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In this paper, we report the results of our theoretical investigation on the interplay of superconductivity and disorder in two-
dimensional (2D) systems. +e effect of disorder on superconductivity of 2D systems was found analytically using Green’s
function formalism. +e results of our calculation revealed that disorder induced due to randomly distributed superconducting
islands enhances decoherence of Cooper pairs and suppresses superconductivity. We have also determined the critical value of
disorder at which the 2D system completely loses its superconducting properties. Below this critical value of disorder, the system
acts as a superconductor, a system with zero electrical resistance. Above the critical value, it acts as an insulator, a system with
infinite electric resistance. +is is a fascinating result because a direct transition from the state of the infinite conductivity to the
opposite extreme of infinite resistivity is unexpected in the theory of condensed matter physics.

1. Introduction

Superconductivity is a resistanceless state of matter first
discovered in mercury by Onnes [1]. +is paradoxical state
of matter was described microscopically by Bardeen et al. [2]
in 1957. For this microscopic description, Bardeen et al. won
the 1972 Nobel Prize in physics. +e beauty of this state of
matter is its large potential for application, especially in
electric power transmission, fast train transportation, MRI
medications, and quantum computing technologies. With
this large potential for application, experimentalists have
been searching for the elusive room-temperature super-
conductivity. +is resulted in the discovery of high-tem-
perature ceramic compounds [3], compounds of iron
pnictides [4], and most recently in metallic hydrides under
high pressure [5]. +e conventional microscopic theory
(BCS theory) failed to explain the mechanism of super-
conductivity in these high-temperature materials.

+e study of the effect of disorder on superconductivity
began in the late 1930s with the work of Shalnikov [6] and
revived again in the late 1950s with the works of Anderson
[7] and Abrikosov and Gor’kov [8]. Anderson showed that
disorder solely by itself can destroy superconductivity and

lead to insulating behavior in materials if sufficiently strong.
Abrikosov and Gor’kov also showed that magnetic impu-
rities of arbitrary concentration can destroy superconduc-
tivity of materials.

+e problem of dirty superconductors gives a unique
opportunity to study the competition between superconduc-
tivity which results from pairing of electrons and localization
which results from scattering effects of nonmagnetic and
magnetic impurities [7, 8], pair-breaking effects of disorder-
induced Coulomb repulsion, or disorder-induced decoherence
effects [9–13]. +e interest in the field was further increased by
the possibility that the disorder-driven ormagnetic field-driven
suppression of superconductivity in the limit of zero tem-
perature might be a quantum phase transition [10].

Investigations in this field also revealed that the pair-
breaking and decoherence effects of disorder on super-
conductivity of materials depend on their physical dimen-
sion and superconducting pairing symmetry. According to
Anderson, weak nonmagnetic disorders (impurities, dislo-
cations, etc.) which could not affect the time-reversal
symmetry have no significant effect on thermodynamic
properties of three-dimensional (3D) s-wave supercon-
ductors. In the literature, this is well known by Anderson’s
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theorem. Until the late 1970s, most of the theoretical inves-
tigations in this field had been acting according to this theorem.
However, the scaling theory of localization developed in 1979
by Abrahams et al. [14] revolutionized the study of dirty su-
perconductors. According to this theory, two-dimensional
(2D) systems are supposed to exist in only one of the two states
at zero temperature, superconductor or insulator. +ere is no
room for the metallic state to appear at this temperature be-
cause all electrons are expected to localize by infinitesimal
amount of disorder. Moreover, unlike the case of 3D, infini-
tesimal amount of disorder can destroy superconductivity of
2D systems. As a result, 2D superconductors serve as ideal
systems to study the less explored problem, the competition
between superconductivity and localization. A complete sup-
pression of superconductivity by disorder has been observed
experimentally in granular and amorphous films such as Bi, Pb,
Sn, Josephson junction arrays, and 4He [15–17].

In the present paper, we have studied the effect of
disorder on superconductivity of 2D systems. Based on the
bosonic scenario of Mathew Fisher [18, 19], we have de-
veloped a Hamiltonian which describes our system and
derived analytically the relationship between super-
conducting order parameter and disorder strength.

2. Theoretical Model

In two-dimensional superconductors, the effect of disorder
can be either pair breaking or decoherence [20]. +e pair-
breaking effect is known by the fermionic model [21], and
the decoherence effect is known by the bosonic model [19].
For disordered 2D systems, the most accepted scenario is the
bosonic model. According to this model, superconducting
islands of different sizes will be induced, and these random-
sized islands can in turn induce random potentials which
can potentially disturb the coherence between Cooper pairs
of different islands. At some disorder strength, the coherence
is completely lost, and the system becomes a gaped insulator.
By the gaped insulator, we mean that there is a super-
conducting gap (also known as pseudo-gap) but no su-
perconductivity. Figure 1, which was plotted by Bouadim
et al. [21] based on quantum Monte Carlo simulation, de-
picts this model.

Based on this scenario, we developed a Hamiltonian of
the form

H � −t 􏽘
i,υ

c
+
i ci+υ + cic

+
i+υ( 􏼁 + U 􏽘

i,υ
nini+υ − 􏽘

i

μini, (1)

where c+
i , ci, and ci represent the creation, annihilation, and

number operators of Cooper pairs on the i-th lattice point,
respectively. +e subscript υ denotes the vector to the four
nearest neighbours. U and t denote the repulsive interaction
and the hopping integral for bosons on the nearest neigh-
bour sites, respectively. μi represents the randomness in the
single-site chemical potential due to variation in the island
sizes. Deviation of the chemical potential Δμi from its av-
erage value μ, Δμi � μi − μ, is mainly due to distribution of
the island size.

In the case of infinite on-site repulsive interaction, our
bosonic model becomes a hard-core boson model, and

double occupancy of bosons is completely restricted.
+erefore, the hard-core boson system is a bosonic spin-half
system. In order to transform bosonic Hamiltonian (1) into
the Heisenberg-type spin Hamiltonian, we adopt the Mat-
subara–Matsuda transformation rule developed for hard-
core bosons [22–25]:
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Employing this transformation rule, we have mapped
our bosonic Hamiltonian into Heisenberg-type of the form
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where Axy ≡ t and Az ≡ U in equation (1). Starting from this
spin-transformed Hamiltonian, we have calculated the av-
erages in spin operators, 〈S±〉, employing Green’s function
formalism. In this model, these averages represent the
superconducting order parameters. +erefore, based on the
calculated averages, we can give a qualitative judgment
whether the system is superconducting or insulating.

3. Calculations

In this section, we have calculated the expression for spin
order which relates superconducting order parameter and
disorder strength employing the equation of motion method
of Green’s function. +e Fourier transformed equation of
motion for retarded Green’s function is

ω〈〈a, b〉〉ω � 〈[a, b]〉ω +〈〈[a, H]; b〉〉ω. (4)

Replacing the Heisenberg operators a and b by spin
operators S+

i and S−
j , respectively, substituting Hamiltonian

(3) into the equation of motion (4) and computing the
commutations on the RHS give

〈〈S+
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In order to reduce the higher-order Green functions
which appeared in our calculations, we have employed the
following decoupling approximations:
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+e spin operators were also transformed into k-space
representations as
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+e correlation function for operators a(t) and b(t′) is
given by

〈b t′( 􏼁a(t)〉 � 􏽚
∞

−∞
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eβω + 1
e
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+e spectral density Sab(ω) is given by
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where Gret
ab (ω) and Gadv

ab (ω) are retarded and advanced
Green’s functions, respectively. Calculating the correlation
function for the spin operators employing equation (9) and
rearranging give
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Introducing normalized variables α ≡ Δμ/Axy,
β ≡ Az/Axy, and c ≡ μ/Axy and substituting into equation
(11) finally give

〈Sx〉≃
16c2(1 − β)2 − c2 + α2( 􏼁

2

64c2(1 − β)2
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1/2

. (12)

Equation (12) represents the interplay between super-
conducting order parameter and strengths of disorder and
interaction between neighbouring Cooper pairs.

4. Results and Discussion

+e plot in Figure 2 indicates the interplay between disorder
and superconductivity. As it has been clearly indicated,
disorder suppresses superconductivity, and at some critical
point, the system completely loses its superconductivity.
Moreover, the strength of interaction advances the transi-
tion. Our theoretical result agrees with the experimental
works of Goldman et al. [16, 17].

+e plot in Figure 3 also depicts the interplay between
superconductivity and strength of repulsive interaction
between the neighbouring Cooper pairs. Just like disorder,
the strength of repulsive interaction between Cooper pairs of
neighbouring islands also suppresses superconductivity. At

(a) (b)

Figure 1: Superconducting islands separated by insulating regions (a). For very thin films, the islands are assumed to be on lattice sites (b)
[21].
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Figure 2: +e behavior of superconducting order 〈Sx〉 with in-
creasing disorder strength α.
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Figure 3: +e behavior of superconducting order 〈Sx〉 with in-
creasing interaction strength β.
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some critical value of the interaction strength, the system
completely loses its superconductivity and becomes an
insulator.

5. Conclusion

In this paper, we have studied the superconductor-insulator
quantum phase transition in two-dimensional systems. We
mainly considered the effect of disorder-enhanced ran-
domness in an on-site chemical potential on the super-
conductivity of 2D thin films. To this end, we have calculated
the relationship between the superconducting order pa-
rameter and strength of disorder in an on-site chemical
potential. We have also calculated the relationship between
superconducting order parameter and strength of repulsive
interaction between Cooper pairs on neighbouring islands.
Our calculation results revealed that disorder and repulsive
Cooper pair interactions suppress superconductivity of 2D
thin films. +is result is very important in the study of
strongly correlated electronic systems specifically in high-Tc
copper-based superconductors. Here, we note that our
calculations are based only on quantum mechanical mean-
field approximations and can only explain qualitatively the
more complex phenomenon of SIT. +e quantitative ex-
planation of this complex phenomenon requires to employ
the more advanced quantum mechanical methods such as
dynamical mean-field approximations and dynamical
quantum Monte Carlo simulations [9, 21, 26, 27].

Data Availability

+e manuscript is theoretical investigation. It does not have
experimental/simulation data to avail for readers. +e plots
on the figures are generated from equations using Matlab.
+erefore, all the data used to support the findings of this
study are included within the article.
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