Mg), and calcium 
(Ca), hydroxymethylfurfural (HMF), proteins, 
amino acids, enzymes, vitamins, organic and 
phenolic acids, flavonoids, carotenoids, volatile 
substances, and products of the Maillard 
reaction” [7-9]. 
 

 
 

Fig. 1. Structure of D-fructose and D-glucose 
 

Carbohydrates, amines, proteins, and minerals 
present in honey collectively act as catalysts in 
diverse chemical reactions. Carbohydrates, 
functioning as carbon sources, actively engage in 
carbonyl reactions, notably Cannizzaro reactions, 
by stimulating carbonyl groups and facilitating 
intermolecular reactions. Additionally, amines 
and proteins demonstrate catalytic potential in 
acid-base reactions, offering active groups 
crucial for transforming reaction molecules. 
Moreover, minerals such as iron, manganese, 
and zinc serve as robust catalysts in oxidation-
reduction reactions, enriching honey's catalytic 
repertoire. This multifaceted nature of honey as a 
catalyst harnesses the varied properties of its 
constituents to effectively propel chemical 
transformations. Carbohydrates, in particular, 
play a pivotal role as carbon sources, fostering 
carbonyl reactions by activating carbonyl groups 
and fostering intermolecular interactions. Amines 
and proteins in honey act as dynamic agents in 
acid-base reactions, furnishing active groups that 
assist in the conversion of reaction molecules. 
Furthermore, the presence of minerals, like iron, 
manganese, and zinc, bolsters honey's catalytic 
prowess, particularly in oxidation-reduction 
reactions.  Additionally, the hydroxyl groups in 
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honey's carbohydrates facilitate the formation of 
hydrogen bonds with reactant molecules, 
potentially activating them and streamlining 
reactions. Certain molecules within honey may 
also possess unique structures and properties 
that augment their chemical reactivity, rendering 
them effective catalysts across various reactions. 
While these insights provide valuable glimpses 
into honey's catalytic function, further research is 
essential to fully unravel the intricacies of its 
mechanism and exploring its potential 
applications in organic synthesis and other 
chemical processes [10-16]. 
 
4H-Benzo[b]pyran derivatives are an important 
class of heterocyclic compounds with significant 
pharmaceutical and biological activities. These 
compounds are utilized as anticancer, 
anticoagulant, diuretic, spasmolytic, and 
antianaphylactic agents [17a], antibacterial [17b], 
antimicrobial [17c], antiviral [17d], anti-
hypertensive, antiallergic, antifungal, antimalarial, 
and antiproliferative agents [17e]. Consequently, 
4H-benzo[b]pyrans have garnered considerable 
attention from the pharmaceutical and organic 
chemistry communities. Recognizing the 
importance of 4H-pyran derivatives, several 
synthetic methods have been reported with the 
aim of producing more biologically potent 
heterocyclic systems. These methods employ 
various catalysts such as magnesium oxide [18], 
SBDABCO [19], silica nanoparticles [20], 
electrogenerated bases [21], Baker’s yeast [22], 
amino-functionalized ionic liquids [23], as well as 
other approaches including microwave irradiation 
[24], ultrasonic radiation [25], and the use of 
additives such as hexadecyltrimethylammonium 
bromide (HTMAB) [26], triethylbenzylammonium 
chloride (TEBA) [27], other alkylammonium salts 
[28], 4-dodecylbenzenesulfonic acid (DBSA) [29], 
(S)-proline [30,31], etc. 
 
Dihydropyrano[c]chromenes are of considerable 
interest due to their wide range of biological 
properties [32-38]. However, “fewer methods 
have been described for the synthesis of these 
compounds” [39-45]. “The limitations of the 
above methods include poor yields, the presence 
of toxic elements, and the requirement for 
refluxing for hours in organic solvents, as well as 
the use of expensive catalysts and tedious work-
up procedures. Continuing our research based 
on multi-component reactions” [46-48], in this 
study, we report a practical method wherein 
inexpensive, clean, safe, environmentally 
friendly, and commercially available honey acts 
as a bio-resource catalyst for synthesizing 

Tetrahydrobenzo[b]pyrans and 3,4-
Dihydropyrano[c]chromene derivatives using 
aldehyde, malononitrile, dimedone, or 4-
hydroxycoumarine in H2O/EtOH under thermal 
conditions (Scheme 1). 
 

 
 

Scheme 1. Synthesis of 
Tetrahydrobenzo[b]pyran and 3,4-

Dihydropyrano[c]chromene derivatives in the 
presence of honey 

 

2. EXPERIMENTAL METHODOLOGY 
 
Melting points and IR spectra were measured 
using an Electrothermal 9100 apparatus and a 
JASCO FT-IR-460 plus spectrometer, 
respectively. The 1H NMR spectra were obtained 
using Bruker DRX-400 Advance instruments with 
DMSO and acetone as solvents. All reagents and 
solvents were obtained from Fluka and Merck 
and used without further purification. TLC was 
performed on Silica-gel Polygram SILG/UV 254 
plates. 
 

2.1 General Procedure for the Synthesis 
of Tetrahydrobenzo[b]pyran Deri-
vatives 

 
This detailed procedure provides a step-by-step 
explanation of the synthesis process, including 
reaction setup, monitoring, purification, and 
characterization, ensuring transparency and 
clarity in the experimental methodology. 
 
A mixture comprising an aldehyde (1.0 mmol), 
malononitrile (1.0 mmol), dimedone (1.0 mmol), 
and honey (0.4 g) was prepared. The mixture 
was stirred at 70°C to facilitate the reaction. The 
progress of the reaction was continuously 
monitored using Thin-Layer Chromatography 
(TLC) to assess completion. Once the reaction 
was deemed complete, the mixture was cooled 
to room temperature. Then, it was diluted with 
water to adjust the concentration and facilitate 
filtration. The diluted mixture underwent filtration 
to separate the reaction mixture from the desired 
product. The resulting precipitate was washed 
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with distilled water to remove impurities and any 
remaining reactants. The crude product obtained 
from filtration underwent recrystallization from 
ethanol, purifying the product and enhancing its 
crystalline structure. The purified 
tetrahydrobenzo[b]pyran derivatives were 
characterized using various analytical 
techniques, including melting point 
determination, Infrared spectroscopy (IR), and 
Proton Nuclear Magnetic Resonance 
spectroscopy (1H NMR). The obtained physical 
data (melting points, IR spectra, and 1H NMR 
spectra) were compared with those of known 
compounds reported in the literature [27] to 
confirm the identity and purity of the synthesized 
products. 
 

2.2 General Procedure for the Synthesis 
of 3,4-dihydropyrano[c] Chromene 
Derivatives  

 
A mixture containing an aldehyde, malononitrile, 
and 4-hydroxycoumarine in a molar ratio of 1:1:1, 
along with 0.5 g of honey, was prepared. The 
mixture was dissolved in 5 ml of a water-ethanol 
(4:1) solvent system. “The prepared mixture was 
stirred at 60°C to initiate the reaction. The 
progress of the reaction was monitored using 
Thin-Layer Chromatography (TLC) to track the 
consumption of reactants and the formation of 
the product. Upon completion of the reaction, the 
reaction mixture was cooled to room 
temperature. The cooled mixture was then 
diluted with water to facilitate filtration and the 
separation of the product. The diluted reaction 
mixture was filtered to separate the desired 
product from the reaction mixture. The resulting 
precipitate was washed with distilled water to 
remove any impurities and residual reactants. 
The crude product obtained from filtration was 
subjected to recrystallization from ethanol. 
Recrystallization helped purify the product and 
enhance its crystalline structure, yielding pure 
3,4-dihydropyrano[c]chromene derivatives. The 
purified products were characterized using 
various analytical techniques, including 
determination of melting points, Infrared 
spectroscopy (IR), and Proton Nuclear Magnetic 
Resonance spectroscopy (1H NMR). The 
obtained physical data (melting points, IR 
spectra, and 1H NMR spectra) were compared 
with those of known compounds reported in the 
literature” [40,42] to confirm the identity and 
purity of the synthesized 3,4-
dihydropyrano[c]chromene derivatives. 
 

This detailed procedure provides a clear and 
transparent methodology for the synthesis, 
purification, and characterization of the target 
compounds, ensuring reproducibility and 
accuracy in the experimental process. 
 

2.3 Some Spectral Data for Selected 
Products are Represented Below 

 
1. 2-Amino-7,7-dimethyl-5-oxo-4-phenyl-

5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile (5a): 

 

m.p= 225-228 °C, IR (KBr, cm-1): 3323, 3395, 
3211, 2199, 1680; 1H NMR (400 MHz, DMSO-
d6): δ (ppm)= 0.97 (s, 3H, CH3), 1.13 (s, 3H, 
CH3), 2.11 (d, 1H, CH2), 2.28 (d, 1H, CH2), 2.52 
(s, 2H, CH2), 4.27 (s,1H, CH), 6.75 (s, 2H, NH2),  
7.17-7.32 (m, 5H, Ar-H). 
 

2. 2-Amino-7,7-dimethyl-5-oxo-4-(4-
nitrophenyl)-5,6,7,8-tetra hydro-4H-
chromene-3-carbonitrile (5c): 

 

m.p= 176-179 °C, IR (KBr, cm-1): 3509, 3368, 
2181, 1680, 1217; 1H NMR (400 MHz, DMSO-
d6): δ (ppm)= 0.95 (s, 3H, CH3), 1.05 (s, 3H, 
CH3), 2.10 (d, 1H, CH2), 2.25 (d, 1H, CH2), 2.50 
(s, 2H, CH2), 4.21 (s, 1H, CH), 6.87 (s, 2H, NH2),  
7.39 (d, 2H, Ar-H), 8.13 (d, 2H, Ar-H). 
 

3. 2-Amino-7,7-dimethyl-5-oxo-4-(4-
chlorophenyl)-5,6,7,8-tetra hydro-4H-
chromene-3-carbonitrile (5e):  

 

m.p= 206-207 °C, IR (KBr, cm-1): 3444, 3325, 
3208, 2171, 1676, 1609, 1507; 1H NMR (400 
MHz, DMSO-d6): δ (ppm)=  0.91 (s, 3H, CH3), 
1.02 (s, 3H, CH3), 2.04–2.48 (m, 4H, 2CH2), 4.22 
(s, 1H, CH), 5.66 (s, 2H, NH2), 7.08–7.20 (m, 4H, 
Ar-H).  
 

4. 2-Amino-7,7-dimethyl-5-oxo-4-(4-
methoxyphenyl)-5,6,7,8-tetrahydro-4H-
chromene-3-carbonitrile (5k): 

 

m.p= 199-201 °C, IR (KBr, cm-1): 3372, 3308, 
3212, 2198, 1686, 1598, 1500; 1H NMR (400 
MHz, DMSO-d6): δ (ppm)= 0.99  (s, 3H, CH3), 
1.08 (s, 3H, CH3), 2.17 (d, 1H, CH2), 2.25 (d, 1H, 
CH2), 2.48 (s, 2H, CH2), 3.74 (s, 3H,  OMe), 4.21 
(s, 1H, CH), 6.81 (d, 2H, Ar-H), 6.94 (s, 2H, 
NH2), 7.15 (d, 2H, Ar-H). 
 

5. 2-Amino-4,5-dihydro-4-(phenyl)-5-
oxopyrano[3,2-c]chromene-3-carbonitrile 
(6a): 
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m.p= 170-173 ̊C; IR (KBr, cm-1): 3284, 3377, 
3179, 2198, 1708; 1H NMR (400 MHz, DMSO-
d6): δ (ppm)= 4.58 (s, 1H, CH), 6.70 (s, 2H, NH2), 
7.26-8.01 (m, 9H, Ar-H). 
 

6. 2-amino-4-(4-nitrophenyl)-5-oxo-4,5-
dihydropyrano[3,2-c]chromene-3-
carbonitrile (6b): 

 

m.p= 265-268 °C; IR (KBr, cm-1): 3476, 2190, 
1720, 1612; 1HNMR (400 MHz, DMSO-d6): δ 
(ppm)=  3.15 (brs, 2H, NH2), 4.63(s, 1H, CH), 
7.25-8.01 (m, 8H, Ar-H). 
 

7. 2-amino-4-(2,4-dichlorophenyl)-5-oxo-4,5-
dihydropyrano[3,2-c]chromene-3-
carbonitrile (6f): 

 

m.p= 256-260 ̊C; IR (KBr, cm-1): 3460, 3295, 
3161, 2190, 1715, 1677, 1590, 1158; 1H NMR 
(400 MHz, DMSO-d6): δ (ppm)= 4.56 (s, 1H, CH), 
7.13 (s, 2H, NH2), 7.38 (d, 1H, Ar-H), 7.42 (d, 1H, 
Ar-H), 7.48 (d, 1H, Ar-H), 7.48 (t, 1H, Ar-H), 7.53 
(d, 1H, Ar-H), 7.69 (t, 1H, Ar-H), 7.86 (d, 1H, Ar-
H). 
 

8. 2-amino-4-(4-hydroxyphenyl)-5-oxo-4,5-
dihydropyrano[3,2-c]chromene-3-
carbonitrile (6n): 

 

m.p= 266-267 ̊C; IR (KBr, cm-1): 3359, 3314, 
3178, 2196, 1713, 1677, 1612.1171;  1H NMR 
(400 MHz, DMSO-d6): δ (ppm)= 4.51 (s, 1H,  CH), 
6.75 (d, 2H, Ar-H), 7.11 (d, 2H, Ar-H), 7.37 (s, 
2H, NH2), 7.41-7.47 (m, 2H, Ar-H), 7.69 (t, 1H, 
Ar-H), 7.81 (d, 1H, Ar-H), 9.38 (s, 1H, OH). 
 

3. RESULTS AND DISCUSSION 
 

To determine the optimal conditions, the effect of 
temperature on the reaction rate was initially 
investigated for the synthesis of 

tetrahydrobenzo[b]pyran and 3,4-Dihydropyrano 
[c]chromene derivatives via a three-component 
condensation reaction of 3-Nitrobenzaldehyde, 
malononitrile, and dimedone (1:1:1) in the 
presence of 0.5 g of honey in water and ethanol 
(Table 1). It was observed that the best results 
were achieved at a temperature of 70°C (Table 
1, entry 7). The reaction was completed within 15 
minutes, yielding the desired product in 94% 
yield. Subsequently, different ratios of water to 
ethanol solvent were examined. The maximum 
yield was obtained with a ratio of 3:1 (Table 1, 
Entry 4). Additionally, the study aimed to 
determine the optimal catalyst amount. Various 
amounts of catalyst were tested, with the 
maximum yield achieved at 0.4 g of catalyst. 
Further increases in the amount of honey in the 
reaction did not significantly affect the product 
yield. 
 

This review was conducted to investigate the 
preparation of 3,4-Dihydropyrano[c]chromene 
derivatives via a three-component condensation 
reaction of benzaldehyde (1.0 mmol), 
malononitrile (1.0 mmol), and 4-hydroxycoumarin 
(1.0 mmol) in the presence of 0.5 g of honey in 
water and ethanol (Table 2). It was found that the 
optimal conditions for the reaction were a 
temperature of 60°C (Table 2, entry 5) and the 
use of 0.5 g of honey with a water-ethanol ratio 
of 4:1. 
 

Using these optimized reactions, the scope and 
efficiency of the reaction were explored for the 
synthesis of a wide variety of 
Tetrahydrobenzo[b]pyran and 3,4-
Dihydropyrano[c]chromene derivatives using 
aromatic aldehydes, malononitrile, and dimedone 
or 4-hydroxycoumarin. The results are 
summarized in Table 3. 

 
Table 1. Optimization conditions for preparation of tetrahydrobenzo[b]pyrans in the presence 

of varing amounts of honey, temperature, and solvent 
 

 
 

Entry Temp. (oC) Solvent (water: ethanol) Catalyst(g) Time(min) Yield (%)a 

1 25 1:1 0.5 720 Trace 
2 50 1:1 0.5 720 42 
3 70 1:1 0.5 25 89 
4 70 3:1 0.5 20 91 
5 70 1:3 0.5 35 82 
6 70 3:1 0.3 25 90 
7 70 3:1 0.4 15 94 

a Yields refer to isolated pure product 
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Table 2. Optimization conditions for preparation of 3,4-Dihydropyrano[c]chromene  in the 
presence of varying amounts of  honey, temperature and solvent 

 

 
 

Entry Temperature(oC) Solvent (water: ethanol) Catalyst (g) Time(min) Yield (%)a 

1 r.t 1:1 0.5 720 Trace 
2 50 1:1 0.5 40 68 
3 60 1:1 0.5 17 94 
4 70 1:1 0.5 25 91 
5 60 4:1 0.5 20 94 
6 60 3:2 0.5 20 91 
7 60 1:4 0.5 30 78 
8 60 4:1 0.4 25 88 
9 60 4:1 0.6 20 92 

a Yields refer to isolated pure product 

 
Table 3. Preparation of Tetrahydrobenzo[b]pyran and 3,4-Dihydropyrano[c]chromene 

derivatives in the presence of honey as a biodegradable catalyst under thermal condition 
 

Entry Aldehyde Substrate  Product Time (min) Yield 
(%)a 

m.p(°C) 
Lit. m.p(°C)[Ref] 

1 

  

5a 

 

17 94 225-228 
(226-228) [49] 

2 

 

 

5b 

 

15 95 202-203 
(201-205) [50] 

3 

  

5c 

 

13 96 176-179 
(178-180) [26] 

4 

  

5d 

 

15 95 202-204 
(200-202) [49] 

5 

  

5e 

 

15 94 206-207 
(207-209) [49] 

6 

  

5f 

 

15 89 212-215 
(210-211) [51] 

7 

  

5g 

 

15 91 199-201 
(197-198) [52] 

8 

  

5h 

 

15 93 114-116 
(115-117) [53] 

9 

 
 

5i 

 

12 90 209-212 
(208-210) [30] 
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Entry Aldehyde Substrate  Product Time (min) Yield 
(%)a 

m.p(°C) 
Lit. m.p(°C)[Ref] 

10 
  

5j 

 

22 89 211-212 
(209-211) [50] 

11 
  

5k 

 

30 88 199-201 
(197-199) [50] 

12 

  

5l 

 

40 82 172-173 
(170-173) [49] 

13 

  

5m 

 

28 90 205-208 
(206-208) [52] 

14 

 
 

5n 

 

40 83 235-237 
(238-240) [54] 

15 

  

5o 

 

35 88 209-213 
(210-212) [55] 

16 
  

5p 

 

15 89 >300  
 >300   [56] 

17 

 
 

5q 

 

35 84 215-217 
(214-215) [51] 

18 

 
 

5r 

 

30 76 293-294 
(295-297) [50] 

19  
 

5s 

 

55 71 170-173 
(172-174) [57] 

20 

  

6a 

 

25 92 258-260 
(257-258) [40] 

21 

  

6b 

 

23 91 265-268 
(266-267) [41] 

22 

  

6c 

 

20 94 261-262 
(261-262) [40] 

23 

  

6d 

 

20 88 260-261 
(260-262) [58] 
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Entry Aldehyde Substrate  Product Time (min) Yield 
(%)a 

m.p(°C) 
Lit. m.p(°C)[Ref] 

24 

  

6e 

 

20 89 255-258 
(255-257) [59] 

24 

  

6f 

 

20 78 256-260 
(261-262) [41] 

25 

 

 

6g 

 

22 92 275-276 
(274-277) [62] 

26 

  

6h 

 

17 90 285-288 
(289-290) [63] 

27 
  

6i 

 

25 91 249-252 
(250-252) [58] 

28 
  

6j 

 

30 88 227-230 
(228-229) [64] 

29 

  

6k 

 

30 89 253-255 
(254-255) [42] 

30 
  

6l 

 

35 88 248-250 
(247-249) [42] 

31 

  

6m 

 

50 87 263-266 
(264-266) [60] 

32 

  

6n 

 

33 89 266-269 
(266-267) [40] 

33 

 
 

6o 

 

45 82 252-253 
(253-254) [61] 

34 

  

6p 

 

42 86 268-269 
(266-268) [60] 
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Entry Aldehyde Substrate  Product Time (min) Yield 
(%)a 

m.p(°C) 
Lit. m.p(°C)[Ref] 

35 
  

6q 

 

20 84 >300  
 - 

36 
  

6r 

 

50 82 244-247 
 [65] 

a Yields refer to isolated pure product 

 
Interestingly, a variety of aryl aldehydes, 
including those with electron-withdrawing or 
electron-releasing substituents (ortho-, meta-, 
and para-substituted), participated effectively in 
this reaction and provided Tetrahydrobenzo 
[b]pyran and 3,4-Dihydropyrano[c]                       
chromene derivatives in good to excellent yields. 
However, the yield for aliphatic aldehydes was 
minimal. 
 
As the bulk of honey is primarily made from 
sugar, we conducted a test by repeating the 
reaction with pure sugars in the same amounts 
present in honey. The reaction time was longer, 
and the product yield obtained was lower 
compared to honey. These results suggest that 
sugars play an important role in the catalytic 
reaction. However, other factors may also 
contribute to the reaction, such as organic acids, 

amino acids, metals, minerals, vitamins, etc. 
While we have not established a mechanism for 
the formation of Tetrahydrobenzo[b]pyran and 
3,4-Dihydropyrano[c]chromenes ring systems, a 
reasonable possibility for this synthesis in the 
presence of honey as a catalyst is indicated in 
Scheme 2. 
 
We have demonstrated that hydrogen bonding 
can form between protons in the free OH groups 
of the sugar in honey and the substrate, leading 
to their activation during the reaction [60, 66-68]. 
According to the literature [33,40], first, 
Knoevenagel condensation between 1 and 2 
produces 2-benzylidenemalononitrile 3. 
Subsequent Michael addition of 3 with 5 
(dimedone or 4-hydroxycoumarin), followed by 
cyclization and tautomerization, yields the 
corresponding product (Scheme 2) [6]. 

 

 
 

Scheme 2. A plausible mechanism for the formation of tetrahydrobenzo[b]pyran in the 
presence of honey 
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In addition to its synthetic efficiency, it is crucial 
to conduct a more comprehensive assessment of 
the environmental impacts of this method. This 
assessment should include an analysis of energy 
consumption, waste generation, and overall 
environmental footprint compared to 
conventional synthetic routes. Emphasizing the 
environmental benefits of green synthetic 
approaches, such as reduced energy 
consumption and minimized waste generation, 
can underscore the importance of sustainable 
practices in synthetic chemistry. 
 
To fully assess the potential of this method, its 
efficiency and applicability in synthesizing a 
broader range of tetrahydrobenzo[b]pyran and 
3,4-dihydropyrano[c]chromene derivatives should 
be evaluated using diverse starting materials. By 
testing the method with various substrates and 
functional groups, its versatility and scope can be 
determined, allowing for a comprehensive 
understanding of its synthetic utility. This 
evaluation can highlight the method's potential 
for application in the synthesis of diverse organic 
compounds and its relevance in pharmaceutical 
and chemical industries. 
 

4. CONCLUSION 
 
This study introduces an innovative approach to 
synthesizing Tetrahydrobenzo[b]pyran and 3,4-
Dihydropyrano[c]chromene derivatives using 
honey as a catalyst in a one-pot three-
component reaction. The utilization of honey as a 
catalyst offers numerous advantages, such as 
high yields, short reaction times, simple work-up 
procedures, and environmentally friendly 
conditions, which perfectly align with the 
principles of green chemistry. 
 
The experimental procedures provide detailed 
instructions on synthesizing the target 
compounds, including reaction conditions, 
catalyst amount, solvent ratios, and 
characterization techniques. Optimizing reaction 
parameters demonstrates honey's effectiveness 
as a catalyst in promoting the desired 
transformations. Additionally, the role of honey 
as a catalyst is discussed, suggesting that its 
various constituents, such as sugars, minerals, 
amino acids, and organic acids, contribute to the 
catalytic activity. The proposed mechanism 
highlights the role of sugars in facilitating the 
catalytic process, particularly. 
 
The reaction mechanism involves the activation 
of substrates through hydrogen bonding between 

the protons of the OH groups in the sugars 
present in honey and the reactants. This 
activation facilitates key steps, including 
Knoevenagel condensation, Michael addition, 
and cyclization, leading to the formation of the 
desired products. 
 
Overall, this study presents a promising and 
environmentally friendly approach for the green 
synthesis of biologically active heterocyclic 
compounds using a natural, biodegradable 
catalyst. Overall, this study presents a promising 
and environmentally friendly approach for the 
green synthesis of biologically active heterocyclic 
compounds using a natural, biodegradable 
catalyst. 
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