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Abstract 
We consider a strongly non-linear degenerate parabolic-hyperbolic problem 
with p(x)-Laplacian diffusion flux function. We propose an entropy formula-
tion and prove the existence of an entropy solution. 
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1. Introduction 

In this paper, we consider the following non-linear degenerate parabolic-hyper- 
bolic problem: 

( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )( )

2

0

2

div 0 in ,

(P) 0, in ,

0 on

p x
t

p x

u u u f u Q

u x u x

f u u u

φ φ

φ φ η

−

−

 − ∇ ∇ − =
 = Ω


− ∇ ∇ ⋅ = Σ


 

where ( )0,Q T= × Ω  and ( )0,TΣ = × ∂Ω . Here Ω is a smooth bounded open 
domain in N

  with smooth boundary ∂Ω , ( )xη  the unit normal to ∂Ω  
outward to Ω and ( ): ,u t x Q∈ →  is the unknown function, 0T >  is a fixed 
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time. The initial data 0u  is assumed to be bounded measurable. This mean 

( )0u L∞∈ Ω  .                           (1.1) 

We assume that the convection flux: 

:  is continuous.Nf →                      (1.2) 

Moreover, we suppose that [ ]max0,u  where max 0u >  will be an invariant 
domain of the solution of (P) and then 

( ) ( )max0 0.f f u= =                        (1.3) 

With hypothesis (1.3), according to (1.1), one can take [ ]0 max0,u u∈  (see 
[1]-[3]). As in [2], the diffusion flux function φ is continuous and nondecreasing 
assumed to be constant on certain interval of values of u. There exists a closed 
set [ ]max0,E u⊂  such that φ  is strictly increasing on [ ]max0, \u E , and the 
Lebesgue measure of ( )Eφ  is zero.  

Our non-linear partial differential equations includes the particular hyperbol-
ic conservation law. The only notion of weak solution do not leads to 
well-possessedness and we need an entropy formulation (see [4] [5]). 

The function :p Ω →  is a continuous function. The associated operator 
( )( )2div p xw w w−→ − ∇ ∇  is a prototype of Leray-Lions operator acting from  

( ) ( )1, 1,
0

p x p xW W ′→  with ( ) ( )
( ) 1
p x

p x
p x

′ =
−

 and ( ) 1p x > . The variable exponent  

p depend on the space variable x. The particular case where ( ) 2p x ≡  was 
treated in [2]. The interest motivation of the study of this kind of problem is due 
to the fact that they can model various phenomena which arise in the study of 
elastic mechanic (see [6]), electro-rheological fluids (see [7]) or image restora-
tion (see [8]).  

We propose an entropy formulation for (P). This entropy formulation gene-
ralizes the notion of entropy solution of [2]. In this entropy formulation, the 
boundary condition is taken in a weak sense, which makes it easy to overcome 
difficulties in the treatment of the boundary condition. For the proof of the exis-
tence of an entropy solution, we approach the problem (P) by regularizing the 
data so that the approximate problem is non-degenerate. Thanks to a priori es-
timations, we show that the sequence of solutions converges towards an entropy 
process solution which coincides with the entropy solution. 

This article consists of four additional sections. In the second section, we in-
troduce some basic properties of the generalized Lebesgue-Sobolev spaces with 
variable exponent. In section 3, we propose an entropy formulation for problem 
(P) and prove existence in section 4. We end with a conclusion and perspectives. 

2. Lebesgue and Sobolev Space with Variable Exponent 

This section is devoted to basic property of Lebesgue and Sobolev spaces with 
variable exponent, that depend on x. Let us recall some elementary properties: 

The measurable function 
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( ). :  such that 1p p p p− +Ω → < ≤ ≤ < +∞             (1.4) 

where 

( ) ( )essinf ; esssup .x xp p x p p x− +∈Ω ∈Ω= =              (1.5) 

We define the Lebesgue space with variable exponent ( ) ( ).pL Ω  as the set of 
all measurable functions :u Ω →  for which the convex modular 

( ) ( ) ( ) ( )
. : d .

p x
p u u x xρ

Ω
= ≤ ∞∫  

If the exponent is bounded, i.e., if p+ < +∞ , then the expression 

( ) ( ).. inf 0 : 1pp

uu λ ρ
λ

  = > ≤  
  

 

defines a norm in ( ) ( ).pL Ω , called the Luxembourg norm. 
The space ( ) ( ) ( )( ).

., .p
pL Ω  is a separable Banach space. Moreover, if 1 <

p p− +≤ < +∞ , then ( ) ( ).pL Ω  is uniformly convex, hence reflexive, and its  

dual space is isomorphic to ( ) ( ).pL ′ Ω , where ( ) ( )
( ) 1
p x

p x
p x

′ =
−

 is a conjugate  

exponent of ( )p x . 
With exponent variable, we have a kind of Hölder type inequality: 

( ) ( ) ( ) ( ) ( ) ( ) ( ). .
. .

1 1d , .p p
p puv x u v u v L L

p p
′

′Ω
− −

 
≤ + ∀ ∈ Ω × Ω ′ 

∫   

Let  
( ) ( ) ( ) ( ) ( ) ( ){ }1, . .;p x p pW u L u LΩ = ∈ Ω ∇ ∈ Ω               (1.6) 

which is a Banach space equipped with the following norm 

( ) ( ) ( )1, . . . .p p pu u u= + ∇                       (1.7) 

The space ( ) ( ) ( )( )1, .
1, ., .p

pW Ω  is a separable and reflexive Banach space. 

3. Entropy Formulation 
3.1. Definition of Entropy Solution 

Definition 3.1 
A measurable function ( )u L Q∞∈  is weak solution of (P) if for  
( ) ( ) ( )( )1,0, ; p xu L T Wφ ∞∈ Ω , ( ) ( ) ( ) ( )( ) ( )1,1, 0, , p xt x L T W L Qξ ∞∈ Ω ∩  such that 

( )1
t L Qξ ∈  

( ) ( ) ( ) ( )( )
( )

2

0 0

0

d d d d

0, d 0.

T T p x
tu x t f u u u x t

u x x

ξ φ φ ξ

ξ

−

Ω Ω

Ω

+ − ∇ ∇ ⋅∇

+ =

∫ ∫ ∫ ∫

∫
       (1.8) 

Definition 3.2 
A weak solution is called entropy solution of (P) if: [ ]max0,u u∈ , for 
( ) ( ) ( )( ) ( )1,1, 0, ; p xt x L T W L Qξ ∞∈ Ω ∩ ; ( ) ( ) ( )( )1,0, ; p xu L T Wφ ∞∈ Ω  [ ]max0,k u∈ , 

the following inequality holds  
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( ) ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( ) ( )

2

0

00

1
0

sign d d

d d 0, d

d d 0.

T p x

T
t

T

u k f u f k u u x t

u k x t u k x x

f k x x t

φ φ ξ

ξ ξ

η ξ

−

Ω

Ω Ω

−

∂Ω
+

− − − ∇ ∇ ⋅∇

+ − + −

⋅ ≥

∫ ∫

∫ ∫ ∫

∫ ∫ 

     (1.9) 

Remark 3.3 
Notice that if ( ) ( ) ( )( )1,0, ; p xu L T Wφ ∞∈ Ω  then 

( ) ( ) ( ) ( ) ( )( )2 1 0, ,
p x p xu u L T Lφ φ

− ′∇ ∇ ∈ Ω .           (1.10) 

3.2. Entropy Process Solution 

In this subsection, let us introduce a notion of entropy process solution based 
upon the so-called “nonlinear L∞  weak   convergence” property, which is 
well-known in the equivalent framework of the notion of measure-valued solu-
tion developed earlier by Tartar and Diperna (see [9]). 

Definition 3.4 
A measurable bounded function ( ) [ ]max: 0,1 0,Q uµ × →  is called entropy 

process solution of evolution problem (P) if for ( ) ( ) ( )( )1,0, ; p xu L T Wφ ∞∈ Ω , 
( ) ( ) ( )( ) ( )1,1, 0, ; p xt x L T W Lξ ∞∈ Ω ∩ Ω , [ ]max0,k u∈   

( ) ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( ) ( )

1 2

0 0

1 1
00 0 0

1
0

sign d d d

d d d 0, d d

d d 0.

T p x

T
t

T

k f f k x t

k x t u k x x

f k x x t

µ µ φ µ φ µ ξ α

µ ξ α ξ α

η ξ

−

Ω

Ω Ω

−

∂Ω

− − − ∇ ∇ ⋅∇

+ − + −

+ ⋅ ≥

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫ 

  (1.11) 

Remark 3.5 
( )( )0,1L Qµ ∞∈ ×  is referred to as the “process function”; it is related to the 

distribution function of the Young measure.  
We have only considered α-independent data 0u . In this case, the notion of 

entropy process solution is just a technical tool that permits to bypass the lack of 
strong compactness of sequences of approximate solutions. 

4. Existence of Entropy Solution 

This main result is the following problem: 
Theorem 4.1 
Assume that (1.1), (1.2), (1.3) and (1.4) holds. There exists an entropy process 

solution to (P). 
Proof 
Contrarily to [2] due to the strong non-linearity and the presence of p(x)- 

Laplacian operator, it seem difficult to apply the viscosity approximation but we 
can approximate problem (P) by regularized f and φ  by a family of sequence 
f  and φ  such that f  converge to f uniformly on compact set as 0→  

and φ  converges to φ  in ( )1H Ω . Let 0 0u u→  almost everywhere. Then, 
refer to [10] there exists a weak solution ( ) ( ) ( )( )1,0, ;p x p xu L T W∈ Ω  in the fol-
lowing sense 
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( ) ( ) ( ) ( )( )2
div div

p x
tu f u u u suφ φ

−
∂ + = ∇ ∇ + ∇ +            (1.12) 

where ( )s L Q∞∈  a source term. By technique of doubling the time variable, we 
obtained a 1L  contraction property and comparison principle for weak solution 
of regularized problem. Moreover u  verifies the entropy inequality with f  
and φ . 

From now, we have that the following quantities are uniformly bounded in 
 : 

Lu ∞ ; ( ) ( )( )1,1 0, ; p xL T Wφ
Ω , the time and space translate of φ  in 1L . Indeed, 

let: 

( ) ( )0 0
,. d

t

L L
L t u s τ τ∞ ∞= + ∫ . 

It is easy to see that the function L is a solution of regularized problem with 
x-constant data 0 Lu ∞ , ( ),.

L
s t ∞ . The comparison principle mentioned en-

sures that a.e. on Q 

( ) ( ) ( ) ( ) ( ), .L T L t u t x L t L T− ≤ − ≤ ≤ ≤   

Next, we use ( )uφ   as a test function in (1.12). The product between u
t

∂
∂    

and ( )uφ   is handled using the usual chain rule argument (see, e.g. [11]) can 
be adapted to space ( )p xL , where the relevant duality is between the space 

( ) ( ) ( )( ) ( )1,
0: 0, ;p x p xX L T W L Q∞= Ω ∩  and the space  

( ) ( ) ( )( ) ( )1, 10, ;p x p xL T W L Q X′ ′− Ω + ⊂  . Here we are also exploiting the L∞  
bound on ( )f u   in a straightforward fashion to treat the term  

( ) ( )f u uφ⋅∇    ; but notice that using the Green Gauss trick (1.21) below, we 
can supply a finer analysis of this term. 

For the space translate estimate, we first use (1.12) to get, for a.e. 
( ), 0,t t t Tδ+ ∈  

( ) ( )( )
( ) ( ) ( ) ( )( )2

.
t t t tp x

t t

u t u t

f u u u u

t
δ δ

δ ξ

φ φ ξ ξ

Ω

+ +−

Ω Ω

+ −

= + ∇ ∇ +⋅− ∇ ∇

∫

∫ ∫ ∫ ∫

 

      
   (1.13) 

Taking ( )( ) ( )( )u t t u tξ φ δ φ= + −     and integrating in t, using the two pre-
viously obtained estimates, we deduce that 

( ) ( ) ( )( ) ( )( ) .
Q

u t t u t u t t u t C tδ φ δ φ δ+ − + − ≤∫ ∫             (1.14) 

Now, let W be a common for all   concave modulus of continuity for φ  
on ( ) ( ),L T L T−    and Π be its inverse. Set ( ) ( )a a aΠ = Π . Let W  be a in-
verse of Π . One can see that W  is concave, continuous and ( )0 0W = . Set 

( ) ( ), ,y t x u t t xδ= +  and ( ) ( ), ,z t x u t x=  , such that ( )( ) ( ).,.u C Qφ ∞∈   

( ) ( )

( ) ( )( )( ) ( ) ( )( )1 .

Q

Q K

J y z

W y z TW y z
T

φ φ

φ φ φ φ

= −

 
= Π − Ω Π −  Ω 

∫

∫ ∫

 

   

 

Since ( ) ( ) ( )y z W y zφ φ− ≤ −   we have 
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( ) ( )( )y z y zφ φΠ − ≤ −   and 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) .y z y z y z y z y zφ φ φ φ φ φ φ φΠ − = Π − − ≤ − −         

Therefore (1.14) implies 

( )( ) ( )( )

( ) ( ) ( )1

Q

Q

u t t u t

K W y z y z Cw
K φ

φ δ φ

φ φ δ

+ −

 
≤ − − ≤  

 

∫ ∫

∫ 

   

 

 

where ( ),w Cφ
+ +∈   , ( )0 0wφ = . 

Thanks to these all estimates and standard compactness results, there exists a 
(not labelled) sequence 0→  such that: 

( )w uφ=    converges strongly in ( )1L Q  and pointwise a.e. on Q; 
w∇   converges weakly in ( ) ( )p xL Q ; 

( ) 2p xw w−∇ ∇   converges weakly in ( ) ( )p xL Q  to some limit χ ; 
u  converges to ( ): 0,1Qµ × →  in the sense of L∞ -weak star. 
Let us introduce the function 

( ) ( ) ( )1

0
, , , d ,  for a.e. , .u t x t x t x Qµ α α= ∈∫             (1.15) 

Thanks to the convergence of φ  to φ , we can identify the limit of ( ).,.w  
with ( )( )1

0
.,., dφ µ α α∫ . Moreover, since w  is converging strongly,  

( )( ).,.,φ µ α  is actually independent of ( )0,1α ∈  and equals ( )( ).,.uφ . Using 
distributional derivatives, we also identify the limit of w∇   with ( )uφ∇ . 

We have now come to the main step of the proof of this Theorem, namely to 
improve the weak convergence of ( )uφ∇    to strong convergence, and to iden-
tify the weak limit of ( ) ( ) ( )2p x

u uφ φ
−

∇ ∇     with ( ) ( ) ( )2p x
u uφ φ

−
∇ ∇ , where 

u is defined in (1.15); of course, the chief difficulty comes from the lack of strong 
convergence of u . 

We begin by specifying the test function in (1.12) as w ζ , yielding 

( ) ( )

( ) ( ) ( ) ( )

0

2

,

0

T

Q

p x

Q Q

u w f u w
t

u u w sw

ζ ζ

φ φ ζ ζ
−

∂
− ⋅∇

∂

+ ∇ ∇ ⋅∇ − =

∫ ∫

∫ ∫

   

     

         (1.16) 

where ( )w uφ=    and [ )( )0,D Tζ ∈  is nonincreasing with ( )0 1ζ = . De-
note by ,iI  , the integral in the left hand side. Next, we pass to the limit into the 
weak formulation (1.12), obtaining 

( ) ( ) ( ) ( )( ) ( )
( ) ( )

1 1, 1
0

0

div d div  in 0, ;

0, .

p x p x
tu f s L T W L Q

u x u x

µ α χ ′ ′−∂ + = + Ω +

=

∫



   (1.17) 

In (1.17), we take wζ  as test function, where ( )w uφ= , u is defined in 
(1.15), and ζ  is as specified above. The result is 

( ) ( ) ( )
0

, 0.
T

Q Q Q
u w f w w sw

t
ζ µ ζ χ ζ ζ∂

− ⋅∇ + ⋅∇ − =
∂∫ ∫ ∫ ∫      (1.18) 

Denote by iI  1,2,3,4i =  the integrals in the left hand side of (1.18) 
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( )
3 0

inlim .f p x

Q
I φ

→
≥ ∇∫

                     (1.19) 

A crucial role is played by the following calculation, which reveals that the 
lack of strong convergence of ( )f u   is not an obstacle. Indeed,  

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

1 1

0 0

1

0 0 0

0 0

div d

d 0.

Q Q

T

T

f u f

f s s

f s s

µ

µ

µ φ µ φ µ

φ

φ η

Ω

∂Ω

⋅∇ = ⋅∇

=

= ⋅ =

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

          (1.20) 

Because for a.e ( )0,1α ∈  we have ( ) ( )uφ µ φ=  in ( ) ( ) ( )( )1,0, ;p x p xL T W Ω . 
By similar (simpler) arguments and ( ) ( ) ( )( )1,0, ;p x p xu L T W∈ Ω , we also have 

( ) ( ) ( ) ( )( )0 0
div d 0.

T u

Q
f u u f s sφ φ

Ω
⋅∇ = =∫ ∫ ∫ ∫



               (1.21) 

Consequently, we can make 2I  and 2,I   (for each 0> ) vanish. 

( )

( )( ) ( )( )
( ) ( ) ( ) ( )( )

( )( )( ) ( )( )
( )( ) ( )( )( )
( )

0

1
00

0

0

1 0

0 0

, , d

0 0

1

0 0 0

0 00

1,00 0

,

d d

d d

d d

lim d d

lim , lim .

T

u u

Q

t x u

Q

u

Q

u u

Q

T

I u u
t

s s s s

s s s s

s s s s

s s s s

u u I
t

µ α α

µ

φ ζ

φ ζ φ

φ ζ φ

φ ζ φ

φ ζ φ

φ ζ

Ω

Ω

Ω

Ω→

→ →

∫

∂
=

∂

′= − −

  ′= − − 
 

′≤ − −

′= − −

∂
= =

∂

∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫



 

    

 

Here we have use the fact that the convex function ( )
0

d
z

s sφ∫  converge un-
iformly on any compact set of   to ( )

0
d

z
s sφ∫  , due to Jensen's inequality. 

Then, we have 1 1,I I≤  . 
It is clear that 3, 3I I→  as 0→ . Letting ζ  tend to [ )0,T1 , the desired 

inequality (1.19) follows from subtracting the 0→  limit of (1.16) from (1.18) 
and the above calculations. From (1.19)  

( ) ( ) ( ) ( )22 0
p xp xw w u uφ φ

−−∇ ∇ − ∇ ∇ →               (1.22) 

weakly in ( )p xL ′  as 0→  Hence ( ) ( ) ( )2p x
u uχ φ φ

−
= ∇ ∇ .  

Simultaneously, from the strict monotonicity of ( ) 2p xr r−  we deduce that, 
firstly, the convergence in (1.22) also takes place a.e. in Q; secondly, that (1.19) 
actually holds with an equality sign. Next 

( ) ( ) ( ) ( ) ( ) a.e in ;  as 0
p xp x p x p x

Q Q
w u Q wφ φ∇ → ∇ ∇ → ∇ →∫ ∫     

Hence, we deduce that a subsequence of ( )( )p xw∇ 


 converges to ( )p xφ∇    

strongly in ( )1L Q . By Vitali theorem yields the strong ( )p xL  convergence of 
w∇  , along a subsequence if necessary, to a limit already identified as w∇ , 

( )w uφ= . Finally, uses the continuity of entropy fluxes and non nonlinear L∞  
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weak-   convergence we can pass to the limit in the entropy inequalities cor-
responding to   data and deduce that µ  is an entropy process solution.  

From now, it remains to prove that entropy process solution is equivalent to 
entropy solution. 

Theorem 4.2 
Suppose all assumptions (1.1), (1.2), (1.3) and (1.4) holds. Let µ  be an en-

tropy process solution of the problem (P) with initial data 0u . Then it is unique. 
Moreover, there exists a function ( )u L Q∞∈  such that ( ) ( ), , ,t x u t xµ α =  for 
a.e. ( ) ( ), , 0,1t x Qα ∈ × . 

Proof (Sketched)  
The uniqueness of an entropy process solution can be established using 

Kruzhkov’s method, along the lines of Carrillo. In fact, taking two entropy 
process solutions ( ), ,t xµ α  and ( ), ,t xµ β  for ( ),t x Q∈ , and ( ) ( )2, 0,1α β ∈  
with the choice of an appropriate test function we can deduce uniqueness and 
that it is α–independent this mean that ( ) ( ), , ,t x u t xµ α =  for  
( ) ( ), , 0,1t x Qα ∈ ×  and u is an entropy solution of (P).  

5. Conclusion and Perspective of Uniqueness of  
Entropy Solution 

In this paper, it is a question of proposing an entropy formulation of the prob-
lem (P) and proving the existence of a solution. The approach to achieve this is 
different from that used in [2] and also in [3]. We take advantage of the L∞  
bound of the sequence of solutions and some a priori estimates to show that the 
sequence of approximate solutions converges towards a notion of solution called 
entropy process solution and this notion coincides with the notion of entropy 
solution. 

The question of uniqueness deserves to be looked at. Two difficulties may ap-
pear: first, the doubling of variables method (see [4]) is not adapted because of 
the presence of ( )p x . Then it is difficult as in the papers [2] [3] to prove that 
entropy solution is trace regular. 

It is possible to study trace regularity of solution of the stationary problem as-
sociated with (P) and to use the arguments of nonlinear semigroup theory. 
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