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Abstract: Circulating tumor cells (CTCs), derived from the primary tumor and carrying genetic
information, contribute significantly to the process of tumor metastasis. The analysis and detection of
CTCs can be used to assess the prognosis and treatment response in patients with tumors, as well as
to help study the metastatic mechanisms of tumors and the development of new drugs. Since CTCs
are very rare in the blood, it is a challenging problem to enrich CTCs efficiently. In this paper, we
provide a comprehensive overview of microfluidics-based enrichment devices for CTCs in recent
years. We explore in detail the methods of enrichment based on the physical or biological properties
of CTCs; among them, physical properties cover factors such as size, density, and dielectric properties,
while biological properties are mainly related to tumor-specific markers on the surface of CTCs. In
addition, we provide an in-depth description of the methods for enrichment of single CTCs and
illustrate the importance of single CTCs for performing tumor analyses. Future research will focus
on aspects such as improving the separation efficiency, reducing costs, and increasing the detection
sensitivity and accuracy.

Keywords: CTCs; microfluidic technologies; physical and biological properties; isolation methods

1. Introduction

Metastasis of cancer is the main cause of patient death, and metastasis is a multi-step
process [1]. Tumor cells are shed from the primary tumor, enter blood vessels or lymphatic
vessels, and then are transported through the bloodstream to other tissues and organs in the
body [2]. Finally, these cells adhere to the endothelium of the target tissue and then cross the
endothelium into the target tissue to divide and proliferate, forming secondary tumors [3].
Most tumor cells that enter the bloodstream undergo apoptosis [4,5]. However, a minority
of tumor cells are able to interact with the blood microenvironment during circulation and
survive, which we call CTCs [6]. Programmed death ligand 1 (PD-L1) expressed on CTCs
can help tumor cells evade detection and attack by immune cells [7,8]. In addition, the
interaction of CTCs with platelets and macrophages can inhibit the anoikis phenomenon (a
type of apoptosis caused by the loss of cellular attachment to the stroma) [9]. The interaction
of neutrophils with CTCs generates chromatin webs called “neutrophil extracellular traps”
(NETs) [10], which can facilitate the translocation of CTCs [11,12]. During metastasis, CTCs
also undergo a mesenchymal–epithelial transition (MET) and an epithelial–mesenchymal
transition (EMT), which alter the state of CTCs and promote their metastatic ability [13,14].

Recent studies have shown that CTCs have significant advantages as a liquid biopsy
marker in the diagnosis, treatment, and prognosis assessment of cancer [15,16]. The col-
lection of CTCs is very convenient, which can be completed by a simple blood sample
collection, avoiding invasive and tissue injury during conventional surgical biopsy pro-
cess [17]. Additionally, CTCs, as products of primary tumor circulating in the body, are
more easily detected and have higher sensitivity compared to local tissue sampling. In
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addition, CTCs carry genetic information of the primary tumor and are highly representa-
tive [18]. Due to the heterogeneity of tumors, conventional biopsies may not be able to fully
represent the characteristics of tumors. The analysis of CTCs can overcome this problem
and provide more comprehensive and accurate information about the tumor, which can
help to develop individual treatment plans [19]. Most importantly, the analysis of CTCs
can also guide drug sensitivity detection and help doctors choose the most appropriate
therapeutic drugs and dosages [20].

In order to obtain accurate biopsy results for a liquid biopsy, a sufficient number of
CTCs need to be enriched. However, CTCs are very rare in human blood, with less than
10 CTCs per milliliter of blood [21], so how to better enrich CTCs has become a hot research
topic. Currently, the enrichment technologies for CTCs are mainly based on their biological
and physical principles [22]. Label-dependent isolation methods based on biological
principles make use of specific markers on the surface of CTCs to achieve enrichment, such
as the epithelial cell adhesion molecule (EpCAM) [23,24], the human epidermal growth
factor receptor-2 (HER2) [25,26], the estrogen receptor [27,28], and the prostate-specific
membrane antigen [29]. Different markers have different significance, such as the fact
that by combining liquid-like polymer chains and anti-EpCAM mechanisms, the non-
specific binding of proteins and leukocyte pairs can be effectively attenuated, improving
the capture efficiency of CTCs [30]. Label-independent isolation technologies based on
physical principles have also been widely investigated for the enrichment of CTCs [31,32].
These technologies isolate CTCs based on differences in size, density, deformability, and
dielectric properties (Figure 1).
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In this paper, we describe in detail recent isolation technologies based on physical and
biological principles of CTCs and discuss their advantages and limitations. In addition,
multi-step isolation methods, negative selection methods based on biological principles,
and single CTC isolation methods are also described in detail. Finally, we detail the clinical
performance of CTCs in cancer and summarize the current status and application prospects
of microfluidics in the field of CTCs isolation.
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2. Label-Dependent Methods

Label-dependent methods are technologies that isolate and enrich CTCs based on
differences in cell surface markers. The majority of the label-dependent methods use a
positive enrichment strategy to enrich CTCs by specific cell surface markers, such as EGFR,
EpCAM, MUC1, and HER2, as shown in Table 1. In addition to positive enrichment meth-
ods, there are negative enrichment methods that use leukocyte-specific surface markers
(CD66b, CD45), to deplete white blood cells (WBCs) and thus obtain CTCs.

2.1. Immunocapture

Immunocapture is a conventional method of CTCs isolation, the basic principle of
which is to capture CTCs by binding specific antigens on the surface of CTCs to each other
with specific antibodies or aptamers [33]. In a microchannel, antibodies or aptamers are
coated on the inner surface of the microchannel, and as the blood sample passes through,
the CTCs will bind to the antibodies or aptamers and be captured in the microchannel,
while other blood cells flow out. At present, in order to improve the efficiency of CTCs
isolation, researchers have designed the structures inside a variety of microchannels using
different materials.

2.1.1. Aptamer-Based CTCs Isolation

The use of aptamers has become widespread due to the limited number of CTC surface
markers. Aptamers are chemical antibodies that can be manufactured artificially. Compared
to antibodies, aptamers have high affinity, small size, and good stability. Zhang et al.
developed a core-satellite-sized magnetic separable nanodevice (MS-RI), which recognizes
intracellular nucleic acid targets and protein targets of CTCs by aptamers, thus enabling the
capture and subtype identification of CTCs [34]. Zhao et al. developed a microfluidic chip
with synergistic effects by embedding aptamer cocktails on SINS, as shown in Figure 2A.
This system could differentiate and enhance the capture of various CTCs phenotypes from
NSCLC patients through the synergistic effect with the aptamer panel, providing a higher
capture efficiency [35].

2.1.2. Antibody Functionalized Micropost Array

A micropost array covered in microchannels with antibodies specific for CTCs will
change the flow line and increase the number of CTCs–microposts interactions, improving
the efficiency of CTC capture. Nagrath et al. designed a microfluidic system (CTCs–Chip)
that does not require pre-processing and labeling of samples, with 78,000 microposts
covered with antibodies inside the microchannels to enhance interactions with the cell
surface [36]. Ahmed et al. proposed a size-dictated immunocapture chip (SDI-Chip). The
chip is equipped with a triangular array covered with specific antibodies, which can provide
less shear stress and a higher interaction than a circular array. The capture efficiency of the
CRC cells by the device was greater than 92%, and the cell purity was greater than 82% [37].

2.1.3. Chaotic Mixing Microchannel

Chaotic mixing is also an effective way to increase surface contact between cells and
functionalized antibodies or aptamers [38]. Wang et al. designed a wave-HB chip with wavy
herringbone-micro-patterned surfaces, which eliminates the problem of high shear stress in
the traditional HB-chip and improves the capture efficiency by up to 85% [39]. Glia et al.
recently designed and successfully detected a novel microfluidic probe, the herringbone
microfluidic probe (HB-MFP) as shown in Figure 2B. This probe uses radial staggered
herringbone (HB) elements to increase cell capture efficiency by generating a microvortex.
The research team successfully captured the CTCs cluster using prostate-specific antigens
(PSA) [40].
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2.1.4. Nanomaterials with High Surface Area Ratio

In addition to changing the microchannel structure, nanomaterials and nanostructures
with a high surface area ratio can also be used to increase the surface coated with antibod-
ies [41]. For example, silicon nanopillars (SINP) [42], carbon nanotubes (CNTs) [43], silicon
nanowires [44], graphene oxide (GO) [45], and nanofibers coated with antibodies [46] can
improve the capture efficiency and purity of CTCs. In addition, magnetic nanoparticles
combined with cell membranes have a higher ability to bind to extracellular epidermal
growth factor receptor proteins, which can reduce non-specific adsorption of leukocytes
and enhance the accuracy of identifying EGFR-positive CTCs [47]. Song et al. designed a
DLD microfluidic chip (AP Octopus Chip) using aptamer functionalized nanospheres by
simulating the multivalent pore interface of octopuses, as shown in Figure 2C. Compared
with chips modified with monovalent aptamer, the multivalent aptamer-antigen binding
can improve capture efficiency by up to 300%. In addition, CTCs can be released through a
thiol exchange reaction without damaging them, with a release efficiency of up to 80% [48].
Sheng et al. combined multivalent DNA gold nanoparticles (AuNPs) with microfluidic
devices and introduced herringbone-mixing microstructures to design an efficient capture
platform, as shown in Figure 2D [49].

To sum up, the development and application of aptamers can overcome the problem
of insufficient surface antigens of CTCs and improve the selectivity. Antibody-enabled
micropost array and chaotic hybrid structures have high throughput. However, the mi-
cropost array imposes a high shear force on the CTCs, and the chaotic mixing structure is
more difficult in the subsequent isolation of CTCs. Nanomaterials and nanostructures with
high specific surface area not only increase the capture efficiency of CTCs, but also enable
non-destructive release of CTCs.
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blood is injected through the central aperture and exits through the peripheral aperture. (b) The tip
surface of 3D-printed HB-MFP. (c,d) Specifically showing the surface structure in (b); reproduced
from Reference [40], with permission from Advanced Materials Technologies. (C) Scheme shows the
structural composition and working principle of the Ap Octopus Chip. The chip captures CTCs,
using the synergistic manner of multivalent aptamers formed by AuNP-SYL3C and a triangular DLD
array design. In the sequencing curves, green, red, blue and black represent adenine (A), thymine (T),
cytosine (C) and guanine (G); respectively; reproduced from Reference [48], with permission from
Angewandte Chemie International Edition. (D) The process of capturing CTCs using aptamer modified
AuNP surfaces; reproduced from Reference [49], with permission from ACS Nano.

2.2. Immunomagnetic Capture

The principle of the immunomagnetic capture method is to use magnetic nanoparticles
or magnetic particles covered with antibodies and aptamers on the surface to bind to CTCs,
which are then separated from blood cells by a magnetic field [50]. The Cell Search system
is the first CTCs isolation system approved by the Food and Drug Administration (FDA)
based on immunomagnetic capture technology [51]. Up to now, immunomagnetic capture
methods have been more commonly studied. Qin et al. used polydopamine (PDA) coating
and produced dynamic magnetic particles (DBMPs) using phenylboric acid (PBA) through
the reversible catechol–borate interaction [52]. Mohamadi’s team combined the velocity
valley chip with an integrated circuit, which has the ability to directly analyze the gene
expression of CTCs in the manner shown in Figure 3A, avoiding the shortcomings of
immunostaining methods that are slow to observe CTCs [53]. Chen et al. developed a
unique microfluidic device using 3D printing technology, as shown in Figure 3B, which has
a special internal structure with high surface area and can effectively control fluid flow. By
using this device, the efficiency of capturing CTCs can reach up to 90% [54].

Recently, a number of research teams have worked to address the high-throughput
continuity problems faced when applying immunomagnetic capture methods to enrich
CTCs, and have designed innovative microfluidic systems, which can capture CTCs from
peripheral blood directly [55]. Kefayat et al. designed a dialysis system for CTCs using
a novel nuclear shell copper ferrite composed of Cu-CuFe2O4 and MIL-88A, and a 3D
printed microfilter with large amounts of magnetic nanoparticles distributed. By applying
a high-pressure magnetic field to the filter, large amounts of blood can be processed
for a shorter time to isolate high viability CTCs and without affecting the viability of
normal cells [56]. Kim et al. developed a temporary indwelling intravascular aphaeretic
system for in vivo enrichment of CTCs, as shown in Figure 3C [57]. The system contains
internal components such as a check valve, a peristaltic micropump, and a CTCs capture
module. The microfluidic herringbone graphene oxide CTCs chip (HBGO chip) of the
capture module captures CTCs before the blood flows back into the body. The system can
continuously enrich CTCs, screening 1–2% of the entire bloodstream in 2 h. Those methods
break through the limitations of traditional methods and provide a new way to capture
CTCs efficiently.

To sum up, the immunomagnetic capture method, as a positive selection method,
exhibits better selectivity and specificity compared to the negative selection method. Cur-
rently, the immunomagnetic capture method mainly relies on immunomagnetic particles,
however, this approach leads to CTCs being adsorbed onto the particles, making subse-
quent analysis difficult. In addition to immunomagnetic particles, the use of 3D printing
technology in microfluidic devices has facilitated the design of magnetic internal structures
with high surface area ratios, thereby improving the capture efficiency of CTCs.

2.3. Immunofluorescence

Fluorescence in situ hybridization (FISH) is a technique that uses fluorescent labeled
probes to locate and detect specific DNA sequences in cells or tissues [58]. The traditional
fluorescence-activated cell sorter (FACS) is limited by its large size and the requirements
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of well-trained personnel [59]. Therefore, a microfluidic-based FISH device has been
created for CTCs detection, offering significant time and cost savings over traditional FISH
methods [60]. In Figure 3D, Zhao et al. developed a high-throughput CTCs counting
method combining microfluidics and line-confocal microscopy, enabling the direct labeling
of CTCs with fluorescent antibodies, rapid analysis of 1 mL blood samples in under 30 min,
and achieving a 94% (n = 9) recovery rate in breast cancer cells [61].
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microfluidic device and immobilization procedures of anti-EpCAM antibody; reproduced from
Reference [54], with a permission from Biosensors and Bioelectronics. (C) Schematic illustration of
the indwelling intravascular aphaeretic system and its components functions; reproduced from
Reference [57], with a permission from Nature Communications. (D) Schematic illustration of Mi-
crofluidic detection platform and cell imaging. (a) Description of the components of the detection
platform. (b) Imaging of well-cultured MCF-7 cells was observed by a line-confocal microscope in
microchannels filled with whole blood. The white dashed circle shows the location of the MCF-7 cell
that is not visible beneath the many blood cells; reproduced from Reference [61], with permission
from Analytical Chemistry.
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Table 1. Label-dependent microfluidic methods for CTCs isolation.

Isolation
Technologies

Working
Principle Specific Methods Advantages Limitations Cancer Cell Lines Throughput

(mL h−1) Recovery Reference

Immunocapture

Chaotic mixing HB-Chip

Microvortex can be generated
to enhance the interaction of
CTCs with the antibody-coated
chip surface.

CTCs are hard
to release. PC-3 1 91.8% ±

5.2% [62]

Micropost array OncoBean-Chip Ultra-high-throughput
processing of blood samples.

Relatively high
production costs.

H1650,
MCF-7 10 >80% [63]

Nanomaterial Nanovesicles
Has the advantage of a natural
biomembrane. Minimizes
blood cell adsorption.

Low throughput. MCF-7, HCT116,
LNCaP 0.35 >70% [64]

Aptamer AP-Octopus-Chip Multivalent aptamers improve
CTCs capture efficiency.

Complicated to
manufacture.
Low throughput.

SW480,
LNCap 1 86.7%–89.4% [48]

Immunomagnetic
capture

Velocity valley VV-Chip Flow rate of blood samples can
be controlled.

CTCs are hard
to release. DU145 2 97% [53]

Direct capture High throughput.
Convenient operation.

Collected CTCs have
low activity. COLO205 10 90% [65]

Magnetic filtration Ultra-high-throughput
enrichment of CTCs.

Magnetic beads on
CTCs are difficult
to remove.

MCF-7 120 89% [66]

Micromixer µ-MixMACS Increased WBCs depletion by
generating micro-vortexes.

Lower purity of
enriched CTCs. MCF-7 18 >80% [67]

Vivo enrichment Magnetic wire Enrichment of CTCs directly
from human whole blood.

Somewhat invasive to
the human body.

nH1650,
NSCLC 1200 49 ± 8% [55]

Immunofluorescence Immunostaining High sensitivity, high
specificity, and visualization.

False-positive or
false-negative results
may occur.

MCF-7 2 94% [61]
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3. Label-Independent Methods

There are many limitations in isolating CTCs from whole blood samples based on their
biological properties. Some specific surface markers on CTCs are rarely or not expressed at
all, such as epithelial cell adhesion molecules (EpCAM) and members of the cytokeratin
family (CK8, CK18, and CK19). In particular, when CTCs undergo an EMT process, EpCAM
are down-regulated, resulting in the loss of CTCs when collected using methods that rely on
the immune properties of CTCs [68,69]. Current studies have found that CTCs and blood
cells differ in size [70], deformability [71], dielectric properties [72], and other physical
characteristics [73]. The isolation method based on the physical properties of CTCs has the
characteristics of high throughput, low invasiveness, and repeatability, and the collected
cells have high activity, which is convenient for downstream detection and analysis [74].
The typical isolation methods based on physical principles are summarized in Table 2.

3.1. Hydrodynamic Passive Isolation
3.1.1. Dean Flow Fractionation (DFF) and Inertial Focusing

DFF and Inertial focusing isolation is a cell isolation method based on the principles
of microchannel hydrodynamics. CTCs moving in curved microchannels can be isolated
from blood samples by forces such as shear-induced lift force, wall-induced lift force, and
Dean drag force [75].

Spiral Microchannel

Spiral microchannel is known for its unique spiral shape and extremely small size,
which can enhance the mixing efficiency between fluids and precisely control the fluid flow
rate. In Figure 4A, Li et al. developed a spiral microchannel for high-purity CTCs isolation
using Dean migration and inertial focusing technologies. Blood is pumped through the
outer wall of the microchannel while a sheath fluid is introduced at the inner wall to guide
the blood cells closer to the outer edge. Larger CTCs are subjected to stronger inertial
force at the inner wall, leading to inertial focusing and isolation from smaller blood cells,
which return to the outer wall along the Dean vortex [76]. In order to improve the isolation
efficiency, Abdulla et al. designed a novel integrated two-stage helical chip consisting
of two helical microchannels and a zig–zag channel. The design effectively isolated two
types of tumor cells, A549 and MCF-7, with isolation efficiencies of 80.75% and 73.75%,
respectively, but the CTCs purity was not improved [77].

Contraction−Expansion Array (CEA) Microchannel

CEA microchannel which is a contraction–expansion asymmetric microchannel as shown
in Figure 4B [78]. Blood samples are injected into the microchannel from the S1 side and
their velocity increases when passing through the constriction zone. Cells are affected by
inertial lift force and Dean drag force, and different sizes have different equilibrium positions.
Larger cancer cells migrate towards S1, while smaller blood cells migrate towards S2. The
device successfully achieved a 99.1% CTCs recovery and an 88.9% blood cell rejection. The
P-MOFF device is a parallel porous flow sorting device that arranges a series of symmetrical
contraction–expansion microchannels on a single chip, as shown in Figure 4E [79]. The main
key to this method is to use the inertial lift caused by the change in momentum [80]. When
the Reynolds number of the particles reaches 70, human breast cancer cells can be successfully
isolated [81]. Compared to single-well flow sorting, P-MOFF has the advantage of higher
isolation efficiency and high throughput, and can isolate CTCs directly from human peripheral
blood without the need for dilution treatment [79].

Serpentine Microchannel

The serpentine microchannel is different from the previously described microchannel
isolation mechanism. It exclusively utilizes Dean drag and centrifugal force, without
relying on inertial lift. The serpentine microchannel is a microchannel with a certain
curvature as shown in Figure 4C [17]. Dean vortexes are created when fluids flow in
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curved microchannels, causing cells in the microfluid to be subject to viscous drag, also
known as Dean drag force [76]. In addition, the cells are subjected to centrifugal forces
generated by inertia at the curves. Due to the interaction of centrifugal force and Dean drag
force, the cell focuses at the center of the microchannel after multiple cycles of deflection.
Zhang et al. analyzed for the first time the focusing pattern of different particles in the
serpentine microchannel according to different conditions. They performed the isolation
of polystyrene mixtures under high-throughput conditions (600 µm/min) and obtained
isolation purities of more than 90% and more than 99% [82]. Mehrdad et al. studied the
inertial focusing behaviors of different tumor cell lines MDA-MB-231 (11–22 µm), Jurkat
(8–17 µm), K562 (8–22 µm), and HeLa (16–29 µm) in curved microchannels with a curvature
angle of 280◦. The results show that as the curvature angle increases, the Dean drag
force increases [17]. The serpentine microchannel not only has the advantages of high
throughput, simple operation, and reproducible utilization, but also has good parallelism
and a small footprint compared to the spiral microchannel [82].

Straight Microchannel

In contrast to spiral and contraction–expansion microchannel, the straight microchan-
nel uses only inertial lift force to focus cells to a certain position without the involvement of
Dean drag force [83]. In a low-aspect-ratio microchannel, cells will migrate to the top and
bottom of the channel under shear-induced lift force and wall-induced lift force, and then
will move to the center of the top and bottom under rotation-induced lift force. Zhou et al.
developed a novel MFM device using the focusing principle of straight microchannels,
as shown in Figure 4D. The device confines the blood sample to the two sides of the mi-
crochannel and uses the rotation-induced lift force to move the CTC towards the center of
the microchannel. In clinical application, the system successfully detected sex out of eight
patients with non-small cell lung cancer (NSCLC) and achieved high isolation efficiency
(>99%) and purity (83%) [83]. Straight microchannels have a simple channel design that
does not require precise design of the radius of curve, channel length, etc.
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with permission from Frontiers in Bioengineering and Biotechnology. (B) Schematic illustration of
the working principle of the CEA microchannel; reproduced from Reference [78], with permission
from Analytical Chemistry. (C) Isolation of CTCs by a serpentine microchannel; reproduced from
Reference [17], with permission from Micro and Nano Engineering. (D) Schematic illustration of the
microfluidic device and working principle of inertial migration in microfluidic channel; reproduced
from Reference [83], with permission from Microsystems & Nanoengineering. (E) Schematic illustration
of p-MOFF device. (a) Working principle diagram. (b) Microfiltration microscopy images; reproduced
from Reference [79], with permission from Biosensors and Bioelectronics.

3.1.2. Microvortex

Inertial microfluids in a state of uniform flow can be observed in a separating Stokes
flow phenomenon, known as Moffat eddies, in the presence of a sudden expansion of
the microchannel [84,85]. As the flow Reynolds number increases, the Moffat eddies fully
develop into microscale vortexes [86]. Wang et al. designed a simple vortex microfluidic
device with high efficiency (90%) and purity (90%) for the isolation of polystyrene particles
smaller than 2 µm under high-throughput conditions [87]. Sollier et al. invented a Vortex
chip with eight parallel high aspect ratio microchannels, each with 8 chambers for enrich-
ment of CTCs [88]. Che et al. designed a high-throughput vortex chip (Vortex HT Chip)
for label-free, size-based enrichment of CTCs. Compared to the Vortex Chip, the Vortex
HT Chip was optimized in terms of parallel processing power, with a 1.6-fold increase in
isolation efficiency, purity up to more than 80%, and high viability of collected CTCs [89].
To simultaneously achieve enrichment and detection of CTCs. Raillon et al. combined the
Vortex HT Chip and the Impedance Chip to automate the isolation and counting of CTCs,
as shown in Figure 5A. Cells were collected using the Vortex HT Chip and released by
decreasing the velocity, and then counted in different sizes according to the electric field
fluctuation properties of the Impedance Chip [90]. To avoid larger shear stress at high flow
rates leading to destruction of CTCs and difficulties in downstream detection, Rastogi et al.
designed an orthogonal vortex chip as shown in Figure 5B [86]. The chip consists of a series
of entry-exit microchannels orthogonally coupled to the capture chamber. The orthogonal
arrangement allows vortex formation at low flow rates. The turn-effect is utilized thereby
allowing larger cells to be captured in the chambers and smaller cells to exit with the fluid
flow. The reliability of the system was verified by the successful isolation of three malignant
breast cancer cell lines (MDA-MB-231, MCF-7 and BT-549) [86].

3.1.3. Deterministic Lateral Displacement

Deterministic lateral displacement (DLD) is a particle size-based sorting method in
microfluidic channels which has excellent selectivity for various particle sizes and can effec-
tively control the critical particle sizes. The isolation of CTCs using DLD is essentially due
to the difference in size, and deformability of CTCs and blood cells [91]. DLD is achieved by
designing arrays of microposts with a certain angular arrangement within the microfluidic
channel. That is, there is a certain lateral distance between the previous column and the
next one. The CTCs continuously undergo lateral movement through constant bumping
against the micropost array thus achieving isolation. Loutherback et al. designed a mirrored
triangular posts array that can isolate breast cancer cells (MDA-MB-231) at 10 mL/min,
and capture efficiencies of up to 86% can be achieved [91]. Bhattacharjee et al. utilized
COMSOL Multiphysics 5.4 software for the simulation and analysis of microchannels,
achieving efficient isolation of CTCs (13.5 µm) and WBCs (6 µm) with efficiencies of 84%
and 96%, respectively [92]. Further innovating, they applied an electrical network analogy
to adjust fluidic resistance, successfully isolating lung (22.5 µm), prostate (10.64 µm), and
breast (13.1 µm) cancer CTCs from WBCs (12 µm), with over 90% efficiency in all cases [93].
Tang et al. proposed a novel DLD chip (Wide TO DLD chip) based on an improved zig–zag
pattern and topology optimization algorithm, as shown in Figure 5C. The pillar shape
calculated by the topology optimization (TO) algorithm can better increase the collision rate
between cells and microposts [94]. Liu et al. designed an integrated cell isolation device
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including two mirrored DLD arrays and a DLD array with increased angle as shown in
Figure 5D. Experimental results on samples of breast, liver, and lung cancers showed that
the enrichment of CTCs exceeded 90% at a throughput of 12 mL h−1 with a purity higher
than 50% [95].

Micropost shapes of DLD can be triangular [95,96], cylindrical [92–94], rectangu-
lar [97,98], airfoil pillars [99], etc. When the cells within the microfluidic channel bump
against the microposts, the larger cells will move from the original streamline to the new
streamline, while the smaller cells will flow in the original streamline. Currently, cylindri-
cal and triangular arrays are the more common choices, with triangular arrays reducing
the shear force on CTCs compared to cylindrical arrays. Topology optimization algo-
rithms currently available can be used to design better shaped columns to separate CTCs
more efficiently.
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Figure 5. (A) Schematic illustration of the working principle of integrated microfluidic device.
The device consists of two parts. The Vortex HT Chip can achieve high-throughput enrichment of
CTCs, and the impedance chip can count the collected CTCs; reproduced from Reference [90], with
permission from Cytometry Part A. (B) Schematic illustration of the working principle of the orthogonal
vortex chip. Schematic diagram of the working principle of the vortex chip with orthogonal reversal.
Enrichment of CTCs by using the generated orthogonal vortex and Dean drag force; reproduced from
Reference [86], with permission from Analytica Chimica Acta. (C) TO DLD Chip Device Isolation CTCs.
(a) The schematic illustration of the wide TO DLD chip. (b) The PDMS microchannel in TO DLD chip;
reproduced from Reference [94], with permission from the Journal of Chromatography A. (D) Integrated
Microfluidic Chip for isolation of CTCs. (a) Schematic illustration of the microfluidic chip. (b) Working
schematic diagram for separating CTCs according to size inside a microchannel. (c,d) Triangular DLD
arrays within the microfluidic channel for separating cells of different sizes. Cancer cells (yellow),
red blood cells (red), and white blood cells (white); reproduced from Reference [95], with permission
from Advanced Biosystems.

3.2. Microfiltration

Microfiltration isolates CTCs based on size and deformability, retaining large CTCs
while removing other blood components (RBCs, WBCs). Yusa et al. designed a 3D palla-
dium filter achieving 90% recovery at 2.0–2.5 mL/min flow rate [100]. However, microfilters
that isolate cells based on their size tend to cause cell clogging, reducing cell recovery and
purity. To solve this problem, Han et al. designed a membrane filtration device with a
horizontal rotor for even cell distribution, improving cells isolation in centrifuges, as shown
in Figure 6A [101]. Li et al. designed a windmill-like uniform touch (SU-8 film) pore
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array, as shown in Figure 6B. The fluid above the micropores can be disturbed to induce
the cells in the fluid to self-mix, so that the cells in the fluid can be evenly distributed to
prevent blockage. Clinical evaluations showed high recovery rates of 93% for A549 cells
and 90% for HeLa cells [102]. Taking into account the difficulty in releasing the collected
CTCs, Zhou et al. developed a separable bilayer microfilter (Figure 6E) with a bilayer of
biocompatible polymer parylene C for milder CTCs capture and release, reducing stress by
designing 40 µm and 8 µm pores, with efficiencies of 83 ± 3% and 78 ± 4% for MCF-7 and
MDA-MB-231 cells, respectively [103]. Compared to the pore structures, weir structures are
widely used in microfilters due to their simple design and low cost. Weir structures utilize
fixed physical barriers to achieve interception and isolation of particles in the fluid and rely
on precise size control to match the size of the target particles. One of the most popular is
the Parsortix system, as shown in Figure 6C [104]. By comparing Parsortix system with
IsoFlux, the purity of CTCs obtained by Parsortix was 3.1%, which was significantly higher
than that obtained by IsoFlux (1.0%) (p = 0.02).

Achieving continuous isolation of CTCs is one of the important characteristics of mi-
crofiltration devices. Although a variety of microfiltration devices exist on the market today
that can alleviate the clogging problem to some extent, they still fail to achieve a constant
and continuous enrichment of CTCs. To address this challenge, Yoon et al. developed a
transversal flow microfluidic screening (µ-sieving) device (Figure 6D) that reduces cells
clogging by adding low frequency oscillations to the fluid [105]. A piezoelectric actuator
is attached to the left microchannel, which creates an oscillation that moves the sample
solution back and forth in a small area. In contrast to previous studies [106,107] where
filters were vibrated to reduce clogging, the oscillation of the fluid reduces the mechanical
stress between the different components within the device, thus maintaining a stable fluid
environment. The device can reach 100% efficiency and purity [105]. In addition, Yoon et al.
developed an oblique weir microfluidic device, as shown in Figure 6F. The isolation of a
breast cancer cell line (LM2 MDA-MB-231) confirmed the reliability of the device, which
can achieve a high isolation efficiency of 97% with minimal blood cell contamination [108].

To sum up, achieving continuous isolation of CTCs and avoiding microfilter clogging
is one of the main focuses of current research. Although pore and micropost structures can
also avoid clogging, they require specific equipment and are costly. Compared to the pore
and micropost structures, the weir structure is simpler, less prone to clogging, and allows
for continuous CTCs isolation, but with lower purity of isolation.
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ACS Omega. (B) Integrated microfluidic device with windmill-like hole array; reproduced from
Reference [102], with permission from Microsystems & Nanoengineering. (C) Schematic illustration
of the isolation principle of the Parsortix system; reproduced from Reference [104], with permission
from PLOS ONE. (D) Illustration of the µ-sieving device. (a) The microfluidic device has four
channels, with a piezoelectric actuator attached to the inlet channel. The red box shows the cell
filtration process. (b,c) Schematic illustration of streamlines distribution in the sorting process;
reproduced from Reference [105], with permission from Scientific Reports. (E) Design of separable
bilayer microfiltration device. (a) Schematic illustration of the device cross-section. (b) 3D view of
the device with geometric parameters. (c) Microscopic picture of the device. Scale bar is 100 µm;
reproduced from Reference [103], with permission from Scientific Reports. (F) Schematic illustrations
of the working principle of a slanted weir microfluidic device; reproduced from Reference [108], with
permission from Cancers.

3.3. Hydrodynamic Active Isolation
3.3.1. Acoustophoresis

Acoustophoresis is a simple method of cells control that allows the isolation of CTCs
by varying the amount of acoustic force applied to the cells depending on their density,
deformation and size [109]. Li et al. designed a unique tilt-angle standing surface acoustic
wave (taSSAW) structure shown in Figure 7A [110]. This structure utilizes interdigital
transducers (IDTs) arranged at a specific angle to generate surface acoustic waves (SAWs),
which interfere to form taSSAW and create parallel pressure nodes in the microfluidic
channel. By detecting the drag force (Fd) and acoustic radiation force (Fr), the flow state of
cells can be predicted. For larger cells, the acoustic radiation force dominates and leads
to larger lateral displacements. The recovery of this device was greater than 83% for both
breast-like cancer cells (MCF-7) and LNCaP cells. In order to improve the purity of CTCs,
Geng et al. designed a device (Figure 7B) using a narrow-path traveling surface acoustic
wave (np-TSAW) for efficient CTCs isolation, achieving over 98% efficiency and up to 93%
purity with MCF-7 cells. Featuring a focused SAW beam and an open-circuit reflector that
reduces the acoustic aperture to around 600 µm, this compact device (<2 × 1.5 cm2) offers
practical applications in CTCs sorting [111].

At present, most SAW-based sorting tasks require the introduction of sheaths into
pre-aligned samples via stream-focusing methods [112]. However, introducing the sheath
into the flow will further dilute the rare CTCs. Wang et al. created a two-stage acoustic
microfluidic device for CTCs isolation from blood, using surface acoustic waves (SAW),
as shown in Figure 7C. The device features straight and focused interdigital transducers
(IDTs and FIDTs) for generating standing SAWs (SSAWs) and focused traveling pulsed
SAWs (TSAWs), respectively. This design efficiently isolates CTCs from red blood cells
(RBCs). Detected with polystyrene particles and glioma cells, it achieved up to 94.2%
isolation efficiency for 5 µm particles and 90% ± 2.4% for U87 glioma cells at 720k cycles,
demonstrating its effectiveness in cell sorting [113].

3.3.2. Dielectrophoresis

Dielectrophoresis is a technique used for isolating and analyzing biomolecules based
on their different dielectric properties. When cells are placed in a non-uniform electric
field, they experience varying electrophoretic forces, causing them to move. The cell
membrane accumulates surface charge in the presence of an alternating electric field,
known as membrane charging. At high frequencies, if the cell’s internal conductivity is
higher than the surrounding medium, it experiences a positive dielectrophoretic force
(positive FDEP). Conversely, at low frequencies, the cell’s exterior becomes charged and
repels the electric field, resulting in negative dielectrophoretic forces (negative FDEP) [72].
Shim et al. developed a DEP-FFF system that can batch process blood samples and is able
to achieve a processing efficiency of 106 nucleated cells/min [114]. In order to improve the
purity of CTCs, Huang et al. designed a microfluidic system as shown in Figure 7D. This
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system combines fluorescence imaging technology and optically induced dielectrophoresis
(ODEP) technology on the basis of traditional isolation methods to further improve the
purification of CTCS. By detecting PC-3 cells, the results showed that the method was
able to achieve a 100% purity collection of cancer cells [115]. Waheed et al. designed
a system called “Lateral fluid flow fractionation (LFFF-DEP)” using two sets of planar
interleaved sensor electrodes. In this system, they successfully isolated breast cancer cells
(MDA-MB-231) labeled with green fluorescent protein (GFP) from blood, as shown in
Figure 7E [116]. To better observe the isolation of CTCs, Nguyen et al. designed a device
integrating electrophoresis and impedance detection, as shown in Figure 7F [117]. In this
device, lung cancer cells (A549) would move towards the center of the working area under
positive dielectrophoretic force and eventually be captured on the sensing electrodes. By
detecting the change in impedance, the presence of the cells can be determined [117].
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Figure 7. (A) The high-throughput taSSAW device for CTCs isolation. (a) Illustration of cell isolation
in the taSSAW device. (b) Schematic illustration of the principle of taSSAW-based cell isolation.
(c) Actual size image of the tasSAW cell isolation device; reproduced from Reference [110], with
permission from the Proceedings of the National Academy of Sciences. (B) Schematic illustration of
an ultra-compact acoustofluidic device based on np-TSAW for enrichment of CTCs; reproduced
from Reference [111], with permission from Analytica Chimica Acta. (C) Schematic illustration of
CTCs isolation based on multi-stage surface acoustic waves; reproduced from Reference [113], with
permission from Sensors and Actuators B: Chemical. (D) Microfluidic system based on optically induced
dielectrophoretic (ODEP); reproduced from Reference [115], with permission from Scientific Reports.
(E) Schematic illustration of a microdevice based on LFFF-DEP; reproduced from Reference [116],
with permission from the Journal of Chromatography B. (F) Microfluidic device for impedance detection
and dielectrophoresis integration. (a) Structural diagram of the device. (b) Cell Flow and DEP
trapping. (c) Identification of target cells by impedance; reproduced from Reference [117], with
permission from Biosensors and Bioelectronics.
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Table 2. Label-independent microfluidic methods for CTCs isolation.

Isolation
Technologies Working Principle Specific Methods Advantages Limitations Cancer Cell Lines Throughput

(mL h−1) Recovery Reference

Hydrodynamics

Inertial focusing

DFF Continuous collection,
high throughput. Need to dilute blood samples. MCF-7 3 85% [75]

CEA
Continuous high-throughput
collection of CTCs under low
shear stress.

Cell viability is greatly affected by
flow velocity. Low purity.

MCF7,
SK-BR-3 6 99.1% [78]

P-MOFF Excellent parallelizability,
high throughput.

Need to dilute blood samples,
which may cause loss of
tumor cells.

MCF-7 36 91.60% [79]

Symmetrical
serpentine

microchannel

Good parallelizability
and portability. Easy to lose smaller CTCs. MEL 36 94.90% [82]

MFM Without the need for complex
sample preparation steps. Higher shear stress. NSCLC 18 >93% [83]

Deterministic lateral
displacement

Two-stage DLD
strategy

Can be integrated online with
other CTCS analysis or capture
technologies.

This method has lower throughput
and lower efficiency in
processing samples.

MCF-7 >0.25 99% [118]

Triangular Column
Mirror Array

Ultra-high-throughput isolation
of highly active CTCs. CTCS clusters are hard to release. MDA-MB-231,

MCF10A 600 >85% [91]

Microfluidic Vortex

Vortex Chip

Enrichment of active CTCs in a
continuous, high-throughput
manner. Low isolation efficiency.

MCF-7,
PC-3,
A549

24 20.7% [88]

Vortex HT Good parallelizability,
high throughput. Higher shear stress. MCF-7 48 >85% [89]

Mechanical
filtering

Size and
deformation

CTCS cluster-chip No pre-processing of blood
samples required. Lower sensitivity. MCF-7 2.5 >80% [119]

Parsortix Simple to operate with low cost CTCs exhibit heterogeneity in size. DU145 4 57.3% ± 8.3% [104]

MCA Simple microchannel structure
and convenient operation.

It is inevitable to lose smaller tumor
cells and may cause blockage. NCI-H820, A549 2.5 >70% [70]

Slanted Weir Continuous isolation of CTCs
without blockage.

Accurate analysis of the inclination
angle of the weir is required. LM2, MDA-MB-231 2.5–3.8 97% [108]
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Table 2. Cont.

Isolation
Technologies Working Principle Specific Methods Advantages Limitations Cancer Cell Lines Throughput

(mL h−1) Recovery Reference

Mechanical filtering Size and
deformation

Microfluidic ratchet
mechanism

CTCs captured with 25 times
more than traditional Cell
Search systems.

Relatively low throughput. UM-UC-13 1 >90% [71]

3D Palladium Filter Can withstand high pressures.
Pores fusion and low-density
distribution can reduce
capture efficiency.

NCI N-87, COLM-5 120–150 >85% [100]

Dielectrophoresis DEP

DEP-FFF Continuous processing of whole
blood cells with high sensitivity.

The dielectric properties may
change due to treatment plan. MDA-MB-231 1.2 70%–80% [114]

ODEP This system can achieve up to
100% purity of CTCs.

Low throughput and
low recovery. PC-3 0.15 41.5% [115]

DEP-MOFF Can continuously, quickly, and
high-purity isolate CTCs.

During the isolation process,
the system can cause cell loss. MCF-7 7.5 >75.18% [120]

Acoustophoresis Aoustic radiation
force

Acoustophoresis
Chip

Label-free isolation with
high sensitivity.

Low throughput and lack of
long-term stability
of equipment.

DU145 4.2 >83.7% [109]

taSSAW
Excellent biocompatibility, simple
design, and label free automated
operation.

Any instability of the
pressure source may lead
to deviations.

MCF-7,
UACC903 1.2 >83% [110]

Hybrid PDMS–glass
microchannel

Maintaining the integrity,
function and viability of CTCs.

The equipment process is
complex, and the cost is high. PC-3, LnCaP 7.5 >86% [112]
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4. Multi-Step CTCs Isolation Methods
4.1. Multi-Step Isolation Based on Physical Principles

In order to better rapidly collect high-purity CTCs, many researchers have developed
a series of multi-step CTCs isolation methods based on microfluidic systems. For example,
the multi-stage application of a principle, or the combination of various principles and
technologies to improve the collection efficiency and purity of CTCs [121,122]. Many
current CTCs isolation devices cannot accomplish the isolation of CTCs clusters from a
single cell [75]. In order to address this issue, Au et al. developed a two-stage microfluidic
chip-based isolation system as shown in Figure 8A. The system is internally designed with
deterministic lateral displacement arrays with different shapes, where the first stage uses
cylindrical arrays to isolate large clusters of CTCs from blood cells, while the second stage
deflects small clusters through asymmetric column arrays to achieve further isolation of
CTCs. The experimental results of this system on breast cancer cell clusters show that the
isolation efficiency is greater than 90%, and the viabilities of isolated cells is greater than
87% [118].
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Figure 8. (A) DLD-based two-stage continuous cells isolation device. (a) Schematic diagram of the
device for cells isolation. (b) Specific ways in which cells pass through micropost arrays; reproduced
from Reference [118], with permission from Scientific Reports. (B) Microfluidic devices based on DLD
and DEP integration. (a) Schematic illustration of cell isolation based on DLD arrays. (b) Schematic
diagram of the working principle of the dep device; reproduced from Reference [123], with permis-
sion from the Journal of Molecular Liquids. (C) A 3D-Stacked Multistage Inertial Microfluidic Chip;
reproduced from Reference [124], with a permission from Cyborg and Bionic Systems. (D) A hybrid
helical microfluidic platform coupled with surface acoustic waves; reproduced from Reference [125],
with permission from Biosensors.

To improve the purity of CTCs isolation, many microfluidic platforms combining
multiple principles have been designed. A hybrid microfluidic device for label-free CTCs
isolation was presented by Varmazyari et al. [123]. This device consists of a DLD array and
a twDEP system as shown in Figure 8B, which is capable of efficiently sorting cells with
diameters in the range of 10–25 µm and enabling further isolation. Experimental results
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showed that the device was 93% efficient in recovering MDA-MB-231 cells from blood
samples [123]. Xu et al. proposed a 3D-stacked multistage inertial microfluidic chip, as
shown in Figure 8C. The device can isolate tumor cells (SW480, A549, and KAKI-1) from
massive RBCs at a high inlet flow rate of 1.3 mL/min with isolation efficiency >80% and
purity >90% [124]. Altay et al. combined helical microchannels with acoustic principles
to design a hybrid helical microfluidic platform as shown in Figure 8D, enabling efficient
isolation of CTCs [125].

4.2. Multi-Step Isolation Based on Biological and Physical Principles

Researchers have developed a number of microfluidic systems that combine phys-
ical and biological properties. These microfluidic systems not only leverage the high-
throughput advantages of physical isolation methods for processing large sample num-
bers but also exploit the high purity offered by immunoaffinity technologies [126]. In the
study by Chen et al. they designed a microfluidic system for the capture of CTCs using
immunoaffinity and lateral microfiltration technologies as shown in Figure 9A. The sys-
tem consists of four serpentine microchannels, each containing a series of lateral filters
with a size range of 24–12 µm, similar to CTCs. These filters bind to specific antibodies
and are able to selectively capture CTCs, and the capture efficiency of the system can be
as high as between 87.2% and 93.5% [127]. Su et al. developed an antibody-functional
microsphere-integrated filter chip, as shown in Figure 9B, which uses circular channels
with triangular arrays and cylindrical arrays and is covered with microspheres with
nanostructures [128]. The design of this chip enables it to efficiently capture different
cancer cell lines with capture efficiencies of more than 90%. Similarly, Jiang et al. de-
signed an integrated microfluidic device for the rapid and highly sensitive detection of
CTCs as shown in Figure 9C. The device consists of three components: a DLD array for
isolating CTCs, CD45-labeled immunomagnetic beads for removing WBCs, and a capture
platform coated with rat tail collagen. The device captures green fluorescent protein
(GFP)-positive cells in blood with capture efficiencies of up to about 90% and is capable
of achieving purity of about 50% [129]. Usually, molecular analysis of CTCs and cell
clusters is susceptible to low purity and cell loss. Bhagwat et al. designed an integrated
platform based on the principles of flow cytometry as shown in Figure 9D [130]. The
device first depletes the WBCs count of a blood sample by immunomagnetic capture,
and then the acoustophoresis is used to further improve the purity of CTCs. In addition,
given that CTCs become more invasive after undergoing an EMT process, Topa et al.
designed a device based on negative anti-CD45 enrichment, density gradient centrifuga-
tion, and multiplexed immunofluorescence staining to isolate CTCs undergoing an EMT
process [131].

To sum up, isolation methods based on a combination of physical and biological
properties of CTCs have been widely used. These methods not only have the advantage
of high throughput, but also make full use of biological principles to improve the sen-
sitivity to CTCs, thus achieving efficient collection of high-purity CTCs. Among these
methods, microfluidic devices combining immunomagnetic beads and microfiltration are
the most widely used. In addition, methods based on the combination of acoustophore-
sis and immunomagnetic particles have shown the potential to isolate CTCs efficiently
and without loss. The continuous development of these techniques provides more op-
tions for the isolation of CTCs and provides important support for further research and
clinical applications.
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Figure 9. (A) Efficient isolation device based on lateral microfiltration combined with immunoaffinity.
(a) Photo of the LFAM2 device. (b) Schematic diagram of the internal structure of the device. (c)
Illustration of capturing cells; reproduced from Reference [127], with permission from Scientific Reports.
(B) Filter chip with inertial microfluidics and antibody-functional microspheres; reproduced from
Reference [128], with permission from ACS Applied Materials & Interfaces. (C) Integrated cell isolation
device based on DLD arrays and immunomagnetic beads; reproduced from Reference [129], with
permission from Scientific Reports. (D) Schematic illustration of the working principle of the integrated
chip based on immunomagnetic isolation and acoustic isolation; reproduced from Reference [130],
with permission from Scientific Reports.

5. Negative Enrichment of CTCs

Positive selection methods mainly rely on the expression of specific antigens on the
surface of CTCs. However, during CTCs metastasis, CTCs may undergo EMT [13], which
results in a decrease in the expression of specific antigens, thus affecting the accuracy of
the assay. In addition, CTCs modified by specific antibodies may interfere with down-
stream molecular analysis. As a result, negative selection methods have been extensively
studied. Hyun et al. proposed a microfluidic chip called Geometrically Activated Surface
Interaction Chip (GASI-chip), the structure of which is shown in Figure 10A [132]. The
chip generates mixing flows through a herringbone structure, which enhances the interac-
tion of nontarget cells with the microchannel surface. They then combined a microfluidic
magnetic-activated cell sorter (µ-MACS) with the GASI-chip to design a two-stage mi-
crofluidic chip as shown in Figure 10F [133], which can process 400 µL/min of blood
samples. In addition, Fachin et al. designed a high-throughput, automated microfluidic
chip containing 128 deterministic lateral displacement (DLD) devices for RBCs removal
and two cascaded MACS devices for WBCs removal [134]. As shown in Figure 10B, the
chip has the capacity to process 15–20 million cells per second. In Figure 10C, Lu et al.
developed a method combining immunomagnetic negative enrichment and fluorescence-
activated cell sorting for the detection and isolation of CTCs with high sensitivity and
recovery [135]. Casavant et al. designed a Microfluid Cell Concentrator (MCC) suitable
for various cancer cell lines, as shown in Figure 10D. Compared with ELISPOT, MCC had
comparable levels of CTCs isolated from blood samples of 5 patients [136]. Compared
to the negative enrichment devices mentioned above, this method is simple and easy to
operate. Lee et al. presented an integrated microfluidic chip called the µ-MixMACS chip
that utilizes serpentine microchannels to generate Dean vortexes to enhance cell–channel
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interactions, as shown in Figure 10E. The chip has the ability to isolate CTCs from five
blood samples, with 1–3 CTCs detected in each sample [67].
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Figure 10. (A) Negative enrichment of CTCs based on GASI-ship; reproduced from Reference [132],
with permission from Analytical Chemistry. (B) Monolithic chip for isolation of CTCs; reproduced
from Reference [134], with permission from Scientific Reports. (C) Immunomagnetic negative en-
richment coupled with flow cytometry to isolate CTCs; reproduced from Reference [135], with
permission from Cancer. (D) Microfluidic Cell Concentrator for Negative Enrichment of CTCs. (a) 3D
schematic diagram of the device. (b) CTCs collection process; reproduced from Reference [136], with
permission from Methods. (E) µ-MixMACS chip. (a) Schematic illustration of the structure of the
chip. (b) Illustration of the working principle of this chip to capture CTCs; reproduced from Refer-
ence [67], with permission from Sensors and Actuators B: Chemical. (F) Two-stage microfluidic chip.
(a) Leukocyte-depleted µ-MACS chips. (b) Illustration of GASI chip; reproduced from Reference [133],
with permission from Biosensors and Bioelectronics.

6. Microfluidic Technologies for Isolating Single CTCs

Multiple microfluidic platforms exist for enrichment of CTCs, but most of these meth-
ods only collect a subpopulation of CTCs. Because of the heterogeneity of cells in tissue
and culture samples, molecular analyses using the entire cell population can only provide
average data, rather than revealing important information about single cell in a subpopu-
lation of cells, and therefore may mask important cell types or variants [137,138]. Cancer
develops through a series of genetic mutations and cell selection, and DNA sequencing and
genetic analysis from large cell populations is difficult even in a single tumor. Mutation
information obtained from single cell in a cell subpopulation is a better predictor of cancer
evolution and metastasis than the average information obtained from cell subpopulations,
such as stem cells, cancer cells, and so on [139–141]. Genomic analysis of single cell is of
great importance in cancer research, not only for predicting cancer progression and patient
outcomes, but also for developing new drugs and providing new ideas for immunological
studies [142–144]. Especially in the context of billions of normal blood cells, achieving
genomic analysis of single cancer cell has an increasing clinical impact on cancer prognosis
and treatment [19].

The traditional methods for single-cell genetic analysis include fluorescence in situ
hybridization and PCR technology, but these two methods are limited by low sensitivity
and throughput [145]. Currently, a variety of devices have been developed for the isolation
of single CTCs. Yeo et al. have designed a microfluidic device (Figure 11A), which contains
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10 cell chambers that utilize hydrodynamics to hold the cells within the chambers. The
weir structure of the chambers increases fluid resistance, allowing other cells to be guided
to the next chamber, achieving high purity (100%) isolation of single CTCs [146]. In order
to overcome the scarcity of CTCs and the interference caused by the large number of blood
cells, and thus to perform better molecular analysis of CTCs, Cheng et al. designed a
Hydro-Seq chip, using barcoded beads. The structure of the chip is illustrated in Figure 11B.
The chip contains 16 parallel channels with 50 cell chambers in each channel. By setting
up cell valves, single CTCs can be captured into the chambers and RNA sequenced using
barcode beads [147]. Parker et al. proposed a new capture and release platform that uses
antibody modification and electrochemically cleavable technology. As shown in Figure 11C,
the surface of this platform was modified with specific antibodies and an electrochemically
cleavable linker [148]. On the other hand, Wang et al. designed a microfluidic chip capable
of isolating single CTCs with high purity as shown in Figure 11D. The chip consists of three
layers, where the single-cell functional layer contains 10 chambers for trap and release.
The average recovery and purity of the chip for lung cancer cells was 92.5% and 94%,
respectively [149].
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Figure 11. (A) Schematic illustration of microfluidic single-cell capture principle; reproduced from
Reference [146], with permission from Scientific Reports. (B) Single-cell RNA sequencing of CTCs
using Hydro-Seq.; reproduced from Reference [147], with permission from Nature Communications.
(C) Schematic illustration of the working principle of capturing and releasing single CTCs based
on the photoelectrochemical platform; reproduced from Reference [148], with permission from
Nature Communications. (D) Schematic of an integrated microvalve chip capable of capturing at
the single-cell level; reproduced from Reference [149], with permission from Talanta. (E) Schematic
illustration of pipette working principle based on microfluidic cell isolation technology; reproduced
from Reference [150], with permission from Scientific Reports. (F) Working principle of hand-held and
integrated single-cell pipettes; reproduced from Reference [151], with permission from the Journal
of the American Chemical Society. (G) Single-cell isolation device based on lateral magnetophoretic
isolation and microfluidic dispensing; reproduced from Reference [152], with permission from
Analytical Chemistry.

In recent years, drop-based microfluidic technology has been rapidly developed.
Bithi et al. proposed the pipette integrated microfluidic cell isolation technology as shown
in Figure 11E. CTCs can be collected and detected without loss, and drug assayed [150].
Zhang et al. develop a hand-held single-cell pipet (hSCP) as shown in Figure 11F, which
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can isolate single cell suspensions directly from blood samples. The pipetting technique has
the advantages of simple operation, rapidity and efficiency [151]. Most of the single-CTC
isolation methods described above require pre-treatment to dilute the blood sample, which
can lead to low-throughput results. Kim et al. designed a microfluidic chip that allows for
high-purity, non-invasive isolation of single CTCs. As shown in Figure 11G, the chip uses
a lateral magnetophoretic micro separator to isolate CTCs from blood samples, and then
isolates single CTC by an electrical impedance cytometer and a single-cell micro shooter.
In 200 µL of whole blood containing 20 CTCs, the isolation efficiency of 82.4% can be
achieved [152].

7. Specific Clinical Application of CTCs

CTCs play an important role in clinical applications, and their detection and analysis
are mainly applied to three aspects of cancer: early cancer diagnosis [153], cancer treatment
response [154,155], and prognosis assessment [156]. Firstly, the detection of CTCs can be
used for early cancer diagnosis and screening. Detecting the presence of tumor cells through
blood samples is expected to detect tumors at an early stage and improve the success rate
of treatment and survival rate [157]. Secondly, the number and characteristics of CTCs can
be used as a monitoring indicator for the effectiveness of tumor treatment, which can be
used to timely assess the efficacy of treatment and adjust the treatment plan [158]. Finally,
the detection and analysis of CTCs can also be used to assess the prognosis of patients.
High CTC levels are usually associated with poor prognosis and can be used as one of the
important indicators for prognostic assessment, providing clinicians with a better basis for
predicting and managing patients [159].

Currently, the clinical application of CTCs counting in a variety of solid cancers has
been widely studied, including but not limited to cancer of the lung [158], prostate [160],
breast [161], colorectum [162], and head and neck [163]. For example, CA199, as a standard
biomarker for pancreatic cancer, is inaccurate in early diagnosis, while CTC counting with
high sensitivity and specificity can make up for the deficiency of CA199. A dual-marker
panel consisting of CA199 and CTC counts can significantly improve the performance of
diagnosing PDAC [164]. Detailed clinical results were applied, as shown in Table 3.

Table 3. Clinical applications of CTCs in cancer.

Clinical Applications Methods Cancer Type Result Description Reference

Early cancer detection

NE-imFISH and
immunostaining PDAC

When the cut-off value was 2 CTCs/3.2 mL,
the ACU was 0.85, the specificity was 94%,
and the sensitivity was 76%.

[164]

CytoSorter®

microfluidic platform
BC

When the cut-off value was 2 CTCs/4 mL,
the ACU was 0.86, the specificity was 95.4%,
and the sensitivity was 76.56%.

[153]

SE i-FISH NSCLC

Sensitivity was 77.8 percent and specificity
was 90 percent when CTCs (cut-off value
12 units) were combined with
carcinoembryonic antigen (1.78 ng/mL)

[157]

Therapeutic response
monitoring

RT-qPCR and
Immunofluorescence

staining
CRC

Patients whose NYONE® test results were
CTC-negative before surgery or whose
CK20 mRNA relative expression was below
the threshold after PCR analysis were tested
for CTC immediately after surgery, and the
results showed a significant increase.

[165]

Flow cytometry
and EasySep

Early-staged
lung cancer

When the cut-off value was greater than
3 CTCs/mL, the number of CTCs decreased
after surgery. The increased number of
CTCs was positively correlated with
cancer recurrence

[158]
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Table 3. Cont.

Clinical Applications Methods Cancer Type Result Description Reference

Prognosis evaluation

Cell Search MBC progression-free survival: HR 1.79;
overall survival: HR 2.72 [154]

FISH and
immunomagnetic

enrichment
SCLC

The number of CTCs was correlated with
lymph node metastasis (N), distant
metastasis (M), TNM and NSE. High CTCS
predicted poor prognosis, and the ROC
curve AUC was always greater than 0.5.

[166]

Cell Search CRC

Multivariate analysis showed that only
advanced age and preoperative CTCs
detection were independent predictors of
adverse OS. When the ratio is greater than
1 CTCs/7.5 mL, the overall survival and
progression-free survival are shorter.

[162]

Due to the short survival time of CTCs in blood, rapid and efficient methods are needed
to isolate them to ensure their viability. In addition, in order to obtain a sufficient number
of CTCs samples, high-throughput isolation methods need to be developed. Therefore, an
ideal CTC isolation technique should have the following characteristics: efficient recovery,
high purity, the ability to maintain cellular activity, and high-throughput isolation capability,
which will help to analyze CTCs more accurately and provide a reliable database for
relevant research and clinical applications.

8. Conclusions and Future Perspective

CTCs are cancer cells that are shed from the primary tumor and enter the circulation.
The study of CTCs is important for cancer diagnosis, treatment, and prognosis judgement.
By detecting the number and characteristics of CTCs, early cancer screening, personalized
treatment and monitoring of treatment effects can be achieved.

In recent years, microfluidic system-based technologies have been extensively inves-
tigated for the isolation of CTCs for high-throughput capture and isolation. However,
methods for isolating CTCs based on their physical and biological principles each have
their own strengths and limitations, and cannot perfectly meet the needs of high recovery,
high purity, and high throughput. Positive isolation methods based on the immunological
properties of CTCs allow for high-purity enrichment of CTCs based on epithelial surface
markers (EpCAM, EGFR, HER2), cytokeratins (CK8, CK18, and CK19), etc. However, CTCs
are heterogeneous and can be EMT-transformed, which makes CTCs enrichment limited.
In addition, the binding of antibodies to antigens affects the release of CTCs, leading to
difficulties in downstream analyses. In contrast, negative isolation methods based on im-
munoaffinity to achieve CTCs enrichment, while avoiding some of the limitations, do not
completely exclude other blood components, which tends to reduce purity and increase the
difficulty of subsequent analyses. In addition, the density gradient isolation method and
microfiltration membrane technologies, may cause damage to the CTCs integrity. Methods
based on physical properties have low specificity, resulting in lower purity and recovery
rate of enriched cells. For example, cell size-based microfiltration structures capture CTCs
efficiently, but CTCs overlap in size with WBCs, resulting in lower purity of collected
CTCs. Microfluidic devices that utilize the principles of DFF and inertial focusing have
the advantage of simple operation and high throughput, but require the use of sheath
fluid, which can dilute the concentration of CTCs. DEP methods based on the size and
dielectric properties of CTCs can improve the purity of CTCs but are complex and costly.
Combining physical and immunological principles can fully take advantage of their re-
spective strengths and compensate for limitations. For example, high purity CTCs can be
enriched under high-throughput conditions by combining microfiltration structures with
immunomagnetic beads [128], DLD array with immunomagnetic capture [134,167], and
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acoustophoresis with immunomagnetic capture [130]. Label-free physical isolation and
negative immunoaffinity methods are suitable for CTCs enumeration with high recoveries,
whereas positive immunoaffinity methods are suitable for high-purity molecular analysis.
Single-cell analysis provides more detailed information about single cells, revealing the
cellular heterogeneity of the many different cell types in the same tumor. This understand-
ing of cellular heterogeneity is critical for gaining deeper insights into tumor development
and treatment response. Many microfluidic devices for single cell collection have been
developed, such as droplet technology [151] and a photoelectrochemical platform [148] for
releasing single CTC. Future single-cell isolation technologies should need to be combined
with single-cell analysis technologies to reduce the risk of CTCs damage.

Isolation techniques for CTCs show great potential as a key tool in the field of cancer
diagnosis and therapy but are still technically limited in clinical applications. Future trends
suggest that combining methods based on physical and biological principles of CTCs will
become the main direction. Methods based on physical principles are characterized by
high throughput, while those based on biological principles have high specificity. The
combination of these two principles will significantly improve the enrichment efficiency
and purity of CTCs. Despite the challenges of downstream analysis of CTCs, with the
continuous innovation of nanotechnology and microfluidics, we predict that CTCs isolation
techniques will become more efficient, rapid, and economical, offering more possibilities
for clinical applications. This development trend is expected to promote personalized
cancer diagnosis and treatment, providing more effective medical solutions for patients,
and promoting progress in the medical field.
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