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Abstract: Objective: To conduct a comprehensive and systematic review of the application of existing
artificial intelligence for tooth segmentation in CBCT images. Materials and Methods: A literature
search of the MEDLINE, Web of Science, and Scopus databases to find publications from inception
through 21 August 2023, non-English publications excluded. The risk of bias and applicability of
each article was assessed using QUADAS-2, and data on segmentation category, research model,
sample size and groupings, and evaluation metrics were extracted from the articles. Results: A
total of 34 articles were included. Artificial intelligence methods mainly involve deep learning-
based techniques, including Convolutional Neural Networks (CNNs), Fully Convolutional Networks
(FCNs), and CNN-based network structures, such as U-Net and V-Net. They utilize multi-stage
strategies and combine other mechanisms and algorithms to further improve the semantic or instance
segmentation performance of CBCT images, and most of the models have a Dice similarity coefficient
greater than 90% and accuracy ranging from 83% to 99%. Conclusions: Artificial intelligence methods
have shown excellent performance in tooth segmentation of CBCT images, but still face problems,
such as the small size of training data and non-uniformity of evaluation metrics, which still need to
be further improved and explored for their application and evaluation in clinical applications.

Keywords: artificial intelligence; image processing, computer-assisted; cone-beam computed tomography

1. Introduction

Cone Beam Computed Tomography (CBCT) has been widely used in the diagnosis of
oral disease and treatment. This includes applications such as studying orthodontic plans,
planning orthognathic surgery, determining the position of dental implants, and diagnosing
maxillofacial diseases [1–3]. Compared to multi-slice CT, CBCT offers a higher spatial
resolution and improved contrast-to-noise ratio, while significantly reducing radiation
dose [4]. CBCT images offer high-quality diagnostic images of oral soft and hard tissues,
allowing medical professionals to obtain more comprehensive information, such as precise
3D information about teeth and bones [5,6]. This enhanced spatial characteristic allows for
more accurate localization and evaluation, ultimately improving treatment plans.

Correctly identifying and segmenting teeth from CBCT images plays an important
role in supporting clinicians with diagnosis and treatment. The segmentation results can
be further used for orthodontic treatment planning, 3D-guided implant surgery, or auto-
transplantation of teeth in children, thereby improving the accuracy and success rate of the
procedures. Nevertheless, achieving precise segmentation or extracting regions of interest
(ROI) is a challenging task. In maxillofacial CBCT images, the pixel proportion of teeth is
relatively low, especially in the apical regions, and challenges, such as noise, low contrast,
and uneven exposure, are often encountered [7]. The roots also have similar densities as the
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surrounding alveolar bone, making it difficult to precisely distinguish their grayscale values
in the images and capture the details of roots [8]. Moreover, there are some other reasons
that cause the segmentation regions to overlap or have indistinct boundaries, including
the occlusion between upper and lower dental arches, crowded teeth, impacted teeth, and
artifacts resulting from dental restorative materials, such as fillings, crown restorations,
and implants [9]. Long scan time also increases the possibility of image blurring due to
patient movement. Hence, precise tooth detection and segmentation from CBCT images
has become a significant research concern.

Current tooth segmentation methods primarily rely on traditional manual segmen-
tation with human–computer interaction, including threshold-based, region-based, and
edge-based segmentation. The threshold-based segmentation is a traditional digital image
processing algorithm that separates foreground from background by setting an appropriate
grayscale level [10]. However, this segmentation method is highly influenced by the defini-
tion of foreground targets. When there are significant changes in the gray value of the target,
it is challenging to accurately determine the segmentation results [11]. The region-based
segmentation methods split the image into several regions based on discontinuities in
intensity levels of pixels, and then merge the regions based on consistency [12]. However,
the performance of this segmentation method is affected by similarity measurements and
sensitivity to image noise [13]. It is also more computationally required due to the necessary
continual region comparison and classification. Currently, the most widely used method for
tooth segmentation is the Level Set Method (LSM) through geometric operations to detect
topological changes in contours [14]. LSM offers more accurate localization and faster seg-
mentation speed. Gan et al. [15] initially applied the LSM globally to obtain high-density
alveolar bone regions and then applied this locally to identify individual teeth within
the alveolar bone. Jiang et al. used two different level sets in alternate evolution, further
enhancing tooth segmentation accuracy [16]. Although LSM addresses some challenges
in tooth segmentation, its accuracy remains limited for uneven regions and boundaries of
missing teeth, and it lacks robustness for complex tooth occlusion relationships.

Artificial intelligence (AI) is emerging as a new field in dentistry, aiming to enhance
dental care by making it more seamless, efficient, time-saving, and cost-effective for practi-
tioners [17,18]. With the progress of AI, machine learning and deep learning methods are
also starting to become popular in segmenting medical images. Conventional manual seg-
mentation approaches often require the establishment of intricate rules, while data-driven
AI models demonstrate superior accuracy and generalization capabilities [19]. Fernandez
and Chang successfully used artificial neural networks to analyze palatal view photographs
of the maxilla, effectively distinguishing between the teeth and soft tissues [20]. Deleat-
Besson et al. proposed a two-stage machine learning-based tooth segmentation system [21].
They extracted and verified meaningful root canal parameters as well as dental crown
features by evaluating and testing datasets, enabling automatic segmentation of upper
and lower root canals. The root was then separated from the crown and integrated into
classification and labeling. Deep learning methods, such as convolutional neural networks
(CNNs), have further improved model structures and fortified the capacity of computation
while improving results’ precision through multi-level leaning optimization [22]. Miki et al.
enhanced the classical CNN model, achieving precise classification of teeth for seven differ-
ent types, including central incisors, lateral incisors, canines, first and second premolars,
and first and second molars [23]. Ronneberger et al. introduced the U-Net image semantic
segmentation network, which was subsequently successfully applied to automatic tooth
segmentation in X-ray images by other researchers [24,25]. Additionally, He et al. pro-
posed Mask R–CNN, which was built on a CNN with region proposal networks, enabling
classification, localization and segmentation of each detected object, for instance, tooth
segmentation [26].

Due to the introduction of many artificial intelligence models, the performance of
2D X-ray image segmentation has been significantly improved. However, application in
CBCT images of teeth is limited. On one hand, three-dimensional segmentation imposes
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higher requirements on computer performance as well as the design of neural network
model architecture. On the other hand, the establishment of CBCT training datasets is more
difficult, with no typical way of guiding it, and leading to great variations in segmentation
results. Thus, the objective of this study is to perform a systematic review on the application
progress of artificial intelligence in tooth segmentation from the CBCT image, so as to lay a
comprehensive theoretical foundation for novel methods towards diagnosing and treating
oral diseases in the future.

2. Methods
2.1. Research Questions

The primary research question was “What artificial intelligence/machine learning-
based models are described in the literature for segmenting permanent human teeth in
CBCT images?”. The secondary research questions were: “What is the size of the dataset
these models are built from, including the training set and the testing set?” and “How is
the accuracy of tooth segmentation assessed?”.

2.2. Search Strategy

A literature search was conducted of the MEDLINE, Web of Science, and Scopus
databases to find publications published from the inception through 21 August 2023,
without language restrictions, using the following keywords in Table 1. The retrieval
process was conducted independently by Y.Z. and M.T.

Table 1. Searching strategy for database.

Database Query Results

MEDLINE
(“artificial intelligence” OR “deep learning” OR “machine learning” OR “neural networks” OR

“automatic” OR “automated”) AND (“cone-beam computed tomography” OR “CBCT” OR “3D”)
AND (“tooth segment*” OR “teeth segment*”)

154

Web of Science
TS = (((artificial intelligence) OR (deep learning) OR (machine learning) OR (neural networks) OR

(automatic) OR (automated)) AND ((cone-beam computed tomography) OR (CBCT) OR (3D))
AND ((tooth segment*) OR (teeth segment*)))

276

Scopus

TITLE-ABS-KEY (((artificial AND intelligence) OR (deep AND learning) OR (machine AND
learning) OR (neural AND networks) OR (automatic) OR (automated)) AND ((cone-beam AND

computed AND tomography) OR (CBCT) OR (3d)) AND ((tooth AND segment*) OR
(teeth AND segment*)))

299

Total: 729

2.3. Exclusion Criteria

In accordance with the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) 2020 guidelines shown in Figure 1, duplicate articles, reviews, case
reports, as well as non-English publications, were also excluded [27]. Titles and abstracts of
articles were reviewed, and eligible full text was retrieved for further evaluation. Articles
in which the scope of the study was not dentistry, the subjects of the study were not teeth
and CBCT, and the techniques employed were not related to artificial intelligence were
also excluded.

2.4. Data Extraction

Two authors (Y.Z. and A.A.) independently screened and extract data. Any disagree-
ment was resolved by discussion until consensus is reached or by consulting a third author
(M.T.). An initial screening was conducted based on the title and abstract of the articles,
followed by a further full-text screening of all articles that met the inclusion criteria. Data
extraction was performed from the articles that finally met all the criteria, including the
title, author, publication year of the article, segmentation category, research model, sample
size and grouping, and evaluation metrics. (Table 2).
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Table 2. Research details of all included articles.

Author Category Framework Capture Method Number of Samples Evaluation Metrics Model Reproducibility

Yin et al.
2023 [28] Semantic

A context-transformed TransUNet++
(CoT-UNet++) architecture utilized a hybrid
encoder to obtain contextual information between
adjacent keys and global context, decode, and then
fuse at multiple scales through dense concatenation
to obtain more accurate location information for
tooth segmentation.

CBCT

20 groups of
300 images
-Number of training and testing
are not available

-Dice Similarity Coefficient (DSC): 0.9206
-Mean Intersection over Union (mIoU): 0.8605
-Mean Pixel Accuracy (MPA): 95.91%
-True Positive Rate (TPR): 93.85%
-95% Hausdorff Distance (HD): 1.06 mm
-Average System Surface Distance (ASSD): 0.48 mm

Not available

Ayidh
Alqahtani et al.
2023 [29]

Instance

A multi-class deep CNN based tool for
segmentation and classification of teeth with
brackets. The CNN model was proposed by
previous research (Shaheen et al. 2021).

CBCT

215 scans
-Training: 140
-Validation: 35
-Test: 40

-Dice Similarity Coefficient (DSC): 0.99
-Intersection Over Union (IoU): 0.99
-Precision: 99%
-Recall: 99%
-Accuracy: 99%
-95% Hausdorff Distance (HD): 0.12 mm
-Segmentation time: 43.56 s

Request by contacting; Virtual
Patient Creator
(https://creator.relu.eu,
accessed on 21 August 2023)

Xie et al.
2023 [30] Semantic

A deep learning method (FCOS) to detect location
and size of each tooth and generate prior ellipses to
constrain the evolution of level set by distance, and
find out joint point using curvature direction, and
then segment tooth.

CBCT
10 scans (453 slices)
-Training: 7
-Testing: 3

-Dice coefficient: 0.9480
-Jaccard coefficient (JS): 0.9023
-Precision (PN): 94.84%
-Boundary F1 (BF) score: 0.9795

Code available
(https://github.com/ruicx/
Individual-Tooth-Segmentation-
with-Rectangle-Labels,
accessed on 21 August 2023)

Wang et al.
2023 [31] Instance

A 3D ERFNet base bone neural network adopted
three branches to learn the spatial embedding, seed
map, and identification simultaneously for tooth
instance segmentation and further obtained root
canal segmentation.

CBCT
201 volumes
-Split into three folds for
cross-validation

-Symmetric best dice (SBD): 0.9584
-Average instance dice (AID): 0.9425
-Identification accuracy (FA): 97.97%
-Average symmetric surface distance (ASSD): 0.12 mm

Confidential

Chen et al.
2023 [32] Semantic

A CNN–Transformer Architecture UNet
(CTA–UNet) network, which combined the
advantages of CNNs and Transformers through a
parallel architecture, integrated local features
extracted by CNNs and global representations
obtained by self-attention modules (MSAB) to
enhance the segmentation performance.

CBCT

45 volumes
-Training: 27
-Validation: 9
-Testing: 9

-Dice similarity coefficient (DSC): 0.8650
-Intersection over union (IoU): 0.7812
-95% Hausdorff Distance (HD95): 0.64 mm
-Average Symmetric Surface Distance (ASSD):
0.21 mm

Request by contacting

Yang et al.
2022 [33] Semantic

A U-Net model was first pre-trained using five
labeled classes of images and then combined with a
watershed approach to effectively segment the
teeth, pulp cavity, and cortical bone.

CBCT
5 photos
-Number of training and testing
are not available

-Dice score (DSC): 0.9859 Not available

Xie et al.
2022 [34] Instance

A novel segmentation approach based on
multi-task CNN and watershed transform (MCW).
Multi-task CNN based on U-Net segmented the
tooth foreground and landmark from 2D CBCT
slices, 3D marked controlled watershed transform
method separated the overlapping 3D tooth objects,
and the post-processing method based on prior
knowledge merged the individual tooth with the
detached tooth root.

CBCT

78 scans (38,082 slides)
-Training: 39 (19,416 slides)
-Validation: 14 (6820 slides)
-Testing: 25 (11,846 slides)

-Dice Similarity Coefficient (DC): 0.88
-Precision (P): 98%
-Recall (R): 93%
-Average Symmetric Surface Distance (ASSD):
0.53 mm

Not available

https://creator.relu.eu
https://github.com/ruicx/Individual-Tooth-Segmentation-with-Rectangle-Labels
https://github.com/ruicx/Individual-Tooth-Segmentation-with-Rectangle-Labels
https://github.com/ruicx/Individual-Tooth-Segmentation-with-Rectangle-Labels
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Table 2. Cont.

Author Category Framework Capture Method Number of Samples Evaluation Metrics Model Reproducibility

Lee et al.
2022 [35] Instance

A two-stage point-based detection network using
the FCN layers followed by an encoding–decoding
structure to extract feature maps, and 3D U-Net
architecture for individual tooth segmentation. The
adjacent teeth were detected by introducing a
novel GD loss function within heatmap regression.

CBCT

120 scans
-Training: 80
-Validation: 20
-Testing: 20

-Intersection over Union (IOU): 0.704
-Precision: 93.2%
-Average Precision 50 (AP50): 90.91%
-Recall: 91.9%
-Object Include Ratio (OIR): 96.6%

Not available

Khan et al
2022 [36] Semantic

A novel deep learning model consists of 38 layers
having 11 blocks of 3D convolutional layers
followed by batch normalization layers and Relu
layers.

CBCT

70 volumes (Dataset
augmentation by flipping to 140
volumes)
-Training: 84
-Validation: 28
-Testing: 14

-Layers: 38
-Mean Dice score: 0.90
-Mean intersection over union (IoU): 0.60
-Validation accuracy: 95.54%
-Training time: 23 h
-Model size: 4.3 MB

Not available

Cui et al. a,
2022 [37] Instance

A deep learning-based AI system with a hierarchical
morphology-guided network to segment individual
teeth and a filter-enhanced network to extract
alveolar bony structures. Images were preprocessed
by V-Net for ROI detection and two-stage tooth
segmentation, which detected each tooth and
represented it by the predicted skeleton. Then
multi-task learning network predicted each tooth’s
volumetric mask by simultaneously regressing the
corresponding tooth apices and boundaries.

CBCT

Internal dataset
4938 scans (4215 patients)
-Training and Validation: 3457
(3172 patients)
-Testing: 1481 (1043 patients)
External dataset
407 scans (404 patients)

Internal:
-Average Dice score: 0.941
-Average sensitivity: 93.9%
-Average ASD error: 0.17 mm
External:
-Average Dice: 0.9254
-Sensitivity: 92.1%
-ASD error: 0.21 mm

Partial CBCT data available
(https://pan.baidu.com/s/
1LdyUA2QZvmU6ncXKl_bDTw,
password:1234, accessed on
21 August 2023); Code available
(https://pan.baidu.com/s/19
4DfSPbgi2vTIVsRa6fbmA,
password:1234, accessed on
21 August 2023)

Hsu et al.
2022 [38] Semantic

A 3.5D U-Net was generated via majority voting
for the predictions of 2D U-Nets from three
orthogonal slices, 2.5D U-Net, and 3D U-Net at
different combination strategies.

CBCT

24 patients
-Divided into 4 groups, 6
patients per group for
cross validation

DSC: 0.911
Accuracy: 99.9%
Sensitivity: 88.8%
Sp: 1.00
PPV: 97.0%
NPV: 99.9%

Request by contacting

Gerhardt et al.
2022 [39] Instance

A two-stage 3D U-Net architecture to assess the
accuracy of automated detection of teeth and small
edentulous regions, which was proposed by
previous research (Shaheen et al. 2021).

CBCT

175 scans
-Training: 140
-Testing: 35
-Validation: 46 from extra

For fully dentate patients:
-Intersection over union (IoU): 0.96
-Accuracy: 99.7%
-Recall: 99.7%
-Precision: 100%
-95% Hausdorff Distance (95HD): 0.33 mm

For patients presenting small edentulous areas:
-Intersection over union (IoU): 0.97
-Accuracy: 99.%
-Recall: 100%
-Precision: 98.7%
-95% Hausdorff Distance (95HD): 0.15 mm

Time needed for the human versus machine detection
-dental specialist-median time: 98 s to perform the
analysis
-the AI-median time: 1.5 s to do the same task

Virtual Patient Creator
(https://creator.relu.eu,
accessed on 21 August 2023)

https://pan.baidu.com/s/1LdyUA2QZvmU6ncXKl_bDTw
https://pan.baidu.com/s/1LdyUA2QZvmU6ncXKl_bDTw
https://pan.baidu.com/s/194DfSPbgi2vTIVsRa6fbmA
https://pan.baidu.com/s/194DfSPbgi2vTIVsRa6fbmA
https://creator.relu.eu
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Table 2. Cont.

Author Category Framework Capture Method Number of Samples Evaluation Metrics Model Reproducibility

Fontenele et al.
2022 [40] Instance

A two-stage 3D U-Net architecture to assess the
influence of dental fillings on performance for
tooth segmentation, which was proposed by
previous research (Shaheen et al. 2021).

CBCT

175 scans
-Training: 140
-Validation: 35
-Test: 74

-Dice similarity coefficient (DSC): 0.96
-Intersection over union (IoU): 0.92
-Accuracy: 100%
-Recall: 96%
-Precision: 95%
-95% Hausdorff Distance (95HD): 0.27 mm

Virtual Patient Creator
(https://creator.relu.eu,
accessed on 21 August 2023)

Fang et al.
2022 [41] Instance

A novel curvature enhanced implicit function
network for high-quality tooth model generation,
which combines the CNN-based segmentation
network (HMG–Net) with an implicit function
network to generate 3D tooth models with
fine-grained geometric details.

CBCT
Intra-oral scanning

50 scans
-Training: 20
-Validation: 10
-Testing: 20

-Intersection over Union (IoU): 0.8303
-Chamfer-L2: 3.00 × 10−4

-Normal Consistency (Normals): 96.25%
-Occupancy accuracy (OccAcc): 79.7%

Not available

Dou et al.
2022 [42] Instance

A new two-stage deep learning network (TSDNet)
from tooth centroid localization to tooth instance
segmentation. The first stage used a centroid
prediction network (V-Net framework
+density-based fast search clustering algorithm) to
predict the tooth centroid to achieve accurate
spatial localization of individual teeth. Then a
tooth instance segmentation network
(self-attention mechanism-based guidance module
for tooth geometry structure information and tooth
feature integration module based on multi-scale
fusion of dilated convolutions) was used to obtain
instance-level tooth information of individual teeth.
The second stage achieves robust and accurate
tooth segmentation from CBCT data.

CBCT

40 CBCT scans
-training: 30
-validation: 5
-testing: 5

-Dice: 0.952
-Jaccard: 90.2%
-Detection accuracy (DA): 99.6%
-Average surface distance (ASD): 0.15 mm
-Hausdorff distance (HD): 2.12 mm

Not available

Jang et al.
2022 [43] Instance

A hierarchical multi-step deep learning model by
reconstruction panoramic Image from 3D CBCT
Images, identification and 2D segmentation of
individual teeth in the panoramic images,
extraction of loose and tight 3D tooth ROIs using
the detected bounding boxes and segmented tooth
regions, and finally 3D segmentation for individual
teeth from the 3D tooth ROIs.

CBCT

97 scans:
-Training: 66
-Testing: 31

For the 3D segmentation
-Training: 7
-Testing: 4

-Dice similarity coefficient (DSC): 0.9479
-Precision: 95.97%
-Recall: 93.71%
-Hausdorff distance (HD): 1.66 mm
-Average symmetric surface distance (ASSD): 0.14 mm

Not available

Cui et al. b,
2022 [44] Semantic

Established a fully annotated CBCT dataset CTooth
with tooth gold standard, which contained 22
volumes (7363 slices) with fine tooth labels. An
attention-based segmentation framework based on
U-Net with an attention branch at the bottleneck
position was proposed.

CBCT

CTooth Database:
-5803 slices (4243 contain
tooth annotations)
-5504 annotated images from
22 patients

-Dice similarity coefficient (DSC): 0.8804
-Intersection over union (IoU): 0.7871
-Weighted dice similarity coefficient (WDSC): 95.14%
-Sensitivity (SEN): 94.71%
-Predictive value (PPV): 82.3%

CTooth
(https://github.com/
liangjiubujiu/CTooth,
accessed on 21 August 2023)

https://creator.relu.eu
https://github.com/liangjiubujiu/CTooth
https://github.com/liangjiubujiu/CTooth
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Table 2. Cont.

Author Category Framework Capture Method Number of Samples Evaluation Metrics Model Reproducibility

Cui et al. c,
2022 [45] Semantic

Established a 3D dental CBCT dataset CTooth+,
with 22 fully annotated volumes and 146 unlabeled
volumes, and further evaluate several tooth
segmentation strategies based on fully supervised
learning, semi-supervised learning and active
learning, with definition of the
performance principles.

CBCT

CTooth+ Database:
-5504 annotated CBCT images of
22 patients
-25,876 unlabeled images of
146 patients

31,380 scans
-Training: 80% for the fully
supervised (with labelled
images) and semi-supervised
methods (with labelled and
unlabeled images).
-Evaluation:
20% image volumes

1. Compared 8 fully-supervised segmentation
methods: (3D SkipDenseNet, DenseVoxelNet, 3D
Unet, VNet, Voxresnet, nnUnet, Dense Unet,
Attention Unet)
-Dice similarity coefficient (DSC):
Attention UNet: 0.866
-Intersection-over-union (IoU):
Attention UNet: 0.7645
-Sensitivity (SEN): Dense UNet: 90.80%
-Positive predictive value (ppv):
Attention UNet: 87.79%
-Hausdorff distance (HD): nnUNet: 1.29 mm
-Average symmetric surface distance (ASSD):
Attention UNet and nnUNet: 0.27 mm
-Surface overlap (SO): Dense UNet: 95.98%
-Surface dice (SD): Dense UNet: 95.91%

2. Compared 4 semi-supervised methods (trained by
9 labelled volumes and 8 unlabeled volumes) (MT,
CPS, DCT, CTCT)
-Dice similarity coefficient (DSC): CTCT: 0.8532
-Intersection-over-union (IoU): CTCT: 0.746
-Sensitivity (SEN): CTCT: 87.55%
-Positive predictive value (ppv): CTCT: 84.22%
-Hausdorff distance (HD): MT: 2.76 mm
-Average symmetric surface distance (ASSD):
CTCT: 0.43 mm

3. Compared 3 active learning-based methods
(trained by 9 labelled volumes and 8 unlabeled
volumes) (ENT, MAR, CEAL)
-Dice similarity coefficient (DSC): FSL 82: 0.866
-Intersection-over-union (IoU): FSL 82: 0.7645
-Sensitivity (SEN): CEAL: 87.85%
-Positive predictive value (ppv): FSL 82: 87.79%
-Hausdorff distance (HD): MT: 2.76 mm
-Average symmetric surface distance (ASSD):
CEAL: 1.05 mm
-Surface overlap (SO): CEAL: 95.92%
-Surface dice (SD): CEAL: 0.9589

CTooth+
(https://github.com/
liangjiubujiu/CTooth,
accessed on 21 August 2023)

Al-Sarem et al.
2022 [46] Semantic

A pre-trained deep learning model (DenseNet169)
based on U-Net for detecting and classifying
tooth regions.

CBCT

500 scans
-Training: 70%
-validation: 20%
-Testing: 10%

-Accuracy: 90.81%
-Precision: 96%
-Recall: 97%
-F1-score: 0.97

Request by contacting;

https://github.com/liangjiubujiu/CTooth
https://github.com/liangjiubujiu/CTooth
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Table 2. Cont.

Author Category Framework Capture Method Number of Samples Evaluation Metrics Model Reproducibility

Yang et al.
2021 [47] Instance

A two-stage tooth segmentation model with deep
convolutional neural networks and level set
method. First to detect the center point, direction
and length of the tooth by deep convolutional
neural networks (segment dental pulp by U-Net to
locate the tooth) and use a series of mathematical
methods to fit an ellipse curve as the shape prior
information, which is used to define the prior
constraint term. Then, to combine the image data
term, the length term, the regularization term and
the prior constraint term to define the level set
formulation of the energy functional and propose
an accurate tooth segmentation model.

CBCT

10 patients (512 scanning slices
for each)
For training U-Net for pulp
segmentation:
-Training: 2 patients (1024 slices)
-Validation: 1 patient (512 slices)

-Dice coefficient: 0.9791,
-Jaccard coefficient: 0.9595
-Detection accuracy: 97.33%
-Mean boundary F1 score: 0.9824

Not available

Shaheen et al.
2021 [48] Instance

A CNN-based system for segmentation of each
individual tooth and classification to a particular
tooth class, which uses a 3D UNet to segment tooth
with bounding box.

CBCT from two machines

186 CBCT scans
-Training: 140 (teeth: 400)
-Validation: 35 (teeth: 100)
-Testing: 11 (teeth: 332)

For segmentation
-Dice similarity coefficient (DSC): 0.90
-Intersection over union (IoU): 0.82
-Recall: 83%
-Precision: 98%
-95% Hausdorff Distance (HD): 0.56 mm
-Time: 13.7 ± 1.2 s

For classification
-Recall: 98.5%
-Precision: 97.9%
-Accuracy: 96.6%

Virtual Patient Creator
(https://creator.relu.eu,
accessed on 21 August 2023)

Lin et al.
2021 [49] Semantic

A novel data pipeline based on micro-CT data to
train the 2D U-Net for an accurate pulp cavity and
tooth segmentation on CBCT images. The 2D U-Net
containing region proposal network (RPN) with a
feature pyramid network (FPN) structure was
proposed in previous research to locate the extracted
tooth and segmentation (Duan et al. 2021).

CBCT
Micro CT

30 Teeth
-Training: 25 groups
(3200 sagittal slices and
6400 axial slices)
-Testing: 5 groups

-Dice similarity coefficient (DSC): 0.962
-precision rate (PR): 97.31%
-recall rate (RR): 95.11%
-average symmetric surface distance (ASSD): 0.09 mm
-Hausdorff distance (HD): 1.54 mm

Not available

Cui et al.
2021 [50] Instance

A hierarchical morphological guide model with 3D
V-Net as backbone located tooth centroids and
predicted skeletons first, and then predicted the
detailed geometric features (tooth volume,
boundary, and root landmarks) with a multi-task
learning mechanism under guidance.

CBCT

100 CBCT
-Training set: 50
-Validation set: 10
-Testing: 40

-Dice: 0.948
-Jaccard: 0.891
-Average surface distance (ASD): 0.18 mm
-Hausdorff distance (HD): 1.52 ± 0.28 mm

Not available

Lahoud et al.
2021 [51] Instance

A CNN based AI-driven tooth wegmentation,
automated detection and segmentation of
tooth structures.

CBCT

2924 slices,
-Training: 2095
-Optimization: 501
-Validation: 328

-DSC: 0.93
-IoU: 0.87
-Segmentation volumes: 536 mm3
-Average median surface deviation: 7.85 mm
-Time: 0.5 min

Not available

https://creator.relu.eu
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Table 2. Cont.

Author Category Framework Capture Method Number of Samples Evaluation Metrics Model Reproducibility

Duan et al.
2021 [52] Instance

A two-phase deep learning solution for tooth and
pulp segmentation using U-Net in CBCT images.
First, the single tooth bounding box is extracted by
using the Region Proposal Network (RPN) with the
Feature Pyramid Network (FPN) method from the
perspective of panorama. Second, U-Net model is
iteratively performed for refined tooth and
pulp segmentation.

CBCT 20 sets
Ten-fold cross-validation

Single root tooth/Multi-root tooth
-Dice similarity coefficient (DSC): 0.957/0.962
-Average symmetric surface distance (ASD):
0.104/0.137 mm
-Relative volume difference (RVD): 0.049/0.053

Not available

Wang et al.
2021 [53] Semantic

A novel CNN architecture, mixed-scale dense
(MS-D) CNN, for multiclass segmentation of the
jaw, the teeth, and the background in CBCT scans.

CBCT

30 scans (9507 slices)
-Divided into 4 subsets, 7 scans
each (4-fold cross-validation
scheme)
-Training: 3
-Testing: 1

-Dice similarity coefficient (DSC): 0.945
-MAD: 0.204 ± 0.061 mm Not available

Wu et al.
2020 [54] Instance

A two-level hierarchical deep neural network for
tooth segmentation. First embed center-sensitive
mechanism with global stage heatmap and a deep
supervised 3D-Unet, to ensure accurate tooth
centers and guide the localization of tooth
instances. Then, in the local stage,
DenseASPP-UNet is proposed for fine
segmentation and classification and a
boundary-aware dice loss is proposed to gain
accurate tooth boundaries.

CBCT
20 scans
-Training: 12 (324 teeth)
-Testing: 8 (219 teeth)

-Dice similarity coefficient (DSC): 0.962
-Detection accuracy (DA): 99.1%
-Identification accuracy (FA): 99.5%
-Average Symmetric Surface Distance (ASD):
0.122 mm

Not available

Rao et al.
2020 [55] Semantic

A symmetric fully convolutional residual network,
with dense conditional random fields (DCRF) to
refine the posterior probability map.
It used a novel Deep Bottleneck Architecture (DBA)
to replace the general convolutional layer in U-Net
and introduce a skip connection structure to
enhance the propagation and reuse of the features.
The DCRF was applied for overall structured
prediction to get rid of the noises in the images,
which can locate the tooth contour precisely.

CBCT

-Training: 86 images
(conventional/unconventional
= 51/35)
-Testing: 24 images

-Volume Difference (VD): 18.86
-Dice Similarity Coefficient (DSC): 0.9166
-Average Symmetric Surface Distance (ASSD):
0.25 mm
-Maximum Symmetric Surface Distance (MSSD):
1.18 mm

Not available

Lee et al.
2020 [56] Semantic

A CNN based method (UDS-Net) with multi-phase
training and preprocessing based on the U-Net
structure. For multi-phase training, sub-volumes of
different sizes were defined and used to produce
stable and fast convergence. Then, a
histogram-based method was used as a
preprocessing step to estimate the average gray
density level of the bone and tooth regions. Finally,
a posterior probability function was developed and
regularized the CNN models with spatial dropout
layers and replaced the convolutional layers with
dense convolution blocks, further improving the
segmentation performance.

CBCT

102 datasets
-Training: 69 (1066 images)
-Validation: 1 (400 images)
-Testing: 32 (151 images)

For validation
-Dice: 0.938
-Recall: 95.2%
-Precision: 92.4%

For testing
-Dice: 0.918
-Recall: 93.2%
-Precision: 90.4%

Not available
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Table 2. Cont.

Author Category Framework Capture Method Number of Samples Evaluation Metrics Model Reproducibility

Chung et al.
2020 [57] Instance

A neural network, pose-aware TRCNN, for
pixel-wise labeling to exploit an instance
segmentation framework that is robust to metal
artifacts. First, the alignment information of the
patient was extracted by pose regression neural
networks to attain a volume-of-interest (VOI) region
and realign the input image, which reduces the inter
overlapping area between tooth bounding boxes.
Then VOI region was realigned based on the pose.
Finally, a 3D U-Net was performed for individual
tooth segmentation by converting the pixel-wise
labeling task to a distance regression task.

CBCT
-Training: 100 images
-Training: 50
-Testing: 25

-F1 score: 0.93
-Aggregated Jaccard index (AJI): 0.86
-Precision: 93%
-Sensitivity: 93%
-Hausdorff distance (HD): 1.59 mm
-Average symmetric surface distance (ASSD): 0.20 mm

Not available

Chen et al.
2020 [58] Instance

A multi-task 3D fully convolutional network (FCN)
and marker-controlled watershed transform (MWT)
to segment individual tooth. The multi-task FCN
learns to simultaneously predict the probability of
tooth region and the probability of tooth surface.
Through the combination of the tooth probability
gradient map and the surface probability map as the
input image, MWT is used to automatically separate
and segment individual tooth.

CBCT
25 patient
-Training: 20
-Testing: 5

-Jaccard similarity coefficient (Omega): 0.936
-Dice similarity coefficient (DSC): 0.881
-Relative volume difference (RVD): 0.072
-Average symmetric surface distance (ASSD):
0.363 mm

Not available

Ezhov et al.
2019 [59] Semantic

A V-Net based fully convolutional network for
both coarse and fine segmentation. First, the model
was trained to predict coarse segmentation using a
large weakly labeled dataset, and then finetuned
on a smaller, precisely labeled dataset while still
predicting coarse masks.

CBCT -Training: 93%
-Testing: 7%

-Intersection over union (IoU): 0.94
-Average surface distance (ASD): 0.17 mm Not available

Cui et al.
2019 [60] Instance

A two-stage deep supervised neural network using
3D Mask R-CNN as the base network for
segmentation and identification. First, the edge
map was extracted from CBCT images enhance
image contrast along shape boundaries. Then, the
3D region proposal network (RPN) was built with
a novel learned similarity matrix to help efficiently
remove redundant proposals, speed up training
and save GPU memory.

CBCT
20 scans
-Training: 12
-Testing: 8

-Dice similarity coefficient (DSC): 0.9237
-Detection accuracy (DA): 99.55%
-Identification accuracy (FA): 96.85%

Not available

Gou et al.
2019 [61] Semantic

A novel tooth-based approach that integrated
U-Net with a level set model. Level set method
was used to build the mask for CT images. U-Net
structure was changed for the feasibility to images
of any size.

CBCT
400 images
-Training: 300
-Validation: 100

-Accuracy: 66.7%
-Time: 10 s Not available
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2.5. Risk of Bias Assessment

Risk of bias assessments were analyzed using the Quality Assessment Tool for Di-
agnostic Accuracy Studies-2 (QUADAS-2). Study bias and applicability were assessed
through four key domains: patient selection, index test, reference standard, and flow
and timing. The risk of bias and concerns regarding applicability assessment results are
summarized in Figure 2 and shown in charts (Figure 3).

Appl. Sci. 2024, 14, x FOR PEER REVIEW  13  of  23 
 

 

Figure 2. Summary for risk of bias and concerns regarding applicability of selected articles under 

QUADAS-2. Figure 2. Summary for risk of bias and concerns regarding applicability of selected articles under
QUADAS-2.



Appl. Sci. 2024, 14, 6298 12 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW  14  of  23 
 

 

Figure  3.  Percentage  for  risk  of  bias  and  application  concerns  of  the  selected  articles  under 

QUADAS-2. 

3. Results 

3.1. Search Results and Study Selection 

A total of 729 records were obtained from searching various databases using specified 

keywords: 154  from MEDLINE, 276  from Web of Science, and 299  from Scopus. After 

automatically removing duplicates, the titles and abstracts of the remaining 334 articles 

were initially screened to determine their alignment with the inclusion criteria. Following 

excluding  reviews,  case  reports,  and  articles  not written  in  English,  77  articles were 

identified for full-text retrieval. Then, 44 of them were excluded for reasons including the 

full text being unavailable, the lack of artificial intelligence in the research methodology, 

or the focus being unrelated to tooth segmentation. Additionally, one article that met the 

criteria was obtained through manual search. A total of 34 studies was finally included in 

this systematic review. The PRISMA diagram illustrating the search results is depicted in 

Figure 1. 

3.2. Risk of Bias and Applicability Concerns 

The risk of bias and applicability concerns for each study were assessed following 

the QUADAS-2 guidelines and the results are  illustrated  in Figure 2. It was found that 

23.53%  of  the  studies  ignored  patients  with  restorations,  such  as  fillings  or  crown 

restorations, when selecting raw CBCT images. Nearly all studies using machine learning 

or deep learning models examined and evaluated tooth segmentation methods based on 

established judgment criteria. It is not clear whether researchers can ignore the criteria in 

favor of fair data analysis. A total of 85.29% of studies utilized the entire collected image 

dataset for the learning, testing, and validation of the artificial intelligence model. While 

every study showed some uncertainty or a serious risk of bias, there were no applicability 

concerns. Figure 3 presents the risk of bias and the percentage of applicability concerns 

for the selected articles based on QUADAS-2. 

3.3. Study Characteristics 

The research details of all included articles are summarized in Table 2. Most studies 

applied artificial intelligence methods based on deep learning techniques, such as CNNs 

[30,32,34,39,50,52,55,56],  fully  convolutional  networks  (FCNs)  [35,61],  and  network 

structures based on CNNs. For  example, U-Net  [28,29,33,36,43–47,49,52,55]  and V-Net 

[31,37–40,42,48,50,53,54,58,59,61]  are  applied  to  segment  two-dimensional  and  three-

dimensional images, respectively. Some studies adopt multi-stage or multi-task strategies 

based  on CNNs  to divide  the  tooth  segmentation  problem  into  several  sub-problems 

[34,36,48,50,52,54,58].  Other  approaches  used  priori  knowledge  or  morphological 

information  to determine  the center, shape, or border of  teeth  [48–50,52,55,58,59]. Still, 

some  researchers  applied  the  attention mechanism  to  capture  the  dependencies  and 

contextual information among the teeth [32,48]. Moreover, some other models integrate 

machine learning techniques, such as LSM [28,35,49], conditional random field (CRF) [55], 

region proposal network (RPN) [29,52], and feature pyramid network (FPN) [29,51,52] to 

Figure 3. Percentage for risk of bias and application concerns of the selected articles under QUADAS-2.

3. Results
3.1. Search Results and Study Selection

A total of 729 records were obtained from searching various databases using specified
keywords: 154 from MEDLINE, 276 from Web of Science, and 299 from Scopus. After
automatically removing duplicates, the titles and abstracts of the remaining 334 articles
were initially screened to determine their alignment with the inclusion criteria. Follow-
ing excluding reviews, case reports, and articles not written in English, 77 articles were
identified for full-text retrieval. Then, 44 of them were excluded for reasons including the
full text being unavailable, the lack of artificial intelligence in the research methodology,
or the focus being unrelated to tooth segmentation. Additionally, one article that met the
criteria was obtained through manual search. A total of 34 studies was finally included in
this systematic review. The PRISMA diagram illustrating the search results is depicted in
Figure 1.

3.2. Risk of Bias and Applicability Concerns

The risk of bias and applicability concerns for each study were assessed following the
QUADAS-2 guidelines and the results are illustrated in Figure 2. It was found that 23.53%
of the studies ignored patients with restorations, such as fillings or crown restorations,
when selecting raw CBCT images. Nearly all studies using machine learning or deep
learning models examined and evaluated tooth segmentation methods based on established
judgment criteria. It is not clear whether researchers can ignore the criteria in favor of fair
data analysis. A total of 85.29% of studies utilized the entire collected image dataset for
the learning, testing, and validation of the artificial intelligence model. While every study
showed some uncertainty or a serious risk of bias, there were no applicability concerns.
Figure 3 presents the risk of bias and the percentage of applicability concerns for the
selected articles based on QUADAS-2.

3.3. Study Characteristics

The research details of all included articles are summarized in Table 2. Most studies
applied artificial intelligence methods based on deep learning techniques, such as CNNs
[30,32,34,39,50,52,55,56], fully convolutional networks (FCNs) [35,61], and network
structures based on CNNs. For example, U-Net [28,29,33,36,43–47,49,52,55] and V-Net
[31,37–40,42,48,50,53,54,58,59,61] are applied to segment two-dimensional and three-
dimensional images, respectively. Some studies adopt multi-stage or multi-task strate-
gies based on CNNs to divide the tooth segmentation problem into several sub-problems
[34,36,48,50,52,54,58]. Other approaches used priori knowledge or morphological infor-
mation to determine the center, shape, or border of teeth [48–50,52,55,58,59]. Still, some
researchers applied the attention mechanism to capture the dependencies and contextual
information among the teeth [32,48]. Moreover, some other models integrate machine learn-
ing techniques, such as LSM [28,35,49], conditional random field (CRF) [55], region proposal
network (RPN) [29,52], and feature pyramid network (FPN) [29,51,52] to extract and utilize
feature information from CBCT images for tooth detection, segmentation, and identification.
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The number of CBCT images included in the studies ranged from 5 to 4938 [36,38].
Two of these studies used other data besides CBCT to improve the performance of the
tooth segmentation models. One study used Micro-CT data of the teeth to enhance the
outcomes of the U-Net model for tooth and pulp cavity segmentation in CBCT images [29],
while another study used intra-oral scanning data to replace the surface morphology of
the crowns in CBCT images and generate high-resolution tooth models [41]. Besides tooth
segmentation, some studies have also explored the segmentation of the pulp cavity, jaw-
bone, or small edentulous areas [29,37,39]. In this paper, we only consider the applications
of tooth segmentation from CBCT images. To train and evaluate deep learning models, the
location and extent of teeth need to be extracted and labeled from the patient’s maxillofa-
cial 3D images which are obtained directly in the clinic. Manual annotation can provide
accurate ground truth (GT) but often requires significant time and effort. Therefore, it is
common to augment the dataset by cropping, rotating, and mirroring after the data has
been normalized. Two of these studies have created publicly available datasets for use by
other researchers [45,46]. The homogenized CBCT data were divided into training and test
sets for AI model training and testing, and the remaining data were used for measuring the
performance of tooth segmentation methods.

3.4. Evaluation Metrics

Different metrics were used to compare the segmented images with the ground truth
and various neural networks or machine learning algorithms that exist in order to evaluate
AI segmentation models’ performance. Evaluation metrics can be divided into three cate-
gories: overlap and similarity metrics, distance metrics, and volumetric metrics. Overlap
and similarity metrics define how well the segmented regions agree with a known refer-
ence standard. They include accuracy (detection accuracy (DA), identification accuracy
(FA), pixel accuracy (PA)), sensitivity or recall, precision, Boundary F1 (BF) score, Jaccard
coefficient (JS), intersection over union (IoU), and Dice index or Dice similarity coefficient
(DSC), mean Dice and symmetric best Dice (SBD)) [28,30,33,47,48,60,61]. Distance metrics
describe the difference in distance between the segmented graphic contours, or surface
pixels, and the reference standard. They include average system surface distance (ASSD),
Hausdorff distance (HD), also known as maximum symmetric surface distance (MSSD),
average median surface deviation, and mean absolute deviations (MADs) [51,52,57]. Vol-
umetric metrics evaluate the performance of the tooth segmentation model from a volu-
metric perspective. They include volume differences (VD) and relative volume differences
(RVD) [52,59]. Other metrics include object include ratio (OIR), Chamfer-L2, normal consis-
tency (Normals), and occupancy accuracy (OccAcc), also applied to measure the coherence
and accuracy of the segmentation algorithms on surfaces and space vectors [41,61]. In
addition, some studies have reported the segmentation time [35,39,43,51,54] and the data
size of different models [36] as additional evaluation criteria.

3.5. Performance of AI Models

The most commonly used metric is the Dice index, which is used by 25 articles. The
Dice index assesses the similarity between segmentation results and ground truth by
calculating pixels in the intersection and comparing this to the average size of two areas,
visually evaluating the accuracy of AI segmentation models [33]. Similar metrics, including
IoU and Jaccard coefficient, are calculated by dividing the area of intersection by the area
of the union [61]. A total of 11 and 6 articles, respectively, used them to measure the
accuracy and similarity. Compared to IoU, the Jaccard coefficient is not only used for
image segmentation but can also be applied to text. In summary, the existing AI tooth
segmentation models can achieve a Dice index of 0.935 ± 0.035 (Mean ± SD) and an IoU or
Jaccard coefficient of 0.877 ± 0.075. The CNN model developed by Ayidh Alqahtani et al.
showed the highest DSC of 0.99, as well as the highest IoU, precision, and recall score
of 0.99, and the lowest 95% HD of 0.12 mm, demonstrating near-perfect segmentation
results [31]. In contrast, CAT–UNet exhibited the lowest segmentation accuracy, with a
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DSC of 0.865 and an IoU of 78.12 [32]. The method of Point-based Detection and Gaussian
Disentanglement achieved only a minimum average IOU of 0.704 in tooth detection [61].
Moreover, there are four articles used the Boundary F1 Score to assess the identification
and segmentation of boundary regions, achieving an accuracy of 0.97 ± 0.02.

In addition, accuracy, precision, and recall are widely used metrics for evaluating the model
performance. Accuracy quantifies the proportion of pixels correctly classified by the model to
the total number of pixels. Precision measures the correctness of the segmented area, while
recall evaluates the success of the model in segmenting individual teeth [39]. Current AI models
can achieve an accuracy of 98.00% ± 1.55%, a precision of 94.52% ± 4.53%, and a recall of
94.17% ± 4.08% in the tooth segmentation in CBCT images. Gerhardt et al. and Fontenele et al.
applied the same segmentation model based on the U-Net to the images [39,42]. Gerhardt et al.
focused on images with small edentulous areas, achieving 100% accuracy and 100% precision.
Fontenele et al., on the other hand, focused on images containing dental fillings and achieved
the highest recall of 99.7%.

Furthermore, 15 papers used ASSD and 11 papers used HD to evaluate the image seg-
mentation performance, respectively. ASSD considers the distance between each segmented
area and the ground truth, while HD only considers the maximum distance, typically using
the 95% Hausdorff Distance for evaluation. The results indicate that AI segmentation
methods achieved an ASSD of 0.22 ± 0.13 mm and a 95% HD of 0.94 ± 0.59 mm. Lin et al.
improved the U-Net-based segmentation model proposed by Duan et al. through integrat-
ing high precision pulp cavity images from micro-CT with the tooth images from CBCT,
achieving the lowest ASSD of 0.09 mm [29,52]. Other evaluation metrics, utilized in only
one article, are not described separately in this section.

4. Discussion

Accurate segmentation and identification of teeth in CBCT images is intricate and
challenging. Although manual and semi-automatic methods can accomplish segmentation
tasks, the accuracy and robustness of segmentation outcomes need improvement. AI-based
methods for tooth segmentation in CBCT images represent a promising avenue for future
development. Despite this potential, current research methods and results are scattered.
This study attempts to provide a complete and systematic review of research published on
this topic to date, to summarize current adopted AI tooth segmentation techniques, and to
establish a foundation for further development.

Depending on the type of output result, segmentation methods can be classified into
semantic segmentation and instance segmentation. In this review, 15 studies performed
semantic segmentation and 19 studies performed instance segmentation of CBCT images.
Semantic segmentation methods can categorize each pixel or voxel in a CBCT image
as a tooth or non-tooth but cannot distinguish between different instances of teeth [62].
Wang et al. utilized the Mixed-Scale Dense (MS-D) CNN for semantic segmentation of the
mandible and teeth. The segmentation results achieved a large overlap with the ground
truth and exhibited minor surface deviation [30]. Hsu et al. proposed a 3.5D U-Net structure
and compared it with five other U-Net structures, showing better semantic segmentation
results [40]. On the other hand, instance segmentation methods can simultaneously detect
and segment each tooth instance in CBCT images with its location and class information [26].
For example, ToothNet was the first implementation of using a two-stage deep CNN for
tooth recognition and instance segmentation of CBCT images. It first extracts edge maps
from CBCT images and then utilizes a 3D RPN and a novel learned similarity matrix
based on Mask R-CNN to generate candidate regions [60]. Wu et al. also used a two-level
hierarchical deep learning method to first determine the tooth centers from thermal maps,
and then identify the teeth and segment them into seven different types by DenseASPP-
UNet [58]. Comparing different methods, we found that instance segmentation techniques
typically utilize two-stage or multi-stage neural networks to accomplish the recognition and
segmentation of teeth. Introducing a priori knowledge or morphological information, such
as the center, skeleton, boundary, and curvature of the tooth, enhances the robustness and
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detailed representation of tooth segmentation. For example, the first stage involves detecting
the edges or centers of the teeth to form the region of interest for coarse segmentation. The
second stage or the subsequent process uses neural networks to accurately segment and
recognize different instances of the teeth for fine segmentation [34,48–50,52,58].

U-Net is a CNN-based architecture designed to classify each pixel in an image. It is a
predominant model for deep learning-based segmentation and is extensively employed
in segmenting teeth from CBCT images. The structure features symmetric encoders and
decoders, enhanced by cross-layer connections that merge feature maps from different
resolutions, preserving detailed information [24]. Al-Sarem et al. performed an initial
CBCT image segmentation using U-Net and further compared the results of six pre-trained
deep learning networks in tooth classification [47]. Building upon U-Net, V-Net introduces
residual modules into the encoder and decoder design and uses convolutional layers
instead of pooling layers to increase network depth and complexity. This adjustment
improves gradient flow during training and allows direct handling of 3D data, marking a
significant step forward in volumetric image analysis [63]. Ezhov et al. used V-Net and
weakly labeled data to obtain coarse segmentation results, further training the model using
accurately labeled datasets, and achieving high-resolution segmentation of individual
teeth [53]. Furthermore, by modifying the order of doubling the number of channels
and the process of deconvolution in U-Net, 3D U-Net can speed up convergence and
avoid bottlenecks in the network structure [64]. Virtual Patient Creator is an online cloud
platform that offers 3D U-Net AI models as open-source data on its website, enabling
high-resolution tooth segmentation of CBCT images [54]. Several studies have validated
its performance by segmenting teeth with different conditions, such as teeth containing
different fillings, small edentulous regions, and teeth with brackets, and obtained good
segmentation accuracy [31,39,42].

Despite these advancements, achieving optimal segmentation solely with one deep
learning approach remains challenging. U-Net struggles with long-range dependencies and
global information extraction, particularly when the segmentation target has low contrast
with the background. Furthermore, both V-Net and 3D U-Net are computationally and
memory intensive due to their direct processing of 3D images. To solve these problems,
researchers have proposed numerous enhancements to these foundational models to refine
detection and segmentation outcomes. On the one hand, the multi-task strategy can be
used to decompose the tooth segmentation problem into different sub-problems, such as
detection and identification, coarse segmentation, fine segmentation, and classification, in
order to improve accuracy and efficiency. Wang et al. utilized a framework containing
three task branches, including spatial embedding, seed mapping, and identification, while
performing deep learning on CBCT images, for instance tooth segmentation and classifi-
cation [37]. On the other hand, some studies have introduced attention or self-attention
mechanisms to capture pixels’ correlation and contextual information between or within
teeth to improve the accuracy and consistency of tooth segmentation [65]. Dou et al. in-
serted a 3D self-attention module into the encoder of V-Net, which can obtain the spatial
relationship between pixel points in the tooth geometry, thus capturing the complete tooth
spatial features and achieving an effective separation of the boundaries from the tooth root
and bone [48]. Cui et al. introduced a series of 3D attentional structures in U-Net to reduce
the impact of background and noise on segmenting the tooth volume [45]. A recently
developed deep learning network, Transformer, can extract more effective image features
by attentively capturing global contextual information and long-range dependencies of
the target [66]. Based on this idea, Chen et al. proposed a pre-trained CNN Transformer
Architecture UNet (CTA UNet), which combines the benefits of CNN and Transformer
to segment CBCT images from multiple scales and merge dental spatial features effec-
tively [32]. TransUNet [67] has a similar structure to CTA UNet, and CoTNET [68] is also
developed based on it, which can simultaneously extract global and local fine features,
combine with self-attention methods, and link context to achieve good target detection and
instance segmentation performance. Yin et al. combined CoTNet with U-Net++ (a U-Net
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variant) to achieve feature fusion at different levels and multiple scales and obtain finer
segmented images [33].

In addition, by combining other machine learning techniques and algorithms, the de-
tection effect and segmentation results can be further optimized. The Watershed Transform
(WT) is a segmentation algorithm that enables automatic segmentation and separation
of individual teeth by analyzing topological morphology to obtain boundary informa-
tion [69]. Chen et al. proposed a two-branch V-Net that predicted both the probability of
tooth region and the tooth surface, up-sampled the feature map at the decoder path and
integrated the Marker-controlled watershed transform to achieve accurate segmentation
of individual teeth and minimize the information loss [59]. Yang et al. combined the
advantages of semantic and instance segmentation and used a U-Net model for labeling
and semantic segmentation of each pixel in the image [36]. Xie et al. used a multi-task
CNN with a U-Net structure to segment the foreground and center regions of a tooth first.
Then both models followed by WT to segment the teeth into separate units, especially for
overlapping teeth [34]. Gaussian distributions based on heatmap responses effectively
preserved spatial information in the image through tooth surface pixel distributions, the
task of pixel-by-pixel classification is converted to a distance map regression task to perform
individual tooth segmentation, especially for overlapping teeth, with better segmentation
results [58,61]. Moreover, the Region Proposal Network with Feature Pyramid Network can
accurately locate the position of each tooth from the panoramic image and initially obtain
the segmentation area, which improves the accuracy and edge smoothness of CBCT image
segmentation and allows further effective segmentation of the pulp chamber [29,51,52].
Artificial intelligence models have also been used to assist traditional manual segmen-
tation methods, such as LSM, by automatically locating the center point to control the
segmentation range and achieve higher segmentation efficiency and accuracy [28,35,49].

Considering the existing AI methods used for tooth segmentation in CBCT images, the
evaluation metrics used in the various studies varied widely and lacked a uniform standard.
Most models have DSCs greater than 90% and accuracy ranging from 83% to 99%, whereas
a true application of machine learning methods to clinical work requires an accuracy rate
of approximately 99% [5]. However, AI-based image segmentation methods are affected
by computer literacy, annotation cost and high diversity of medical images. Tooth voxels
only account for 1–3% of the overall CBCT data, and many slices do not contain any
tooth-related voxels, which makes direct processing of the entire CBCT image challenging.
Therefore, most current deep learning models adopt a stage-based supervised learning
approach, which consists of roughly detecting the tooth region and then performing fine
segmentation. Lee et al. used a pre-trained U-Net with multiple stages on 3 different
CBCT sub-volumes, including tooth, tooth-containing slices, and the whole CBCT, but the
segmentation results were not significantly improved [56]. Furthermore, supervised neural
networks required to be trained with a large number of samples that have been manually
annotated, but significant differences between different CBCT images, such as brackets,
metal fillings, crown restorations, dental implants, artifacts, and missing tooth areas,
increase the cost of labeling and affect the training results. Meanwhile, most studies use a
relatively small number of samples, which increases the risk of model overfitting. Therefore,
data augmentation is usually used to improve the robustness and generalization ability of
the model. Examples include spatially rotating, scaling, and flipping the image [33], using
blending modes to perform random linear combinations of images or cropping and re-
collaging images [39]. In addition, researchers have also improved the model generalization
ability to some extent by normalizing the neural network, such as employing the dropout
layer, but it still cannot solve the problem fundamentally [55]. It is worth mentioning
that the open CBCT annotated datasets CTooth and CTooth++ were established and made
public in two studies [45,46]. They provide a basis for subsequently training network
weights based on large-scale datasets. At the same time, the use of pre-trained neural
networks may also improve the model’s generalization and migration ability.



Appl. Sci. 2024, 14, 6298 17 of 21

Despite the development of artificial intelligence in the field of tooth segmentation,
it is important to note that all current studies have a high risk of uncertainty. On the
one hand, CBCT images are not randomly selected, and researchers artificially exclude
images containing fillings, crown restorations, or images containing edentulous areas
when selecting patients [39,40]. On the other hand, some studies have considered only
anterior teeth and premolars when selecting segmentation targets and have intentionally
ignored molar teeth containing complex root conditions [51], or have concealed target
selection [37,43,47]. All of these factors can lead to an inappropriate increase in segmen-
tation accuracy. In addition, it is unclear whether the researchers were able to maintain
objectivity when analyzing the data with a clear understanding of the reference standard.
Therefore, the risk of index tests and reference standards cannot be ruled out, and there is
subjectivity in the segmentation results obtained by the study, but better research methods
and reference standards are lacking. Notably, only two papers have disclosed their model
code and part of their datasets. This is common in the academic field, but it highlights the
importance of open science and transparent research [35,38]. On one hand, open-source
code and datasets not only enhance the reproducibility and verifiability of research but also
strengthen academic communication and collaboration. On the other hand, this practice
also faces issues related to information and copyright protection. Furthermore, there are
currently no standardized formats or secure data storage and access platforms, making the
management and acquisition of shared resources complicated.

We believe that this study provides readers with a comprehensive understanding of the
emerging applications of artificial intelligence in CBCT tooth segmentation, establishing a
theoretical foundation for novel approaches in the diagnosis and treatment of oral diseases.
However, it is important to acknowledge that this article still has certain limitations. Only
studies written in English were included, and the unavailability of full texts for some
relevant articles may have led to potential inaccuracies in the results. Additionally, only
studies based on CBCT were included.

5. Conclusions

This systematic review demonstrates that artificial intelligence methods exhibit ex-
cellent performance in tooth segmentation in CBCT images. Clinicians can efficiently
accomplish tasks, such as disease diagnosis and treatment planning, either directly or
indirectly, with the aid of these methods. Despite that, they still faced with problems of
small databases and non-uniform evaluation metrics.

The research results strongly advocate for the creation of large-scale standardized
and openly available datasets. This initiative is instrumental in elevating the accuracy of
artificial intelligence models and enhancing the generalization, transfer learning capabili-
ties, and robustness of segmentation models. Furthermore, it is imperative to promote the
adoption of standardized protocols and industry-recognized evaluation metrics. Random
sampling and blind data collection methods should be employed to reduce bias. Addition-
ally, the utilization of unsupervised or semi-supervised training approaches can effectively
decrease bias resulting from manual interventions during data processing. Only then can
we objectively analyze the data, compare the segmentation results, and increase the possi-
bility of clinical translation. In conclusion, novel techniques for automatic segmentation
in digital dentistry require further improvement, and their clinical applications require
further exploration and evaluation.

Author Contributions: Conceptualization, M.T. and K.B.; Methodology, M.T. and Y.Z.; Validation,
M.T., Y.Z. and A.A.; Writing—original draft, Y.Z., Writing—review and editing, Y.Z., M.T., K.B. and
A.A.; Supervision, M.T. and K.B.; All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.



Appl. Sci. 2024, 14, 6298 18 of 21

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ASSD Average System Surface Distance
BF Score Boundary F1 Score
CBCT Cone Beam Computed Tomography
CNNs Convolutional Neural Networks
CRF Conditional Random Field
DA Detection Accuracy
DSC Dice Similarity Coefficient
FA Identification Accuracy
FCNs Fully Convolutional Networks
FPN Feature Pyramid Network
GT Ground Truth
HD Hausdorff Distance
IoU Intersection over Union
JS Jaccard Coefficient
LSM Level Set Method
MADs Mean Absolute Deviations
MS-D Mixed-Scale Dense
MSSD Maximum Symmetric Surface Distance
OccAcc Occupancy Accuracy
OIR Object Include Ratio
PA Pixel Accuracy
PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses
QUADAS-2 Quality Assessment Tool for Diagnostic Accuracy Studies-2
ROI Regions of Interest
RPN Region Proposal Network
RVD Relative Volume Differences
SBD Symmetric Best Dice
VD Volume Differences
WT Watershed Transform

References
1. Beek, D.-M.; Baan, F.; Liebregts, J.; Nienhuijs, M.; Bergé, S.; Maal, T.; Xi, T. A learning curve in 3D virtual surgical planned

orthognathic surgery. Clin. Oral Investig. 2023, 27, 3907–3915. [CrossRef] [PubMed]
2. Zhang, Q.; Gong, Y.; Liu, F.; Wang, J.; Xiong, X.; Liu, Y. Association of temporomandibular joint osteoarthrosis with dentoskeletal

morphology in males: A cone-beam computed tomography and cephalometric analysis. Orthod. Craniofac Res. 2023, 26, 458–467.
[CrossRef] [PubMed]

3. Algahtani, F.N.; Hebbal, M.; Alqarni, M.M.; Alaamer, R.; Alqahtani, A.; Almohareb, R.A.; Barakat, R.; Abdlhafeez, M.M.
Prevalence of bone loss surrounding dental implants as detected in cone beam computed tomography: A cross-sectional study.
PeerJ 2023, 11, e15770. [CrossRef] [PubMed]

4. Casiraghi, M.; Scarone, P.; Bellesi, L.; Piliero, M.A.; Pupillo, F.; Gaudino, D.; Fumagalli, G.; Del Grande, F.; Presilla, S. Effective dose
and image quality for intraoperative imaging with a cone-beam CT and a mobile multi-slice CT in spinal surgery: A phantom
study. Phys. Med. 2021, 81, 9–19. [CrossRef] [PubMed]

5. Weese, J.; Lorenz, C. Four challenges in medical image analysis from an industrial perspective. Med. Image Anal. 2016, 33, 44–49.
[CrossRef] [PubMed]

6. Barriviera, M.; Duarte, W.R.; Januário, A.L.; Faber, J.; Bezerra, A.C.B. A new method to assess and measure palatal masticatory
mucosa by cone-beam computerized tomography. J. Clin. Periodontol. 2009, 36, 564–568. [CrossRef] [PubMed]

7. Rad, A.; Rahim, M.S.M.; Rehman, A.; Altameem, A.; Saba, T. Evaluation of Current Dental Radiographs Segmentation Approaches
in Computer-aided Applications. Iete Tech. Rev. 2013, 30, 210–222. [CrossRef]
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