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Effectively monitoring pest-infested areas by computer vision is essential in

precision agriculture in order to minimize yield losses and create early

scientific preventative solutions. However, the scale variation, complex

background, and dense distribution of pests bring challenges to accurate

detection when utilizing vision technology. Simultaneously, supervised

learning-based object detection heavily depends on abundant labeled data,

which poses practical difficulties. To overcome these obstacles, in this paper,

we put forward innovative semi-supervised pest detection, PestTeacher. The

framework effectively mitigates the issues of confirmation bias and instability

among detection results across different iterations. To address the issue of

leakage caused by the weak features of pests, we propose the Spatial-aware

Multi-Resolution Feature Extraction (SMFE) module. Furthermore, we introduce a

Region Proposal Network (RPN) module with a cascading architecture. This

module is specifically designed to generate higher-quality anchors, which are

crucial for accurate object detection. We evaluated the performance of our

method on two datasets: the corn borer dataset and the Pest24 dataset. The corn

borer dataset encompasses data from various corn growth cycles, while the

Pest24 dataset is a large-scale, multi-pest image dataset consisting of 24 classes

and 25k images. Experimental results demonstrate that the enhanced model

achieves approximately 80% effectiveness with only 20% of the training set

supervised in both the corn borer dataset and Pest24 dataset. Compared to

the baseline model SoftTeacher, our model improves mAP@0.5 (mean Average

Precision) at 7.3 compared to that of SoftTeacher at 4.6. This method offers

theoretical research and technical references for automated pest identification

and management.
KEYWORDS

semi-supervised pest detection, mutual learning, memory fusion, Spatial-aware Multi-
Resolution Feature Extraction, cascade RPN
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1 Introduction

Many problems hinder the development of agriculture, such as

climatic conditions, soil quality, pests, and diseases. Among them,

crop pests are a very important problem that has a serious negative

impact on agricultural output. For farmers, crop pest management

has long been a top concern because it is essential for ensuring

global food security and steady economic growth. In traditional

agriculture, agricultural professionals are needed for monitoring

responsibilities. However, there are a number of shortcomings with

manual investigations, including limited efficiency, subjectivity, and

error proneness. The development of a highly accurate and efficient

automatic pest monitoring system is desirable for food security

and productivity.

Thankfully, as information science advances, new approaches to

problem-solving are presented (Li et al., 2021). One such approach

is precision agriculture (Khan and AlSuwaidan, 2022), which

combines information technology and agricultural output. The

two primary aspects of early machine learning framework

research, as seen from an algorithmic perspective, are the

extraction of pest-related information from photos as feature

vectors and the use of machine learning classifiers for

categorization. In order to accurately identify and categorize

cotton crop diseases, Camargo and Smith (2009) retrieved picture

features from regions afflicted by the diseases, kept only the most

important features, and fed the Support Vector Machine with the

feature set. In order to create a multi-class classifier for the

identification of 24 pest classes, Xie et al. (2015) employed a

sparse-coding histogram with several feature modalities to

represent pest images. Several-kernel learning (SKL) approaches

were then utilized to fuse numerous features. The spectral residual

(SR) approach was used by Qin et al. (2019) to extract edge

characteristics from stored-grain pests, and these features are then

used for saliency edge detection. The success of the previously

described models (Camargo and Smith, 2009; Xie et al., 2015; Qin

et al., 2019; Li et al., 2021), which were based on classical machine

learning, was largely dependent on the controllability of external

environmental elements and the correctness of manually derived

characteristics from target regions.
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Deep learning has become widely used in agriculture as a result of

its recent quick advancement that has outpaced standard machine

learning techniques. In order to automatically detect and count pests,

Ding and Taylor (2016) proposed a sliding-window detection

technique in 2016. This approach included a convolutional neural

network. A generative adversarial network with numerous attention,

residual, and dense fusion methods was proposed by Dai et al. (2020)

to upscale low-quality pest photos, therefore improving spatial

resolution and recovering high-frequency details. The recall rate for

pest identification was greatly increased by this method. In order to

improve the characteristics of small-object pest regions, Wang et al.

(2021) proposed a sampling-balanced region proposal network and

integrated an attention mechanism into the residual network. In

addition to electronic traps for monitoring, Huang et al. (2021)

presented the Multi-Attention and Multi-Part Convolutional

Neural Network (MAMPNet) for citrus fly identification. Apart

from network improvements, data-related aspects have also been

investigated by researchers (Cubuk et al., 2019; Yamada et al., 2019;

Cubuk et al., 2020). In order to obtain distinct multi-scale

representations, Li et al. (2019) proposed an effective data

augmentation strategy for algorithms based on a convolutional

neural network (CNN). This strategy entailed rotating images at

different degrees and cropping them to different grids during training.

The strategy’s efficacy across four pest datasets was finally

demonstrated by fusing detection findings from various scale

photos. However, these approaches (Ding and Taylor, 2016; Dai

et al., 2020) mostly depend on the manual annotation of large

amounts of data for every kind of pest, necessitating the training

datasets to have bounding boxes identified. Manually labeling a large

amount of data consumes many manpower and material resources,

which brings trouble to the practical application of detection

technology. Traditional target detection relies heavily on manual

annotation of large amounts of data for each pest, and manual

annotation of large amounts of data is time-consuming and

labor-intensive.

Manually labeling the pictures required for pest detection

requires labeling of categories and selecting the area where the

pests are located, which is time-consuming and labor-intensive, as

shown in Figure 1. Usually, it takes approximately 6 seconds to
FIGURE 1

Some examples of pest images in Pest24. The picture shows how time-consuming and laborious manual labeling of data is.
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mark a box. On average, there are more than 10 pests in one pest

image, so it takes 1 minute to mark one image. For example, the

Pest24 dataset used in this article has 12,701 training images, 5,077

verification images, and 7,600 test images. It takes 25,378 minutes to

annotate these data. The semi-supervised object detector only needs

a small part of the training set of the detector based on supervised

learning to achieve similar effects to supervised learning.

Innovations in semi-supervised object identification provide

creative answers to these problems. Semi-supervised object

detection techniques come in two types: consistency constraint-

based approaches (Jeong et al., 2019) strengthen the robustness of

the model’s feature extraction by combining data pairs with the

original images, applying weak data augmentation to unlabeled

data, and enforcing consistency constraints on the model outputs.

The other kind of model relies on self-learning (Sohn et al., 2020;

Xu et al., 2021; Zhou et al., 2021), in which labeled data are used to

learn a pre-trained model. After that, the model makes predictions

on unlabeled data and uses confidence threshold filtering and

post-processing to create pseudo-labels. To improve overall

performance, the model is then trained using both the original

labeled data and the created pseudo-labels. A pseudo-label-based

technique was presented by Self-Training and Augmentation

driven Consistency regularization (STAC) (Sohn et al., 2020),

which was a noteworthy advancement in the field of self-

supervised semi-supervised detection. Instant-Teaching (Zhou

et al., 2021) is a proposed online pseudo-label generation

method. Unlike STAC, which generates pseudo-labels only once

throughout the entire process without updating them during

training, Instant-Teaching uses offline generation. An end-to-

end pseudo-label-based semi-supervised object identification

network, called SoftTeacher (Xu et al., 2021), was introduced

along with two simple yet powerful methods to choose dependable

pseudo-boxes for learning box regression: the box jitter method

and the soft teacher mechanism.

However, traditional semi-supervised networks still face

numerous challenges. It is important to address the discrepancies

among the detection results in the same image that occur during

different training iterations. Confirmation bias (Tarvainen and

Valpola, 2017) is a common problem in semi-supervised learning.

When the model generates incorrect predictions with high

confidence, these incorrect predictions will be further reinforced

through incorrect pseudo annotations. In other words, the model

itself struggles to rectify these false predictions. Furthermore, the

research subject of pests being small targets has resulted in

numerous challenges. One such challenge is the limited

availability of features. Due to the small size of objects, as the

number of CNN layers increases during feature extraction, the

target feature information tends to be progressively weakened,

making it difficult to extract discriminative features. Moreover, in

the context of a multi-layer network, this issue can also lead to

missed detections of certain objects. Another challenge is the high

positioning accuracy requirements. Compared to objects of typical

size, small targets like pests pose a challenge for the Region Proposal

Network (RPN) in generating effective candidate target regions.
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This, in turn, makes it difficult to accurately regress on the proposed

boxes during subsequent stages. The main contributions of this

paper are as follows:
1) We introduce PestTeacher, an innovative semi-supervised

pest detection framework that effectively mitigates the

issues of confirmation bias and instability among

detection results across different iterations. Our

framework enhances the quality of pseudo annotations

through mutual learning with memory scheme, resulting

in improved object detection performance.

2) We propose Spatial-aware Multi-Resolution Feature

Extraction module to address small target feature

information that tends to be weakened as the number of

CNN layers increases. The Cascade RPN module (Vu et al.,

2019) is capable of generating higher-quality anchors.

3) To provide a comprehensive evaluation of the improved

model, we conducted extensive experiments using data

from both the Pest24 dataset and the corn borer dataset.

The experimental results demonstrate that our approach

achieves superior performance and robustness.
2 Methodologies

2.1 Dataset

We conducted our experiments on two benchmark datasets, the

corn borer pest region dataset and the Pest24 dataset (Wang et al.,

2020), as shown in Figure 2. We collected the corn borer pest region

dataset in the demonstration area of an unmanned farm in Bozhou

City, Anhui Province, China, using DJI Spirit 4RTK UAV. DJI

Spirit 4 RTK is a small multi-rotor high-precision aerial survey

drone with a centimeter-level navigation and positioning system

and a high-performance imaging system. In contrast, we collected

the Pest24 dataset using the professional automatic pest image

acquisition equipment developed by the Institute of Intelligent

Machines, Chinese Academy of Sciences. The corn borer dataset

encompasses data from various corn growth cycles. The Pest24

dataset is a large-scale, multi-pest image dataset consisting of 24

classes and 25k images, as shown in Table 1. The corn borer pest

region dataset consists of a total of 1,424 valid samples with a

resolution of 4864 × 3648. Among these samples, 502 belong to the

V12 stage and are named DV12, while 922 belong to the VT stage

and are named DVT. The V12 stage is shown in Figure 2A, with

more corn leaves and a relatively pure background. In the VT stage,

shown in Figures 2B, C, the occurrence of corn pollination, corn

earing, and other phenomena will produce a more complex image

background at this stage. We randomly divided DV12 and DVT

into the training, validation, and test sets in an 8:1:1 ratio. We then

expanded DV12 and DVT using data augmentation techniques,

resulting in 1,720 and 3,217 images, respectively. We combined

them to form a total of 4,937 samples for model training.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1369696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2024.1369696
The Pest24 dataset comprises 25,378 multi-pest images with a

resolution of 800 × 600 pixels. It includes 24 categories, which

feature ultra-small object sizes, dense object distributions, high

similarity among pest objects in terms of shape and color, and

numerous object adhesions in the images.
2.2 Flowchart of framework

We present an overview of the pseudo-labeling framework for

semi-supervised object detection. In the first stage, the Teacher1

model is trained on labeled data. The second stage is to perform

semi-supervised training on labeled and unlabeled data. During

semi-supervised training, we initialize the Teacher1 model using the

pre-trained parameters. Then, we apply weak augmentation to

unlabeled images and feed them into both the Teacher1 and

Teacher2 models to generate pseudo-labels. To improve the

quality of pseudo-labels and stabilize the semi-supervised training

process, we use non-maximum suppression (NMS) to fuse the latest

prediction results of the Teacher1 model, the recent detection

results of the Teacher2 model, and the historical pseudo-labels

generated by the Teacher2 model.

The student model is trained using both the detection losses on

labeled images and the pseudo boxes on unlabeled images. The

unlabeled images have two sets of pseudo boxes, which are used to

drive the training of the classification branch and the regression

branch. The Teacher2 model is an exponential moving average

(EMA) of the student model. Within this framework, we have

incorporated three crucial designs: mutual learning with memory,

Spatial-aware Multi-Resolution Feature Extraction, and Cascade

RPN. The flowchart of the framework of our network is shown

in Figure 3.
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2.3 Mutual learning with memory

To address the confirmation bias problem and discrepancies

among the detection results, we propose mutual learning with

memory mechanism, as depicted in Figure 4. This mechanism

involves feeding weakly augmented unlabeled data into both the

Teacher1 and Teacher2 models. The Teacher1 model is obtained

through training with labeled data. The pseudo-label generated by

the Teacher2 model is then fused with the pseudo-label stored in

memory. Finally, the fused pseudo-label, along with the pseudo-

label generated by the Teacher1 model, is fed into the mutual

learning module.

2.3.1 Mutual learning
Confirmation bias (Tarvainen and Valpola, 2017) is a prevalent

issue in semi-supervised learning, where incorrect predictions with

high confidence can be further reinforced through incorrect pseudo

annotations. Consequently, rectifying these false predictions

becomes challenging for the model itself.

To alleviate this problem, we propose a mutual learning scheme,

which trains two models t1 and t2. t1 is trained from labeled data.

These two models help each other to rectify the false predictions, as

shown in Figure 4.

We take model t1 as an example, and the rectified pseudo

annotations of model t2 are constructed in a similar way. When

generating pseudo annotations during each training iteration,

models t1 and t2 first predict class probabilities ci, c
r
i and

bounding box coordinates bi, b
r
i on the weakly augmented

unlabeled image. Finally, the rectified class probabilities and

bounding box coordinates are the weighted average of ci, c
r
i and bi,

bri , where e1 gradually decreases and e2 gradually increases with

training. At the beginning of training, the quality of pseudo-labels
A B

D E F

C

FIGURE 2

Some examples of pest images in corn borer and Pest24; the pests and pest regions that require prediction are indicated by the red boxes.
(A–C) Images from the corn borer dataset containing various stages of corn development. (D–F) Images from the Pest24 dataset exhibit features
like overlap and dense dispersion.
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generated by Teacher1 trained with partially labeled data is

significantly higher than that of the Teacher2 model, but the

Teacher2 model gradually surpasses the effect of Teacher1.

The multual learning process can be expressed as Equation 1:

(ci, bi) = t1(xu),

(cri , b
r
i ) = t2(xu),

   c*i   = e1ci + e2c
r
i ,

   b*i   =
1

e1ci+e2cri
(bie1ci + bri e2c

r
i Þ;

8>>>>>><
>>>>>>:

(1)
2.3.2 Memory fusion
As shown in Figure 5, the predicted detection results from

different iterations are different. Therefore, the training procedure

might become unstable and encounter difficulties with convergence

if we were to use these unstable results directly as pseudo-labels on
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unlabeled data. Still, the results of various iterations contain a

variety of knowledge.

As a result, creating an ensemble with these outputs would

improve the pseudo-label quality. To achieve this, we propose

employing NMS to fuse these outputs, as illustrated in Figure 5.

We use NMS to retain the area that most likely represents the real

target when multiple overlapping targets or areas are detected and

to eliminate redundant detections in the overlapping areas. During

semi-supervised training, this method seeks to smooth the detection

results and take advantage of the differences in the outputs from

various iterations. To be more precise, we use the pre-trained model

to estimate each unlabeled case’s detection results, which are then

saved in memory. Recently, networks with memory have been

introduced, which enhance the learning and reasoning capabilities

of deep learning models. This is accomplished using memory to

store prior information and efficiently model the dataset’s data

distribution (Chen et al., 2018; Wu et al., 2018; Yang et al., 2019). A

feature embedding for every image was stored using earlier

techniques (Chen et al., 2018; Wu et al., 2018), and it was

updated using an exponential moving average. In contrast, our

method stores the detection result and updates it through the

application of NMS. Specifically, let �p,�tf g represent the stored

predicted detection result of an image in pseudo-label memory, and

let p, tf g be the up-to-date prediction result from the network

during semi-supervised training. Then, the updating process can be

expressed as Equation 2:

p̂ , t̂
� �

= NMS (CAT ( �p,�tf g, p, tf g)), (2)

where NMS represents the non-maximum suppression operation

and CAT represents the concatenation operation between the up-

to-date detection results and the historical pseudo-label. After

updating, p, tf g will be stored in memory and later used as

pseudo-labels for unlabeled data.
2.4 Spatial-aware Multi-Resolution
Feature Extraction

2.4.1 Spatial-aware attention
It has been recognized that convolutional neural networks have

limitations in effectively learning spatial transformations present in

images (Liu et al., 2016). Some works mitigate this problem by

either increasing the model capability (size) (Krizhevsky et al., 2012)

or involving expensive data augmentations (Ghiasi and Fowlkes,

2016), consequently leading to a significant rise in computational

expenses during both inference and training processes.

Subsequently, novel convolution operators were proposed to

improve the learning of spatial transformations. Cheng et al.

(2016) proposed to use dilated convolutions to aggregate

contextual information from the exponentially expanded receptive

field. Chen et al. (2016) proposed a deformable convolution to

sample spatial locations by incorporating self-learned offsets. In this

study, we introduce a spatial-aware attention mechanism that not

only applies attention to individual spatial locations but also

adaptively combines multiple feature levels to learn a more
TABLE 1 Description of the 24 classes of pests in Pest24.

Index Pest name Relative
scale

Color
discrepancy

1 Rice planthopper 0.034 57.78

2 Rice leaf roller 0.123 79.55

3 Striped rice borer 0.186 74.48

5 Armyworm 0.394 91.97

6 Bollworm 0.281 87.84

7 Mcadow borer 0.226 73.08

8 Athetis lepigone 0.13 89.65

10 Spodoptera litura 0.458 89.16

11 Spodoptera exigua 0.138 83.44

12 Stem borer 0.277 78.69

13 Little Gecko 0.57 110.52

14 Plutella xylostella 0.043 83.03

37 Melahotus 0.158 188.86

15 Spodoptera cabbage 0.42 106.05

16 Scotogramma
trifolii Rottemberg

0.28 91.63

24 Yellow tiger 0.398 90.48

25 Land tiger 0.639 98.3

28 Eight-character tiger 0.441 119.98

29 Holotrichia oblita 0.334 221.38

31 Holotrichia parallela 0.255 189.16

32 Anomala corpulenta 0.249 164.35

34 Gryllotalpa orientalis 0.95 139.06

35 Nematode trench 0.32 143.15

36 Agriotes fuscicollis Miwa 0.114 173.86

37 Melahotus 0.158 188.86
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discriminative representation. As shown in Figure 6, the operation

of the spatial-aware module can be outlined in two steps:
Fron
1) Query and Key Computation: The values xq and xkv are

derived through a downsampling operation, serving as

inputs for the computation of the Query and Key,

respectively.

2) Softmax andWeighted Average: Apply the softmax function

to the attention scores and utilize the resulting weights to

perform a weighted average on the values, yielding

the output.
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3) Upsampling and Fusion: Apply upsampling to restore the

feature matrix to its original shape and fuse it with the

initial features.
Query and Key in the attention mechanism are two important

concepts used in the Transformer model to calculate the attention

weight. In essence, this spatial-aware mechanism prioritizes the

weighting of the Key by utilizing a predefined apprBias. This is

followed by the calculation of the Key and Query to obtain the

attention score. The final output is obtained through a sequence of

operations, culminating in residual concatenation.
FIGURE 3

The figure shows the flowchart of framework. The training of student model uses labeled images and pseudo-labels. The pseudo-label is obtained
by inferring the weak augmentation image from the teacher model. After training, the student model is used to update the teacher model using the
EMA method. EMA, exponential moving average.
FIGURE 4

The figure shows the structure of mutual learning with memory, which alleviates the instability among the detection results in different iterations and
confirmation bias.
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FIGURE 6

Spatial-aware Multi-Resolution Feature Extraction. The feature map is resolved into spatial-aware attention module and multi-resolution feature
extraction module to obtain the optimized features.
FIGURE 5

Illustration of pseudo-label fusion. The pseudo-label in semi-supervised learning is crafted by merging the latest detection outcomes with the
historical pseudo-label. This fusion enhances the overall quality and stability of pseudo-labels, contributing to improved convergence during the
training process.
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https://doi.org/10.3389/fpls.2024.1369696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2024.1369696
2.4.2 Multi-Resolution Feature Extraction
Many studies have emphasized the importance of scale in

object detection, as objects with vastly different scales often co-

exist in natural images. Early works have demonstrated the

significance of leveraging image pyramid methods (Gidaris and

Komodakis, 2015; Huang et al., 2019; Wiegreffe and Pinter, 2019)

for multi-scale training. However, to enhance efficiency, the

concept of a feature pyramid (Ren et al., 2015) was proposed.

This approach involves concatenating a pyramid of downsampled

convolution features and has since become a standard component

in modern object detectors.

As convolutional neural networks become deeper, the repeated

downsampling operations lead to the loss of information related to

small and overlapping targets. Therefore, shallow-layer features are

better suited for localizing small targets, while deep-layer features

are more suitable for classifying larger targets, as the receptive field

of anchor boxes expands with network depth. To tackle the

multiscale challenge posed by target sizes, it has become common

practice to employ features of different resolutions. These features

are responsible for predicting targets of various sizes, leading to the

proposal of a Multi-Resolution Feature Extraction module.

As shown in Figure 6, the operation of the Multi-Resolution

Feature Extraction module can be outlined in two steps:
Fron
1) Up-bottom Path Augmentation: Complete an up-resolution

feature fusion. First, change the channel of the input feature

and then up-resolution, perform nearest neighbor

upsampling on the above features, and then perform

feature fusion.

2) Bottom-up Path Augmentation: Complete a reduced-

resolution feature fusion. First, change the channel of the

input features and then perform downsampling and

feature fusion.

3) Adaptive feature pooling: Analyze the ratio of features

pooled from different levels with adaptive feature pooling.

We use the max operation to fuse features from different

levels, which lets the network select element-wise useful

information. Specifically, for every candidate region, we

associate it with various feature levels, exemplified by the

dark-gray region in Figure 6. We employ ROIAlign to pool

the feature grids from these diverse levels, followed by a

fusion operation (pixel-by-pixel SUM or ADD) to

amalgamate the feature meshes originating from

different levels.
2.5 Cascade RPN

High-performing object detectors, such as Faster R-CNN (Ren

et al., 2015), adopt a two-stage pipeline approach to tackle the

detection problem. To create a sparse set of proposal boxes, an RPN

first fine-tunes and prunes a set of anchors. The RPN’s suggestions

are then further refined and categorized in the second stage by a
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region-wise CNN detector (R-CNN). Region proposals are essential

in enabling the detector to produce precise bounding boxes while

maintaining computational viability. Grouping super-pixels (e.g.,

Selective Search (Uijlings et al., 2013), Constrained Parametric Min-

Cut problems (CPMC) (Carreira and Sminchisescu, 2012),

Multiscale Combinatorial Grouping (MCG) (Arbeláez et al.,

2014), and window scoring [e.g., objectness in windows (Alexe

et al., 2012) and EdgeBoxes (Zitnick and Dollár, 2014)] are the

foundation of early approaches for region proposal generation.

Despite being the industry standard for object detection in

classical computer vision, these techniques have drawbacks

because they operate as separate modules from the detector and

cannot be computationally efficient.

Numerous studies have been conducted to enhance the

performance of the RPN (Gidaris and Komodakis, 2016; Yang

et al., 2016; Wang et al., 2019; Zhong et al., 2020). Multi-stage

refinement, in which the output of one step is used as the input for

the subsequent stage, is the general tendency. As shown in Wang

et al. (2019), this iterative method works until accurate localization

is attained.

The above method achieved good results in various semi-object

detection tasks; however, there are challenges in this study, such as

small targets, complex background, and scale change. Compared to

objects of typical size, small targets such as pests have the problem

that the regressed boxes are more easily misaligned to the image

features, breaking the alignment rule required for object detection.

It occurs when the anchors, following regression, undergo

significant changes relative to their original positions. However,

both classification and regression still employ features from the

original positions for prediction. To address this concern, we

introduce a Cascade RPN module. The architecture of the

Cascade RPN is illustrated in Figure 7. Cascade RPN uses

adaptive convolution to fine-tune the anchor of each stage. The

adaptive convolution can be regarded as a lightweight RoI Align

layer. Since anchor center offsets are zero, adaptive convolution is

used in the first step to achieve dilated convolution. The first stage’s

features are then “bridged” to the latter stages, guaranteeing that the

dilated convolution preserves the features’ spatial order.

In this module, we use adaptive convolution to ensure

alignment between the features and the anchors at every level.

This approach takes both the anchors and the image features as

inputs and learns the sampled features guided by the anchors.

Given a feature map x, in the standard 2D convolution, the

feature map is first sampled using a regular grid R =   (rx , ry)
� �

, and

the samples are summed up with the weight w. Here, the grid R is

defined by the kernel size and dilation. For example,

R = ( − 1,−1), ( − 1, 0), ( − 1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)f g
corresponds to kernel size 3 × 3 and dilation 1. For each location p

on the output feature y, we have Equation 3

y½p� = o
r∈ℝ

w½r� · x½p + r� (3)

In adaptive convolution, we have Equation 4, the regular grid R
is replaced by the offset field O that is directly inferred from the

input anchor.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1369696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2024.1369696
y½p� = o
o∈O

w½o� · x½p + o� (4)

Let �a denote the projection of anchor a onto the feature map.

The offset o can be decoupled into center offset and shape offset. The

offset o can be formulated as Equation 5

o = octr + oshp, (5)

where octr =  (�ax − px , �ay − py)and oshp is defined by the anchor

shape and kernel size. For example, if kernel size is 3 × 3, then

oshp ∈ ( − �aw
2 , �ah2 ),  ( −

�aw
2 , 0),…,  (0, �ah2 ),  (

�aw
2 , �ah2 )

� �
. As the offsets

are typically fractional, sampling is performed with bilinear

interpolation analogous to Dai et al. (2017).
3 Results and discussion

3.1 Model evaluation metrics

The measures Precision, recall, Average Precision (AP), and

mean Average Precision (mAP) are frequently used in the object

detection task to assess the model’s accuracy. The precise

calculation formula can be formulated as Equations 6–11.

Precision  =
#TP

#TP + #FP
(6)

Recall  =
#TP

#TP + #FN
(7)

AP  =
Z 1

0
Precision d Recall (8)

AP50 : 95 =
1
10

(AP50 + AP55 + ::: +AP90 + AP95) (9)
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mAP@0:5 =
1
Co

C

i=1
APi (10)

mAP@½0:5 : 0:95� =
1
Co

C

i=1
APi

50 : 95 (11)

where the number of pest targets that are correctly recognized is

denoted by TP (true positive), the number of pest targets that are

mistakenly detected is denoted by FP (false positive), and the

number of missed pest targets is represented by FN (false

negative). C is the number of pest categories; there are 24 in the

Pest24 dataset compared to 1 in the corn borer dataset. The area

under the Precision–Recall curve for each pest category in the

detection is represented by APi, the AP for the ith category. mA

P@0:5 is the average of the AP for all pest categories when the IoU

threshold is 0.5. AP50 : 95 is the average of the 10 values of AP50,

AP55,…,AP90,AP95. mAP@½0:5 : 0:95� is the average mAP under

different IoU thresholds. mAP@½0:5 : 0:95� plays a critical role in

evaluating object detection models, offering valuable insights into

their ability to strike a balance between recall (detecting objects) and

precision (accurately detecting objects) at different levels of object

overlap with the ground truth. Thus, mAP@0:5,mAP@0:75,mA

P@½0:5 : 0:95� are typically chosen as the primary evaluation metrics

in agricultural pest detection jobs in order to provide a more

thorough and equitable assessment of pest detection

model performance.
3.2 Implementation details

We implemented our dataset and network structure code on the

open-source platform MMDetection (Chen et al., 2019). Using pre-
FIGURE 7

The architectures of Cascade RPN networks. The features of the first stage are “bridged” to the next stages since the spatial order of the features is
maintained by the dilated convolution. RPN, Region Proposal Network.
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trained model weights from ImageNet (Deng et al., 2009), we were

able to accelerate our training process. Additionally, we applied a

consistent image pre-processing process to all comparison

networks, which included the following:
Fron
1) RandomResize: Randomly change the image size.

2) RandomCrop: Randomly crop the image size.

3) RandomFlip: Randomly flip images and their annotations.

4) RandomErasing: Randomly remove a randomly selected

rectangular region with a variable size and aspect ratio.

5) Normalize: Normalize the current image.

6) Padding: Pad the image to the specified size.
Two 32G RAM NVIDIA Tesla V100 GPUs were used for all

studies. Pytorch, Python 3.8, and Ubuntu 18.04 comprise the

software environment. NVIDIA CUDA10.2 and CUDNN7.6.5

neural network packages were utilized to speed up the training

process. The experiment environment listed in Table 2 was used.
3.3 Comparison with other
advanced detectors

We have extensively referenced numerous outstanding works

and compared our results with them to demonstrate the superior

accuracy of our network model. These works include the one-stage

algorithm YOLOv5 (Jocher et al., 2021), the two-stage algorithm

Faster R-CNN, the anchor-free algorithm CornerNet (Law and

Deng, 2018), and the classical semi-supervised object detection

algorithms STAC and SoftTeacher. You Only Look Once (YOLO)

was originally proposed by Joseph Redmon and others. It is a real-

time target detection algorithm. SoftTeacher is an end-to-end

pseudo-label-based semi-supervised target detection framework

proposed by Mengde Xu and others (Sohn et al., 2020). It is

important to note that the following comparison results are

provided for reference purposes only. Variations in preprocessing

and hardware conditions among different works prevent a strict

reflection of the strengths and weaknesses of various methods. The

algorithms were executed in an identical experimental

environment, with parameters consistent with the original models.

Mainstream semi-supervised target detection algorithms use

1%, 2%, 5%, and 10% training data division. However, the less the

amount of annotated data used, the worse the performance of the

model. If too much annotated data are used, the semi-supervised

algorithm lose their meaning. Considering the amount of annotated
tiers in Plant Science 10
data and model performance, we use 20% annotated data to achieve

a similar effect to the model trained based on the entire

annotated dataset.

As shown in Table 3, Faster R-CNN, YOLOv5, and CornerNet

are all target detection algorithms based on supervised learning,

using 100% No. train. Semi-supervised target detection algorithm

STAC SoftTeacher and PestTeacher both use 20% No. train.

The quantitative comparison results are presented in Table 4. It

is evident that the enhanced models have substantially improved

the performance of pest region detection. From the concrete

evaluation metrics, PestTeacher obtains mAP@0.5 62.1% and

48.9% on the corn borer dataset and Pest24 dataset, respectively.

When compared to SoftTeacher and STAC, PestTeacher achieves

improvements of 7.3% and 12.3%, respectively. The mAP@[0.5:0.95]
calculated at higher thresholds demonstrates how the

recommended approaches support the production of bounding

boxes of superior quality. PestTeacher enhanced the mAP@

[0.5:0.95] by 1.2% and 2.8% on the corn borer and Pest24 datasets,

respectively. In addition, PestTeacher achieves 79.5% and 74.8%

efficacy when compared to the best supervised learning-based

detectors, using only 20% of the training set supervised on the

Pest24 and corn borer datasets, respectively.
3.4 Visualization of detection results

As shown in Figure 8, we visually represent a portion of the pest

detection findings in this section so that you may see the advantages

of our suggested semi-supervised pest detection technique.

PestTeacher performs well across several corn growth cycles. Its

accuracy rate is higher, and its missed detection rate is lower than

that of SoftTeacher; the baseline algorithm is demonstrated in

Figures 8A, B, E, F. It can be found via quantitative and

qualitative analyses that the improved model performs well in

detecting pests with sparse or dense distribution compared to the

original SoftTeacher. As shown in Figures 8C, G, where noises

(non-target pests with similar appearances) were present in the

photos, PestTeacher demonstrated greater robustness since the

attention module highlighted the pest traits that were successful

and eliminated other distractions. When images containing a dense

distribution of small pests are available, PestTeacher detects more

pests and fewer misidentifications, as shown in Figures 8D, H.
3.5 Ablation study

Our proposed semi-supervised pest detector based on the

SoftTeacher model contributes four elements, including the

mutual learning with memory (MLM), Spatial-aware Multi-

Resolution Feature Extraction (SMFE), and Cascade RPN

modules developed. To demonstrate the effectiveness of each

module in our method, we performed ablation experiments on

corn borer datasets, as shown in Table 5. The confirmation bias

issue and differences in detection results within the same image that

arise during many training iterations can be handled using the

MLM module. The MLM module enhanced the mAP@0.5 by 1.2%
TABLE 2 Experiment environment.

Configuration Parameter

CPU Intel Xeon Gold 522

GPU NVIDIA Tesla V100

Operating system Ubuntu 18.04

Accelerated environment CUDA10.2 CUDNN7.6.5
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on the corn borer datasets. The SMFE operating on the neck layer

decreased the missed detection from overlapping pests and

enhanced the mAP@0.5 by 1.0%. High-quality anchors can be

produced by an RPN module with a cascade architecture, which

is crucial for semi-supervised object detection. The Cascade RPN

module enhanced the mAP@0.5 by 3.5%. The mAP@[0.5:0.95]
computed at higher thresholds shows that the suggested strategies

aid in the creation of high-caliber bounding boxes.
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To show the efficiency of each module in our system, we conducted

ablation experiments on the Pest24 dataset, as shown in Table 6. The

MLM module enhanced the mAP@0.5 by 1.8% on the Pest24 datasets.

The SMFE operating on the neck layer decreased the missed detection

from overlapping pests and enhanced themAP@0.5 by 0.8%. The Cascade

RPN module enhanced the mAP@0.5 by 2.2%. The experimental results

yielded compelling evidence to validate the efficacy of modules,

significantly improving the accuracy of detection metrics.
TABLE 3 Dataset details.

Dataset 100% No. train 20% No. train No. val Resolution

Corn borer 3,950 790 494 608 × 608

Pest24 12,702 2,540 5,075 800 × 600
TABLE 4 Comparison of pest detection results between different models.

Method Backbone Dataset mAP@0.5:0.95 mAP@0.5 mAP@0.75

Faster R-CNN ResNet50 Corn borer 31.3 72.4 16.9

YOLOv5 DarkNet53 Corn borer 32.5 78.1 17.2

CornerNet ResNet50 Corn borer 20.2 53.0 7.70

STAC ResNet50 Corn borer 20.3 50.4 8.6

SoftTeacher ResNet50 Corn borer 21.9 54.8 9.4

PestTeacher ResNet50 Corn borer 23.3 62.1 9.4

Faster R-CNN ResNet50 Pest24 32.6 58.5 32.8

YOLOv5 DarkNet53 Pest24 40.6 65.4 34.3

CornerNet ResNet50 Pest24 30.1 54.6 31.2

STAC ResNet50 Pest24 21.7 40.1 20.6

SoftTeacher ResNet50 Pest24 24.6 44.3 24.5

PestTeacher ResNet50 Pest24 27.4 48.9 28.2
A B D

E F G H

C

FIGURE 8

Results of SoftTeacher and PestTeacher algorithms on corn borer and Pest24 datasets.The SoftTeacher model yields detection results denoted as
(A–D). Likewise, the PestTeacher model produces detection results labeled as (E–H).
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4 Conclusion

Agricultural pests have become the main factors affecting and

restricting grain production due to their high frequency of occurrence,

wide occurrence area, and serious harm. In the past, researchers mostly

chose to apply excessive and purposeless chemical pesticides to solve

pest problems. Although agricultural losses can be reduced to a certain

extent, the negative impacts such as pesticide residues and

environmental pollution caused by the use of chemical pesticides are

becoming increasingly prominent. Therefore, it is particularly important

to predict pests and carry out effective and targeted prevention and

control. In this case, an important prerequisite for effective pest

prediction is the accurate identification and detection of pests.

Although pest detection based on supervised learning has

accomplished many achievements in actual agricultural production

activities, it relies heavily on a large amount of manual annotation

data and requires many manpower and material resources, causing

difficulties in practical applications. Detection algorithms based on

semi-supervised learning alleviate the problem of data annotation

and can achieve results similar to those based on supervised learning

algorithms using only a small amount of annotated data.

The paper proposes a PestTeacher, a novel semi-supervised

object detection (SSOD) framework that achieves good results in

two semi-supervised object detection tasks. PestTeacher effectively

mitigates the issues of confirmation bias and instability among

detection results across different iterations by mutual learning with

memory mechanism. To address the issue of leakage caused by the

weak features of pests, we propose the Spatial-aware Multi-

Resolution Feature Extraction module. Compared to the baseline

model SoftTeacher, our model improves mAP@0.5 at 7.3 compared

to that of SoftTeacher at 4.6. Furthermore, we introduce a Cascade
Frontiers in Plant Science 12
RPN module to generate higher-quality anchors. Through the

above method, PestTeacher achieves better pest detection results

than the baseline algorithm. While we assess using the Faster R-

CNN two-stage detector, our suggested PestTeacher is not limited

to object detection models. This implies that PestTeacher can be

immediately used with other detectors, such as the one-stage SSD

and FCOS detectors, which we will save for later research.
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SoftTeacher MLM SMFE Cascade RPN mAP@0.5:0.95 mAP@0.5 mAP@0.75
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✓ ✓ 24.8 45.1 24.6
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