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Graphene has many unique properties which have made it a hotbed of scientific research in recent years. However, it is not expected
intuitively that the strong effects of the substrate andCoulomb doping in the center of crystal cell on the polaron inmonolayer graphene.
Here, the interaction energy of surface electron (hole) in the graphene and optical phonons in the substrate, which give rise to weakly
coupled polarons, is analyzed in the context of the Coulomb doping.+e ground-state energy of the polaron is calculated using the Lee-
Low-Pine unitary transformation and linear combination operator method. It is found that the ground-state energy is an increasing
function of magnetic field strength, the bound Coulomb potential, and the cutoff wavenumber. Numerical results also reveal that the
ground-state energy reduces as the distance between the graphene and the substrate is increased. Moreover, the ground energy level of
polaron shows the two (+) and (− ) branches and zero-Landau energy (ground) level separation in the graphene-substrate material.

1. Introduction

Monolayer graphene (MG) is the archetypal example of a zero-
energy gap semiconductor.+e effective mass of charge carriers
near the Dirac point, a phenomenon characterized by linearly
dispersive band structure, is zero. Because of its unique two-
dimensional structure, graphene has a wealth of novel me-
chanical, thermal, optical, and electrical properties. Graphene
materials have extraordinary electrical conductivity,magnitudes
of order stronger than steel, and excellent optical transmission,
making it widely used in high-performance nanoelectronic
devices, composites, field emission materials, gas sensing, and
energy storage. It is expected to replace silicon as an important
raw material for the next generation of semiconductor mate-
rials. As such, graphene has been an area of intense focus in
solid-state research in recent years [1–10, 15].

Studies have shown that polarons in graphene have a
significant effect on the photoelectric and transport properties.
Using linear combination operators and the LLP unitary
transformation, Li et al. [11–13] found a regulatory mechanism
of zero-Landau level splitting and that a band gap opens as a
direct result of polarons. Xiao et al. [14–16] discussed the effects
of Coulomb impurities and polar substrates on the splitting of

polaron zero-Landau level in graphene. Wang et al. [17–21]
used the LLP unitary transformation to analyse the effect of
impurities on monolayer graphene’s physical properties. Ad-
ditionally, they calculated the effect of polarons in MG on
different substrates, thereby highlighting MG’s sensitivity to its
local environment. Other studies [22–24] have used Huy-
brechts’ linear combination operator and Pekar’s variational
approach to study magnetopolarons in MG under strong in-
teractions between electrons and surface acoustic (SA) pho-
nons. Despite the high interest in this area, there have been few
studies on the properties of weakly coupled polarons in MG.

In this paper, the linear combination operator method and
quadratic LLP unitary transformation are used to study substrate
effects on the properties of boundmagnetopolarons inMGunder
weak coupling of electrons and surface optical (SO) phonons.

2. Theory

Here, we consider MG on a substrate with the opposing side
exposed to air. A uniform magnetic field is applied per-
pendicularly to the graphene’s surface, and a bound potential
created by the disordered arrangement of Coulomb impu-
rities between the substrate and graphene is incorporated.
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+e Hamiltonian of such a system as shown in Figure 1,
accounting for electron-SO phonon interactions can be
written as

H � He + Hph + He− ph −
g

r
, (1)

where

He � VF

0 πx − iπy

πx + iπy 0
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where Q is the charge of the electron, η � (k0 − k∞)/[(k∞ +

1)(k0 + 1)] represents the dielectric constant of the sub-
strate, k∞ and k0 are the high- and low-frequency dielectric
constants, respectively, ε0 is the frequency of phonons,ωso,v is
the SO frequency of phonons and v � 1, 2, − (g/r) is the

Coulomb potential, and g is the parameter of Coulomb
potential which stands the strength of affecting the polaron.

One can write the momentum and position of an
electron using linear combination operators [16] given by
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where λ �
�����
eB/2Z

√
is the variational parameter and

j � x, y.A Fourier series expansion is carried out to obtain
the binding potential of the last term in equation (1):

1
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k
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k
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where A represents the area of graphene. +e linear com-
bination operators, equation (6), are substituted into
equation (1), and the following LLP unitary transformation
is performed:

U1 � exp − i 
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Following this transformation, the result of equation (1)
can be rewritten as
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Taking the wave function of the system as
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|0〉 is the unperturbed zero-phonon state satisfying the
operation ak | 0〉 � 0.

It is straightforward to show that the expected value of
the polaron subsystem is
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+e resultant eigenvalue of the electronic kinetic energy
term corresponding to the zero-Landau level can be written
as

Ee,0 � ±
���
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� βVF 

k

Zkf
∗
k fk, (12)

where β � ±1. +e above formula corresponds to the band
exponent of the conduction band and the valence band.

In the same way, the phonon energy, electron-phonon
interaction energy, and Coulomb potential energy eigen-
values for the zero-Landau level are given by
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One can thus write the ground-state eigenenergy value,
E0, of the entire system as
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where f∗k and fk are the variational parameters. From
equation (16), one can use the variationmethod to obtain the
ground-state energy of weakly coupled bound magneto-
polarons in MG:
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(17)

where d represents the distance z between the substrate
and the graphene monolayer and kc is the cutoff wave
number.

3. Results and Discussion

+ree polar materials SiC, HfO2, and h − BN were selected
as substrates for numerical calculation to analyse the effects
of distance z, between graphene and substrates, the binding
parameters g, magnetic field intensity B, and cutoff wave
number kc of phonons on the ground-state energy of the
weakly coupled bound magnetopolarons in MG. Table 1
details the substrate parameters used for the calculations.

Figures 2 and 3 show the relationship between magnetic
field strength and cutoff wave number in MG when z � 1nm
and g � 0.2 for the three substrates. One can clearly observe
that the original zero-Landau energy level is split into two

Graphene

Substrate

Magnetic field

Phonon

Polaron

a

b

z

Coulomb impurity
Carbon atom
Electronic

Figure 1: Schematic diagram of magnetopolaron in graphene with
Coulomb impurities under the substrate.

Advances in Condensed Matter Physics 3



symmetric energy bands. +e splitting is the result of the
well-known Lorenz effect and polaron effect. Additionally, it
is trivial to see that the substrate material has an effect on the
energy level value and that the absolute value of energy
increases with increasing magnetic field strength and cutoff
wavenumber. One notable difference is the apparent

levelling off of ground-state energy once a threshold cutoff
wavenumber is reached. +e magnetic field can cause the
splitting degree of ground-state energy, which is consistent
with the results of references [5, 18, 20, 21]. We also cal-
culated the effect of substrate material on the ground-state
energy of graphene polaron. +e greater dielectric constant
of the substrate material can cause the stronger splitting of
the two branches of the ground-state energy of the polaron.
+is is very important for the study of the surface optical
polaron of the graphene on the substrate and also provides a
theoretical reference for the experiment.

Figures 4 and 5 show the dependence of the ground-state
energy of the weakly coupled bound magnetopolarons on
the substrate distance z and Coulomb bound potential
parameters. Figure 4 reveals that the absolute value of the
ground-state energy decreases gradually as the substrate
spacing increases, although only by ∼50meV over 8 nm.
From equation (17), it is straightforward to see that the
interaction between electrons on the graphene surface and
phonons on the substrate surface is weakened with increased
spacing. As can be seen from Figure 4, the band near the
Dirac point splits into two opposing bands with linearly
increasing absolute energy E0. At constant distance z and
cutoff wave number kc, the enhancement of g increases the
Coulomb binding energy and thereby increases the absolute
energy of the ground state. +is phenomenon is in agree-
ment with the results of Ref. [9–11, 25]. However, we find
that the parameter of Coulomb potential is an important
factor in adjusting the polaron ground energy and causing
the increase in splitting of energy level.

4. Conclusion

+e ground-state energy of bound magnetopolarons in a
single layer of graphene is calculated using the linear
combination operators and LLP variational method, in the
context of weakly coupling of electron and surface optical

Table 1: Experimental parameters used in the numerical
calculations.

Quantity (units) SiC HfO2 h − BN

k0(ε0) 9.7 22.0 5.1
k∞(ε0) 6.5 5.0 4.1
Zωso,1(meV) 116 19 101
Zωso,2(meV) 167 53 195
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Figure 2: Variable magnetic field B versus the ground energy E0.
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Figure 3: Variable cutoff wavenumber kc versus the ground energy
E0.
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Figure 4: Variable substrate distance z versus the ground energy
E0.
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(SO) phonon. +e results show that the absolute value of the
ground-state energy decreases when the magnetic field
strength, bound potential strength, or cutoff wave number
are increased. On the other hand, when one increases the
distance between the graphene monolayer and substrate, the
strength of the interaction decreases and the value of the
ground-state energy is reduced. +ese results provide new
ideas and methods for further understanding polaron effects
in graphene and provide [25] theoretical basis for the
preparation of functional quantum optical devices based on
graphene structures.
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